
Consistency Techniques
for Interprocedural Test Data Generation

Nguyen Tran Sy
tsn@info.ucl.ac.be

Yves Deville
yde@info.ucl.ac.be

Computing Science and Engineering Department
Université catholique de Louvain

Place Saint-Barbe 2
B-1348 Louvain-la-Neuve, Belgium

ABSTRACT
This paper presents a novel approach for automated test
data generation of imperative programs containing integer,
boolean and/or float variables. It extends our previous work
to programs with procedure calls and arrays. A test program
(with procedure calls) is represented by an Interprocedural
Control Flow Graph (ICFG). The classical testing criteria
(statement, branch, and path coverage), widely used in unit
testing, are extended to the ICFG. For path coverage, the
specified path is transformed into a path constraint. Our
previous consistency techniques, the core idea behind the
solving of path constraints, have been extended to handle
procedural calls and operations with arrays. For statement
(and branch) coverage, paths reaching the specified node or
branch are dynamically constructed. The search for suitable
paths is guided by the interprocedural control dependences
of the program. The search is also pruned by a new spe-
cialized consistency filter. Finally, test data are generated
by the application of the proposed path coverage algorithm.
A prototype has been implemented. Experiments show the
feasibility of the approach.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Experimentation, Algorithms, Measurement, Performance

Keywords
software testing, test data generation, procedures, arrays,
constraint satisfaction, consistency

1. INTRODUCTION
Structural testing techniques are usually concerned with

the use of the control-flow a program to guide the generation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’03, September 1–5, 2003, Helsinki, Finland.
Copyright 2003 ACM 1-58113-743-5/03/0009 ...$5.00.

of test data. The control-flow, in turn, is represented by a
Control Flow Graph (CFG). To adequately test the program
at the structural level, we must consider structural elements
(nodes, branches, or paths) of the CFG for coverage. For ex-
ample, statement coverage requires developing test cases to
execute certain nodes of the CFG. Similarly, branch cover-
age requires test cases to traverse certain branches, and path
coverage requires test cases to execute certain paths. Struc-
tural testing thus includes (1) choice of a criterion (state-
ment, branch or path), (2) identification of a set of nodes,
branches or paths, and (3) generation of test data for each
element of this set. The automation of the last phase is a
vital challenge in software testing.
Classical testing approaches can be classified into the fol-

lowing categories. Random test data generation [2] consists
in trying test data generated randomly until an element is
executed. Many experiences have shown however that it
can be very inefficient to generate test data for statement
coverage, for example. Symbolic evaluation [10, 1] consists
in replacing input variables by symbolic values, and then
symbolically evaluates the statements along a path. It is
however limited in handling arrays1 and procedure calls.
Program execution based (or dynamic) approaches start by
executing the program with an arbitrary test input. This
input is then iteratively refined, by execution of the pro-
gram, to obtain a final input, executing a path [6], a branch
[7], or a statement [3]. The results in [3] are extended in
[11] to programs with procedures by considering the possi-
ble effect of statements in the called procedures on execution
of the selected element. Although dynamic approaches are
powerful in handling arrays and dynamic data structures, it
may require a great number of executions of the program.
Another approach [15] uses genetic algorithms to guide the
search process; it is however restricted to programs with-
out procedure calls. An approach, based on Constraint
Logic Programming (CLP) techniques, has been proposed
in [5], where statement coverage is handled. The test data
generation problem for a given statement is translated into
constraints, solved by an instance of the CLP scheme. This
approach offers advantages such as the handling of arrays
and a restricted class of pointers. However, only integer
inputs are treated,(although a constraint solver over float
numbers has recently been proposed in [13]). Procedure
calls are handled, but only the pass-by-value mechanism for

1Consider, for instance, an array element A[i]. Since i may
depend on input variables, it is then impossible to determine
which array element is referenced.

passing parameters is considered. Only intraprocedural con-
trol dependences of the test program are used in the search
process, even when it contains procedure calls. Therefore,
this is not precise for certain classes of programs as will be
shown later. Interval Arithmetic [14] has been exploited for
test data generation in [18] and in our previous work [20].
The branch-and-bound technique proposed in [18] is lim-
ited to programs without loops and does not handle arrays,
nor procedure calls. A summary of existing approches with
functionalities close to our method is given in the Experi-
mentation Section (Table 5).
In the following problem statement, an Interprocedural

Control Flow Graph (ICFG) is a classical representation of
programs. A precise definition will be given in Section 2.

Problem statement. Given a node n, a branch b or a path
p of the ICFG associated with a test procedure P (possibly
with procedure calls), generate a test input i such that P
when executed on i will cause n, b or p to be traversed.
We propose a novel consistency-based approach for in-

terprocedural test data generation. Statement, branch and
path coverage criteria are all handled. Path coverage is the
core of our approach. It includes the following steps. (1) A
path constraint is derived from a specified path of the ICFG.
Such a constraint can involve operations with arrays. (2)
The path constraint is solved by a new specialized interval-
arithmetic-based constraint solver extended to handle con-
straints involving arrays. (3) A test case is extracted from
the interval solutions.
For statement (and branch) coverage, paths reaching the

specified node or branch are dynamically constructed. Our
algorithm for path coverage is then applied on these paths
to generate test data.

Contribution. The main contribution of the paper is a novel
approach (based on consistency techniques), which is an ex-
tension of our previous paper [20] to generate test data for
numeric programs (programs with integer, boolean and float
variables) with procedure calls and arrays. This approach
handles branch, statement and path coverage criteria. Spe-
cific technical contributions of the paper include the follow-
ing. (1) A new method to obtain a path constraint directly
from a path’s traversal. (2) Two mechanisms for passing pa-
rameters (pass-by-value and pass-by-reference) in procedure
calls are handled. (3) An improvement on our previous con-
sistency techniques to tackle specific constraints involving
arrays. (4) The proposed interval constraints solver inte-
grates integers, reals, and booleans, as well as the logical
operators AND, OR, NOT . (5) For statement and branch
coverage, interprocedural control dependences are used dur-
ing the search process, when the test procedure contains
procedure calls.

Organization. The organization of the paper is as follows.
The background is presented in the next section. Section 3
illustrates the generation of path constraints. Section 4 de-
scribes a test data generation algorithm for path coverage,
while Section 5 proposes an algorithm for statement cover-
age. Experiments with our prototype are shown in Section
6. Conclusions are finally presented in Section 7.

2. BACKGROUND
Transforming a Test Program into an Equivalent one.
The purpose of this transformation is to isolate all embed-
ded function calls from their enclosing expressions. For each
embedded function call, a new variable is added to hold its

return value into the test program. The transformed pro-
gram is equivalent to the original one, assuming that, in an
expression, all embedded function calls are evaluated. This
might not be the case for non-strict operators such as the
conditional AND (&&) in Java. In an expression like x>1 &&

f(x), if x>1 evaluates to false, the value of the expression is
false, and f(x) is not evaluated. This restriction can easily
be lifted by a more elaborated transformation, e.g. condi-
tional AND are transformed into conditional statements.
In the program given in Figure 1, the parameters declared

with the var keyword are pass-by-reference parameters while
the other parameters are pass-by-value parameters. Figure 2
shows the transformed procedure B without embedded func-
tion calls. In the sequel, when we refer to a program, we
mean an equivalent one without embedded function calls.

Interprocedural Control Flow Graph. A control flow gra-
ph (CFG) for procedure P is a directed graph, where the
nodes represent statements and predicates (conditional and
loop statements) of P , except that each procedure call and
function calls are represented by two nodes, a call node and
a return node; the edges represent possible flow of con-
trol between nodes. The CFG also contains two distin-
guished nodes, EntryP and ExitP , representing respectively
a unique entry node and a unique exit node of P . A node,
representing a predicate statement, is called a predicate node.
An outgoing edge from a predicate node is called a branch.
Each branch of the CFG is associated with a condition.
An interprocedural control flow graph (ICFG) [19, 12] for

procedure P is a directed graph, which consists of a unique
global entry node Entryglobal, a unique global exit node
Exitglobal, and the CFGs (for P and all procedures called
directly or indirectly by P). Apart from the edges of the
individual CFGs, the ICFG also contains the following kinds
of edges: (1) the edges (Entryglobal, EntryP) and (ExitP ,
Exitglobal); (2) each procedure call (represented by a call
node c and a return node r) to procedure M corresponds
to a call edge (c, EntryM) and a return edge (ExitM , r);
(3) the edges that connect the nodes (representing a halt
statement) to node Exitglobal. Note that a halt statement
represents an unconditional program halt such as the exit()
system call in C. Each statement such as x:=f(...) (f(...)
is a function call) is represented by a pair of call and return
nodes as in a procedure call. However, these nodes are now
associated with x := f(...).

M(var real a[10], int c) B(var real a[10])
begin M begin B

int i = 1; int i,j;
while i <= c do read i,j;

B(a); if F(i) < F(j) then
i = i + 1; C(a[i], a[j]);

endwhile else C(a[j], a[i]);
end M endif

end B
C(var real x, var real y)
begin C int F(int i)

real t; begin F
if x > y then if i >= 0 & i <= 9 then

t = x; return i;
x = y; else halt;
y = t; endif

endif end F
end C

Figure 1: Program 1
Figure 3 shows the ICFG for procedure M of Program 1

(in Figure 1). The individual CFGs are connected by edges
shown in dashed lines. If node i is a predicate node, its true
branch is labeled with a condition T i, while its false branch
is labeled with a Fi, that is the negation of T i (Fi = T i).

B(var real a[10])
begin B

int i,j,fi,fj;
read i,j;
fi = F(i); fj = F(j);
if (fi < fj) then

C(a[i], a[j]);
else C(a[j], a[i]);
endif

end B

Figure 2: An equivalent of Program-1’s procedure B

2. Entry M

19. halt

21. Entry C

18. return i

3. i = 1

4. i <= c

5a. call: B(a)

6. i = i + 1
7. Exit M

1. Entry Global

22. x > y

23. t = x

24. x = y

9. read i,j

10a. call: fi = F(i)

12. fi < fj

8. Entry B

10b. return: fi = F(i)

11a. call: fj = F(j)

11b. return: fj = F(j)

14a. call: C(a[j], a[i])13a. call: C(a[i], a[j])

13b. return: C(a[i], a[j]) 14b. return: C(a[j], a[i])

15. Exit B

16. Entry F

17. i >= 0 & i <= 9

20. Exit F

25. y = t

26. Exit C

27. Exit Global

5b. return: B(a)

F4 T4

T12 F12

T17 F17

T22
F22

Figure 3: Interprocedural control flow graph for M

In this ICFG, the conditions T4, T12, T17 and T22 are
respectively i<=c, fi<fj, i>=0 & i<=9 and x>y.

Path. A path is a sequence of nodes from the global en-
try node Entryglobal to a node of the ICFG. Note that a
(partial) execution of a procedure P corresponds to an ex-
ecution path in the ICFG for P . Paths, where a return
edge does not match the corresponding call edge, are obvi-
ously infeasible execution paths. We thus restrict paths to
feasible execution paths, where every return edge is prop-
erly matched with its corresponding call edge. Note that
a path can be an unbalanced-left path [12], representing an
execution in which not all of the procedure calls have been
completed, i.e. there are more call edges than return ones
in the path.

Constraint. A basic constraint is a simple relational expres-
sion of the form E1 op E2, where E1 and E2 are arithmetic
expressions and op is one of the following relational opera-
tors {<,≤, >,≥,=, �=}. A constraint is a basic constraint or
a logical combination of basic constraints using the following
logical operators {NOT,AND,OR}. We assume that the
logical operators of the programming language of the pro-
gram under analysis correspond to those constraints. Oth-
erwise, the constraints can easily be extended.

CSP and Constraint Solving. A constraint satisfaction
problem (CSP) P = (V,D, C) is defined by a finite set of
variables V taking values from finite or continuous domains
D and a set of constraints C between these variables. A
solution to a CSP is an assignment of values to variables
satisfying all constraints and the problem amounts to finding
one or all solutions.

Consistency techniques are algorithms that reduce the
search space by removing, from the domains, values that
cannot appear in a solution. Consistency algorithms play
an important role in the resolution of CSP [21].

Interval programming methods have been designed to solve
(continuous) constraints over the real numbers. The basic
idea is to associate with each variable an interval represent-
ing its domain. Consistency techniques (on continuous do-
mains) thus aim at reducing the size of the intervals with-
out removing solutions of the constraints. Such consistency
techniques are usually coupled in methods for solving such
constraints [8].

Notations. The set of floating-point numbers (F -numbers)
is denoted by F . The set of intervals is denoted by I .
The set of boolean intervals is denoted by BI , where BI =
{[0, 0], [0, 1], [1, 1]} (0 and 1 respectively represent false and
true). BI is thus a subset of I . Capital letters denote in-
tervals. Constraints involve reals, integers, and booleans. If
a is a F -number, a+ denotes the smallest F -number strictly
greater than a and a− the largest F -number strictly smaller
than a. If x is a real number, 	x
 denotes the largest integer
that is not larger than x and �x � the smallest integer that
is not smaller than x. The lower and upper bounds of an
interval X are denoted respectively by left(X) and right(X).
Boldface letters denote vectors of objects. The domain of
a simple variable x is denoted by dom(x). If a is an array
variable, dom(a) denotes the domain for its array elements
and length(a) is its length (i.e. the number of elements). A
canonical interval is an interval of the form [a, a] or [a, a+],
where a is a F -number. An interval X is an ε interval
(ε > 0) if X is canonical or right(X)−left(X) ≤ ε. A box
(X1, . . . ,Xn) is an ε box if Xi (1 ≤ i ≤ n) is an ε interval
[8].

Test cases. An (integer, boolean or float) input variable is
either an input parameter or a variable in an input statement
of P . The domain of a boolean variable is an element of BI .
The domain of an integer variable is an interval, representing
a set of consecutive integers. The domain of a float variable
is an interval of float numbers. Let x1, . . . , xn be n input
variables of P , and Dk be the domain of variable xk (1 ≤
k ≤ n). Then a test input is a vector of values (i1, . . . , in),
where ik ∈ Dk (1 ≤ k ≤ n).
The execution of the program (on a specified path) uses

operators defined on F -numbers, integers and booleans. We
assume here that the test program is written in some fixed
imperative language L.

Definition 1. Let c be a constraint, and v be a test in-
put. The predicate eval(c,v) holds if execution of c with v
using the operators of the programming language L yields
true.
A constraint c is said to be a path constraint for a path p if
for all test input v, eval(c,v) holds iff the execution of the
program traverses the path p.
Given a path p (of an ICFG), a test input v is a test case
for p if eval(c,v) holds, where c is a path constraint for p.

Given a node n (of an ICFG), a test input v is a test case
for n if there exists a path p traversing n such that v is a
test case for p.

A test case is thus a test input traversing the specified
path or reaching the specified statement. When no test cases
exist, the path is said to be infeasible.
The predicate eval(c,v) can be realized in different ways

by either executing the program under analysis, or by simu-
lating such an execution (when the real environment is not
available).
It is important to distinguish real (or mathematical) solu-

tions from float solutions of a path constraint. As introduced
in [20], a real solution v of a path constraint may not tra-
verse the specified path, i.e. c(v) �⇒ eval(c,v). For example,

the constraint, c(x) , x = x
3
+ x

3
+ x

3
, is mathematically

true for all floating-point number in F . However eval(c, 1)
may evaluate to false in some programming languages. Like-
wise, constraints may have float solutions, while having no
real ones, i.e. eval(c,v) �⇒ c(v). This was illustrated in [13]
with the constraint, 16.0 + x = 16.0 ∧ x > 0.

Framework on Interval Logic. We extend interval logic
framework to handle interval constraints involving, at the
same time, integers, reals, and booleans, as well as the logi-
cal operators such as AND, OR, NOT . Arithmetic opera-
tors are first classically extended for intervals [8]. In classical
interval programming, an interval extension of a constraint
c(x) is an interval constraint C(X), such that for all inter-
val X, (∃x ∈ X : c(x)) ⇒ C(X) [8]. This means that C
is a mapping from I to the set {false, true}. A disad-
vantage of this definition can be illustrated by the following
example. [2, 4] < [1, 3] evaluates to true, from which we can
deduce that NOT ([2, 4] < [1, 3]) evaluates to false. Para-
doxically, the negation can evaluate to true if one treats
NOT ([2, 4] < [1, 3]) as [2, 4] ≥ [1, 3]. Second, we need a
framework in which we can define interval extensions for
constraints such as: c(b, x, y) , NOT (b) AND (x >
1) OR (y < 2), where b is a boolean variable, while x, y
are (integer or float) variables. We must then be able to
evaluate C(b : [0, 1], x : [2, 3], y : [3, 5]), for instance.
Interval-extension constraints have thus to be extended to

logical operators.

Definition 2. An interval extension of a n-ary constraint
c(x1, . . . , xn) is a mapping C : In → BI such that for all
X ∈ In

if � ∃x ∈ X : c(x) then C(X) = [0, 0]
if ∃x ∈ X : c(x)

V ∃y ∈ X : ¬c(y) then C(X) = [0, 1]
if ∀x ∈ X : c(x) then C(X) = [1, 1]

For instance, an interval extension of the ≤ relational op-
erator is the following: [a1, a2] ≤ [b1, b2] is [0, 0] if a1 > b2,
[1, 1] if a2 ≤ b1, and [0, 1] otherwise.

Definition 3. Let a1, b1, a2, and b2 be values taken in
{0, 1} such that a1 ≤ b1 and a2 ≤ b2, then

[a1, b1] AND [a2, b2] = [min(a1, a2),min(b1, b2)],
[a1, b1] OR [a2, b2] = [max(a1, a2),max(b1, b2)],
NOT ([a1, b1]) = [1− b1, 1− a1].
An interval solution of a set of constraints is then defined

as follows.

Definition 4. Let S = {c1, . . . , cm} be a set of constraints.
A box X ∈ In is an interval solution of S if

right(Ci(X)) = 1, i.e. ∃x ∈ X : Ci(X), for all i: 1 ≤ i ≤ m,
where the Ci are respectively an interval extension of the ci.

For simplicity, C(X) will denote right(C(X)) = 1 (i.e. C(X)
is [0, 1] or [1, 1]) and C(X) will denote right(C(X)) = 0 (i.e.
C(X) is [0, 0]).

3. GENERATION OF PATH CONSTRAINTS
Given a path of an ICFG, we propose an algorithm to

construct a path constraint. Indexed variables are used to
hold the definitions of the original variables in the path. For
example, for variable x, its first definition in the path is as-
signed to x0, its second to x1, and so on. All uses of this
variable are renamed accordingly and refer to its last defi-
nition. Since indexed variables have a unique definition, we
will refer to them as value instances of the original variables.
The algorithm (named PathConstraintGeneration) takes

as input a path in the ICFG for the test procedure, and
outputs a path constraint. For lack of space, the algorithm,
which is an extension of an algorithm presented in [20], will
not be presented here. Some operations with arrays are
transformed into the following complex constraints: na3 and
na4. (1) A constraint na4(b, a, j, v) states that b is an array
which is of the same size as a and has the same component
values, except for v as the value of its j-th component. By
convention, when all the elements of array a are null (non-
initialized), we will denote this as a = null. The constraint
na4(b, a, j, v) can be defined more formally as follows:

na4(b, a, j, v) , (b[j] = v)
V

((a �= nullVi�=j b[i] = a[i]) ∨ (a = null
V

i�=j b[i] = null))

An assignment to an array element, a[j]:=exp, is then trans-
formed into the constraint, na4(ak+1, ak, j, exp), where ak is
the last value instance of a, j and exp are respectively a ver-
sion of j and exp, in which each variable is substituted by
its last value instance. (2) The constraint na3(b, a, j) defines
b[j] as an input variable.It is defined as follows:

na3(b, a, j) , (b[j] ∈ dom(b)) V
((a �= nullVi�=j b[i] = a[i]) ∨ (a = null

V
i�=j b[i] = null)).

An input statement to an array element, read a[j], is trans-
formed into the constraint: na3(ak+1, ak, j), where ak is the
last value instance of a, j is a version of j in which each
variable is substituted by its last value instance.
Parameters in procedure calls are handled as follows. Each
actual parameter x′ of a call to procedure P , together with
the corresponding formal parameter x of P (that is either a
pass-by-value or pass-by-reference parameter), is translated
into an assignment x := x′ when the control is passed to
P . When the control quits P , an assignment x′ := x is
generated only if x is a pass-by-reference parameter.
We illustrate the operation of the algorithm on the path 1-

2-3-4-5a-8-9-10a-16-17-18-20-10b-11a-16-17-18-20-11b-12-13a-
21-22-23-24-25-26-13b-15-5b-6-4-7-27 (in Figure 3). The al-
gorithm involves two main steps. Step 1 consists in defining
input variables from the formal parameters of the test pro-
cedure. Step 2 makes a traversal of the path to generate
constraints for its nodes and branches. The path constraint
generated is the conjunction of all constraints obtained from
Step 1 and Step 2.

Step 1 : The constraint,
V

0≤i≤9 a0[i] ∈ dom(a0) ∧ c0 ∈
dom(c0), is generated, defining the input variables. Note
that (1) a and c are parameters of procedure M (Figure 1);
(2) since a0 is a value instance of a, it has the same properties

as a wrt its length and the domain for its elements (dom(a0)
is dom(a)); (3) similarly, dom(c0) is dom(c).

Step 2 : for nodes 1,2: no constraints are generated;
node 3: i0 := 1; node 4-T4: i0 ≤ c0; node 5a: a1 := a0;
nodes 8,9: i1 ∈ dom(i1) ∧ j0 ∈ dom(j0);
node 10a: i2 := i1;
nodes 16,17-T17,18,20: i2 ≥ 0 ∧ i2 ≤ 9;
node 10b: fi0 := i2; node 11a: i3 := j0;
nodes 16,17-T17,18,20: i3 ≥ 0 ∧ i3 ≤ 9;
node 11b: fj0 := i3; node 12-T12: fi0 < fj0;
node 13a: x0 := a1[i1] ∧ y0 := a1[j0];
nodes 21,22-T22,23,24,25,26: x0 > y0 ∧ t0 := x0 ∧ x1 :=
y0 ∧ y1 := t0;
node 13b: na4(a2, a1, i1, x1) ∧ na4(a3, a2, j0, y1);
nodes 15,5b: a4 := a3;
nodes 6,4-F4,7,27: i4 := i0 + 1 ∧ (i4 ≤ c0).
A path constraint is composed of: (1) constraints defin-

ing input variables: simple input variable and array ele-
ment (na3 constraint), (2) assignment constraints: equality
constraints with “:=” notation for simple variable and na4
constraints for array elements, (3) branch constraints (con-
straints for the branches of the path). However, only the
branch constraints represent the conditions which must be
satisfied so that the path is traversed. The other types of
constraints, as will be shown in the next section, are used
in the simplification of the branch constraints in terms of
input variables. The solving of the path constraint is the
solving of its branch constraints. In the CSP associated
with a path constraint, only the input variables will have a
domain. There is no need to define a domain for the other
variables as they are defined in terms of input variables or
constraints. If it is not the case, the program is referring to
non-initialized variables, and is thus incorrect.

4. TEST DATA GENERATION:
PATH COVERAGE

A test data generation algorithm for path coverage crite-
rion is presented. The algorithm makes use of a consistency
technique based on a consistency notion (eBox consistency).

Consistency. The eBox consistency, introduced in [20], is
an extension of the classical Box consistency [8] to handle
both real, integer and boolean variables.

Definition 5 (eBox consistency). Let P = (V,D, C)
be a CSP where V = (x1, . . . , xn), a set of (real and integer)
variables; D = (X1, . . . ,Xn) with Xi = [li, ri] the domain of
xi (1 ≤ i ≤ n); C = (c1, . . . , cm), a set of constraints defined
on x1, . . . , xn and c ∈ C be a k-ary constraint on the vari-
ables (x1, . . . , xk). The constraint c is eBox-consistent in D
if for all xi (1 ≤ i ≤ k)
if xi is a real variable then
C(X1, . . . ,Xi−1, [li, l

+
i],Xi+1, . . . ,Xk)

V

C(X1, . . . ,Xi−1, [r
−
i , ri],Xi+1, . . . , Xk) when li �= ri

or C(X1, . . . ,Xi−1, [li, ri], Xi+1, . . . ,Xk) when li = ri

if xi is a integer variable then
C(X1, . . . ,Xi−1, [li, li], Xi+1, . . . ,Xk)

V

C(X1, . . . ,Xi−1, [ri, ri],Xi+1, . . . ,Xk)

where C is an interval extension of constraint c.
The CSP P is eBox-consistent in D if for all c ∈ C, c is

eBox-consistent in D.

Definition 6 (Filtering by eBox consistency).
Filtering by eBox consistency of a CSP P = (V,D, C) is a

CSP P ′ = (V,D′, C) such that (1) D′ ⊆ D, (2) P and P ′

have the same solutions, and (3) P ′ is eBox-consistent in
D.

The objective of filtering is to reduce as much as possi-
ble the domains of the variables (i.e. their interval) without
removing solutions from the initial domains. Filtering algo-
rithms are based on the property that if C(I1, . . . , In) does
not hold (i.e. right(C(X)) = 0), then no solution of c lies in
I1 . . . In, that can then be pruned. We denote ΦeBox(P), the
filtering by eBox consistency of P . Note that the filtering
by eBox consistency of a CSP, by its definition, always ex-
ists and is unique. An implementation of ΦeBox(CSP) will
not be presented here. It can however easily be constructed
as an adaptation of a filtering algorithm in [8]. A funda-
mental difference should be noted: the filtering algorithm in
[8] aims to obtain a box containing all real solutions, while
our algorithm aims to obtain a box containing all float so-
lutions. Technically, our algorithm is simpler, consisting in
applying recursively a domain-splitting on the initial box to
prune parts which do not have float solutions. Assuming
that (1) the evaluation order of the operators of the interval
constraint C(I1, . . . , In) is the same as the evaluation order
of the constraint c(x1, . . . , xn) in the programming language
of the test program, and (2) the basic interval operations are
conservative on the floats (which is actually the case), our
filtering algorithm is then conservative on the floats.

Algorithm. Our algorithm is given in Algorithm 1. Func-
tion PathConstraintGeneration is the new method for path
constraint generation (presented in the previous section).
Function EBoxFiltering (in Algorithm 2) is a new filtering
technique for path constraints involving arrays. Note that
the search for a test case in a resulting ε box is accomplished
by function FindSolution, as specified hereafter.

Specification 1 (FindSolution). Let C be a set of
constraints, e be an ε box and TS be a representative set of
floating-point vectors in e. The function FindSolution(C, e)
returns, if it exists, some vector v ∈ TS such that ∀c ∈
C, eval(c,v) holds. Otherwise it returns ∅.
It is interesting to highlight the main differences between

the algorithm and our previous algorithm [20] dealing with
path constraints without arrays. Given a path constraint
without arrays, its branch constraints are simplified, once
for all, in terms of input variables by recursively replacing
non-input variables by their definitions in some assignment
constraints of the path constraint. These simplified branch
constraints together with an initial box (representing the do-
mains of the input variables) are then solved to develop test
cases executing the path. However when a path constraint
involves arrays, it is not always possible to simplify all of its
branch constraints in terms of input variables with the initial
box. For example, suppose a[i] (i is an expression involving
input variables) is an array reference occurring in a branch
constraint, then it is generally impossible to determine which
array element a[i] is. Therefore, the branch constraints will
be simplified incrementally along with their resolution. The
simplification is thus integrated in the filtering (function
EBoxFiltering), which, in turn, is integrated in the path
constraint solving (function SolvePathConstraints). Note
also that the number of (currently identified) input variables
can change over the solving process. Indeed, input variables
are defined by a constraint x ∈ dom(x) (defining input vari-
able x) or na3(b, a, j) (defining input variable b[j]). If j is
not a number, b[j] can only be added to the input variables

Algorithm 1 Generation of test data: path coverage

function TestDataGenPC(P:Procedure,G:ICFG,p:Path):Fn;
PRE G The ICFG for test procedure P

p a path in G
POST a test case on which the path p is executed
begin
PC:= PathConstraintGeneration(P,G,p);
BC := the branch constraints of PC;
OC := PC \ BC;
V := set of currently identified input variables in BC;
D := the domains of the variables in V ;
return SolvePathConstraints(V , V , D, BC, OC);

end

function SolvePathConstraints(V , V ′:V ariables,D:Box,
BC:BranchConstraints,OC:OtherConstraints):Fn;
PRE V currently identified input variables in BC
V ′ a subset of V (V ′ ⊆ V)
D a box representing the domains of the variables in V

POST Return some vector v ∈ D
such that v is a test case for path p
Otherwise it returns ∅

begin
(Vt, Dt, BCt, OCt) := EBoxFiltering(V , D, BC, OC);
if Dt is ∅ then return ∅;
else

if Dt is an ε box then return FindSolution(BCt,Dt);
else

if V ′ is not empty then
Choose arbitrarily a variable x in V ′;
m := (left(Xt) + right(Xt))/2;
if x is an integer variable then
ms := SolvePathConstraints(Vt, V

′ \ {x},
Dt[Xt/[�m�, �m�]], BCt, OCt);

else ms := SolvePathConstraints(Vt, V
′ \ {x},

Dt[Xt/[m,m]], BCt, OCt);
if ms 	= ∅ then return ms
if x is an integer variable then
ls := SolvePathConstraints(Vt, V

′ \ {x},
Dt[Xt/[left(Xt), �m� − 1]], BCt, OCt);

else ls := SolvePathConstraints(Vt, V
′ \ {x},

Dt[Xt/[left(Xt),m]], BCt, OCt);
if ls 	= ∅ then return ls
if x is an integer variable then
rs := SolvePathConstraints(Vt, V

′ \ {x},
Dt[Xt/[�m� + 1, right(Xt)]], BCt, OCt);

else rs := SolvePathConstraints(Vt, V
′ \ {x},

Dt[Xt/[m, right(Xt)]], BCt, OCt);
if rs 	= ∅ then return rs else return ∅

else return SolvePathConstraints(Vt, Vt, Dt, BCt, OCt);

end

set when j can be simplified into a number. The function
EBoxFiltering (Algorithm 2) realizes the filtering on the
path constraint. The path constraint is represented by the
branch constraints and the other constraints. As explained
in Section 3, the pruning is only performed on the branch
constraints. The function Simplify (Algorithm 3) simpli-
fies the branch constraints by extracting information from
the other constraints. The number of known input variables
may increase after a simplification.
In Algorithm EBoxFiltering, the branch constraints are

first simplified (line 1). The pruning of the branch con-
straints involving only input variables is performed in line
3. When the resulting box (D′

t) is empty, the CSP is incon-
sistent. If there are branch constraints not involving input
variables, these are simplified using the reduced domains.
This is performed until C1 = ∅ (nothing to prune), or no
pruning is achieved (D′

t = Dt), or all branch constraints
only involve input variables (C2 = ∅). Finally the func-
tion returns a new CSP (line 5), satisfying (1) Store (all
branch constraints involving only input variables) is eBox-
consistent in box Dt, (2) C2 (the other branch constraints
involving non-input variables) cannot be simplified further
with box Dt.

We conclude this section by analyzing in detail the func-
tion Simplify. The function Simplify returns an equivalent
but simplified CSP. The objective is to simplify the branch
constraints BC in terms of the input variables in V with
the box D. If BC involves only input variables (line 1),
the function returns the input CSP without modifications.
Otherwise, it enters in the main loop until no more sim-
plification can be done. The following simplifications are
performed. In line 2, every non-input simple variable x is
replaced by its definition. Note that there must exists an
assignment constraint, x := def(x), for non-input variable
x in OC; a variable is simple if it is neither an array variable
nor an array element. As such a simplification is done only
once during the solving of the path constraint, for efficiency
purpose, instructions in line 2 can be transfered from Al-
gorithm 3 to Algorithm 1. Following the simplification of
non-input simple variables, the next steps have the purpose
of simplifying constraints involving arrays. Lines 4 and 5
simplify the constraints na3 and na4 in OC. Line 6 simpli-
fies reference to array element b[i], where the index is known.
Finally, in line 7, every reference to such array element b[i]
is propagated in the other constraints. An inconsistency can
be detected when an array element is used in an expression
without being initialized.

5. TEST DATA GENERATION:
STATEMENT COVERAGE

As presented in Section 1, test data generation for state-
ment (and branch) coverage consists in searching for test
data traversing certain nodes (branches) of the ICFG asso-
ciated with the test procedure. It is sufficient to concentrate
on statement coverage. All the following algorithms can eas-
ily be adapted for branch coverage. The search is guided by
a control dependence graph. Two different control depen-
dences for programs with procedure calls are introduced:
the intraprocedural and the interprocedural control depen-
dences. We will show that interprocedural control depen-
dence is better for our purpose.

Control Dependence Graph. Control dependence captures
the effects of predicate statements on the program’s behav-
ior. Technically, control dependence is defined in terms of a
CFG and the post-dominance relation among the nodes in
the CFG [4].

Definition 7. A node V is post-dominated by a nodeW
in G if every directed path from V to STOP (not including
V) contains W . A node Y is control dependent on node X
iff (1) there exists a directed path P from X to Y with all Z
in P (excluding X and Y) post-dominated by Y , and (2) X
is not post-dominated by Y .

Note that if Y is control dependent on X then node X
must have at least two exits. Following one of the exits from
X results in Y being executed while taking others may result
in Y not being executed.

Intraprocedural control dependence analysis is carried out
independently on individual procedures, calculating thus con-
trol dependences that exist within them. Concretely, given
the CFG for each procedure, intraprocedural control depen-
dences for the procedure are obtained by applying an ex-
isting algorithm for control dependence computation [4] to
the CFG. Table 1 illustrates the intraprocedural control de-
pendences for all procedures of Program 1. Note that (1)
the CFGs for those procedures are extracted from the ICFG

Algorithm 2 Filtering of path constraints
function EBoxFiltering(V :V ariables,D:Box,BC:BranchConstraints,OC:OtherConstraints):CSP;
PRE (V ∗, D,BC ∧ OC) is a CSP
V set of input variables currently identified in branch constraints BC (V ⊆ V ∗)
D a box representing the domains of the variables in V

POST Return a CSP (V , ∅, BC ∧ OC) if BC is detected as inconsistent.
Otherwise return an equivalent CSP (V ′, D′, BC′ ∧ OC′) with V ⊆ V ′ ⊆ V ∗ and BC′

1 is eBox-consistent,

where BC′ = BC′
1 ∧ BC′

2 (BC′
1 contains the branch constraints involving only input variables)

begin
1:(Vt, Dt, BCt, OCt) := Simplify(V , D, BC, OC);
C1 := branch constraints (involving only input variables) of BCt;
C2 := BCt \ C1;
Store := C1;

2:while C1 	= ∅ do
3: (Vt, D′

t, Store) := ΦeBox(Vt, Dt, Store);

if D′
t = ∅ then return (V ,∅,BC,OC);

if D′
t = Dt then break;

Dt := D′
t;

if C2 = ∅ then break;
4: (V ′

t , D′
t, C′

2, OC′
t) := Simplify(Vt, Dt, C2, OCt);

C1 := branch constraints (involving only input variables) of C′
2;

C2 := C′
2 \ C1;

Store := Store ∧ C1;
Vt := V ′

t ;

Dt := D′
t;

OCt := OC′
t;

endwhile
5:return (Vt, Dt, Store ∧ C2, OCt);

end

Algorithm 3 Simplification of path constraints
function Simplify(V : V ariables, D : Box,BC:BranchConstraints,OC:OtherConstraints) : CSP;
PRE (V ∗, D,BC ∧ OC) is a CSP
V set of input variables currently identified in branch constraints BC (V ⊆ V ∗)
D a box representing the domains of the variables in V

POST Return a CSP (V , ∅, BC ∧ OC) if BC is detected as inconsistent.
Otherwise return an equivalent CSP (V ′, D′, BC′ ∧ OC′) with BC′ is a simplified version of BC.

begin
1:if BC involves only input variables then return (V ,D, BC,OC);

else
2: while ∃ a simple and non-input variable x in BC ∧ OC do

BC := BC[x/def(x)]; {There must exists an assignment constraint, x := def(x), in OC}
OC := OC[x/def(x)];
OC := OC \ {x := def(x)}; {simplification for variable x once for all}

simplify := true;
3: while simplify do

simplify := false;
4: foreach constraint na3(b, a, j) in OC with b[j] not in V

such that j involves only input variables with their domains being point intervals do
jval := value of j;
OC[na3(b, a, j)/na3(b, a, jval)];
BC := BC[b[j]/b[jval]];
V := V ∪ {b[jval]};
simplify := true;

5: foreach na4(b, a, j, v) in OC | j involves only input variables with their domains being point intervals do
j is simplified into a number jval;
OC[na4(b, a, j, v)/na4(b, a, jval, v)];
simplify := true;

6: foreach b[i] in BC | i involves only input variables with their domains being point intervals do
i is simplified into a number ival;
BC[b[i]/b[ival]];
simplify := true;

7: foreach b[i] in BC | i is a number and b[i] is not an input variable do
case ∃ (b := a) in OC : BC[b[i]/a[i]]; simplify := true;
case ∃ na3(b, a, j) in OC | j is a number :

if a 	= null then BC[b[i]/a[i]]; simplify := true; else return (V , ∅, BC,OC);
case ∃ na4(b, a, j, v) in OC | j is a number :

if i = j then BC[b[i]/v]; simplify := true;
else if a 	= null then BC[b[i]/a[i]]; simplify := true;
else return (V , ∅, BC,OC);

endcase
endwhile

8: return (V , D, BC, OC);
endif

end

Table 1: Intraprocedural control dependences
of Program 1

Nodes Control Dependent On
3,4,7 (2, true)

4,5a,5b,6 (4, T4)
9,10a,10b,11a,11b,12,15 (8, true)

13a,13b (12, T12)
14a,14b (12, F12)
17,20 (16, true)
18 (17, T17)
19 (17, F17)
22,26 (21, true)
23,24,25 (22, T22)

Table 2: Interprocedural control depen-
dences of Program 1

Nodes Control Dependent On
3,4 (2, true)

5a,8,9,10a,16,17 (4, T4)
7 (4, F4)

13a,13b (12, T12)
14a,14b (12, F12)

4,5b,6,10b,11a,11b,12 (17, T17)
15,16,17,18,20,21,22 (17, T17)

19 (17, F17)
23,24,25 (22, T22)

(in Figure 3) by ignoring, for each call site, its pair of call
and return edges, and connecting directly its call node with
its return node; (2) we view the entry node of the CFG as-
sociated with a procedure as a predicate node representing
the conditions that cause the procedure to be executed, and
therefore nodes in the CFG that are not control dependent
on any predicate nodes are control dependent on the entry
node. In the table, for example, node 3 is control dependent
on node EntryM (node 2) with condition true, and node
5a on node 4 with condition T4.

Interprocedural control dependence analysis accounts for
interactions between individual procedures. Those interac-
tions are reflected by call and return edges, connecting the
individual CFGs, in the ICFG. Interprocedural control de-
pendence can be computed for the nodes of the ICFG by
an existing technique [19]. Table 2 illustrates the interpro-
cedural control dependences for Program 1. A comparison
between these dependences and those computed intraproce-
durally (in Table 1) shows several differences. (1) There are
intraprocedural dependences which are ignored in the inter-
procedural context, e.g. node 9 is intraprocedurally control
dependent on node EntryB (node 8) while this dependence
is not interprocedurally necessary. (2) There are interpro-
cedural dependences between nodes in different procedures
while these dependences cannot be computed intraprocedu-
rally, e.g. node 6 is interprocedurally control dependent on
node 17. Note that the presence of embedded halt state-
ments in called procedures are not the only cause of such de-
pendences [19]. (3) There are interprocedural dependences
between nodes in the same procedures, yet these depen-
dences are not intraprocedurally established, e.g. node 7 is
interprocedurally dependent on node 4 while this is not in-
traprocedurally detected. All these differences show that in-
traprocedural control dependences can be imprecise to guide
the search of test data for programs with procedure calls. We
hence choose to use an interprocedural control dependence
graph for this purpose.

Definition 8 (Interprocedural CDG). An interpro-
cedural control dependence graph (ICDG) for a procedure P
is a directed graph where the nodes are the nodes of the ICFG
associated with P . The edges represent the interprocedural
control dependences between nodes. Edges are labeled with
conditions. An edge (X, Y) in a ICDG means that Y is
interprocedurally control dependent on X.

Figure 4 depicts the ICDG for Program 1, which is ac-
tually a graphical representation of Table 2. Note that, for
simplicity, additional nodes are introduced in the ICDG to
group all nodes with the same control conditions together,
e.g. nodes 5a,8,9,. . . (interprocedurally control dependent on
node 4 with condition T4) are grouped together under an
additional node.

11a10b65b

3 4

2

1610a985a

11b

26

22

T17

F17

F12T12
T22

T17
T17

T17

T4
F4

truetrue

12 15 18 20 21

13a 13b 14a 14b 23 24 25

17

7

19

Figure 4: ICDG for Program 1

Definition 9. The decision graph for a node n in a ICDG
G is the smallest subgraph of G, containing all the paths
from the start node to node n, and without edges connecting
a node to itself.

The construction of the decision graph for a node n is
straightforward. For example, the decision graph for node 7
is depicted in dashed lines in Figure 4. Given the decision
graph for a node, a path from the root of the graph to the
node contains a set of constraints that must be satisfied
by a class of inputs causing the node to be executed. For
example, the path 2-4-7 in the decision graph for node 7
corresponds to inputs executing node 7 with no passage in
the loop with predicate node 4, while the path 2-4-17-4-7
corresponds to inputs executing node 7 with one passage in
the loop. Therefore, the decision graph for a node captures
all the possible constraints to satisfy to reach the node.

Algorithm. In [20], we proposed an algorithm for the gen-
eration of test data for statement coverage, based on control
dependence graph, but limited to programs without proce-
dure calls. This algorithm can easily be extended for pro-
grams with procedure calls by using interprocedural control
dependence graph and decision graphs. Note that the search
is pruned by using the filtering algorithm developed for path
constraints.

Table 3: Program under analysis

Programs Int. Float Bool. Arrays Proc.
Program-1 yes yes no yes yes

NthRootBisect yes yes no no no
Sample-1 yes no yes yes no
Sample-2 yes no yes yes yes
BSearch yes yes no yes no
Gaujac yes yes no yes yes

6. EXPERIMENTAL RESULTS

Implementation. To determine the effectiveness of our ap-
proach, a prototype written in Java, which is an extension
of our previous prototype [20], has been developed. It uses
an interval arithmetic library [9] for the implementation of
the constraint solving algorithm, and algorithms from [19]
to construct ICDG. The prototype is independent from the
programming language used by the program under analysis.
This means that the source code, written in some imperative
language L, is first translated into an internal representation
and ICFG, which are common for all languages, such as C,
Pascal, etc. Currently, the prototype uses the internal rep-
resentation and ICFG as its input. In the FindSolution
function, given an epsilon interval solution, we simply select
its middle point to check if it satisfies the path constraint.
And if so, it will be a test case for the path. Of course,
more sophisticated labeling strategies, such as described in
[13], can also be applied to the epsilon interval solution.
However, when the epsilon is set to a very small number,
such as 1e-16 in our prototype, the middle point turns out
to be sufficient as will be shown in experiments. Note that
the smaller the epsilon is, the more time to find an interval
solution is required.
Without the used libraries, our prototype has 80 classes

and a total length of 6000 lines. Function calls to built-in
functions such as exp (Euler’s number e raised to the power
of a number), log (the natural logarithm of a number), sin,
etc, are treated as basic operators, i.e. these function calls
are not developed in the ICFG. The interval extensions of
these functions were already available in [9] or constructed
in our prototype.

Experiments. We performed our experiments on a 900MHz
UltraSparcIII+ machine, with the following programs.
Program-1 is the program of this paper depicted in Figure
1. NthRootBisect [20] calculates the n-th root of a num-
ber using the Newton-Raphson method. This program uses
integer and float variables, but no arrays nor procedures.
Sample-1 is the “sample” program with arrays, described in
[3]. Sample-2 is the “sample” program with procedure calls
and arrays, proposed in [11]. This program is an equivalent
version of Sample-1, but with procedure calls. BSearch [3,
5] is a binary search program involving arrays. Finally, we
tested the gaujac program in [16], which is a scientific pro-
gram calculating the Gauss-Jacobi integration formula. This
program involves complex (non linear) expressions, 3 nested
loops, arrays, and procedure calls. A similar, but simpler
program has been experimented in [7]. Table 3 summarizes
these programs.
As an example for path coverage, with the path given

in Section 3 and an initial box (a0 : [5, 20], c0 : [1, 10], i1 :
[−5, 20], j0 : [−5, 20]), we obtained, in 0.165 seconds, the test
case: a0 = (12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 8.75, 12.5,
12.5), c0 = 1, i1 = 4, j0 = 7. Note that a0 (array variable),

Table 4: Experimentation results

Programs Nodes Average Max Tot. Cover.
(sec.) (sec.) (sec.)

Program-1 29 0.003 0.056 0.11 100%
NthRootBisect 11 0.037 0.312 0.41 100%
Sample-1 18 0.036 0.328 0.66 100%
Sample-2 26 0.029 0.338 0.74 100%
BSearch 12 0.109 0.854 1.32 100%
Gaujac 67 4.589 152.6 307 100%

c0, i1, j0 are input variables generated during the path con-
straint generation.
For statement coverage, our test generation procedure

consists in trying to generate a test case for each node of
the ICFG, and then reporting the achieved statement cov-
erage (the percentage of nodes for which a test case has been
found). The results of the experiments are summarized in
Table 4. For each program, the table lists the number of
nodes of its corresponding ICFG (Nodes), the average time
in seconds spent on a node (Average), the maximum time
in seconds spent on a node (Max), the total time, in sec-
onds, to generate test cases for all the nodes (Tot.), and
the achieved statement coverage (Cover.). Except for the
complex gaujac program, the method is very efficient. It is
difficult to provide a time complexity analysis as the general
problem of solving a set of constraints is NP-hard. Efficiency
should therefore be measured on specific classes of problems.
Table 5 summarizes the existing methods with functional-

ities close to our method (first line in the table). Two other
methods offer the same functionalities, [11] and [7]. As in
these methods, our prototype is able to achieve 100% cover-
age on the examples, but our set of examples contains more
complex programs. It is difficult to compare the efficiency of
the different methods because efficiency information is some-
times partial or missing. When this information is available,
the measures can be uncomparable (number of iterations
versus execution time versus theoretical complexity). When
it is comparable, one should consider the differences in the
underlying hardware.
In [7], an execution time of 98 and 42 seconds (Windows

NT, 400MHz Pentium II) is reported to find a test data for
two branches of an exponential integral programs (program
with float variables and non linear tests). In the BSearch
example in [5], it is reported that Inka did not spend more
than 10 seconds on each node (300 MHz Sun Ultra Sparc5),
while our maximum becomes 2.75 seconds on such a ma-
chine. The speedup here is thus around 3.6. In [5], it is
also reported that Inka is about 10 times faster than Test-
Gen (on comparable computers), hence we obtain a speedup
around 36 between our prototype and TestGen. The Gaujac
program is by far the most complex of our examples. In the
literature, we did not find such a complex example (in terms
of the complexity of expressions) used by another methods.
These experiments, their analysis and their comparison

with exisiting methods show the versatility and flexibility
of the approach to different classes of problems (integer
and/or float variables; arrays, procedures, path coverage,
statement coverage). They also demonstrate the feasibil-
ity of the method, its efficient and its potential to handle
complex programs.

7. CONCLUSION
In this paper, we presented a novel approach for interpro-

cedural test data generation of imperative programs. It ex-

Table 5: A summary of different test data generators

Methods Reference Integer Float Arrays Procedure Path Statement/Branch
Coverage Coverage

Consistency this yes yes yes yes yes yes
Testgen [11] yes yes yes yes yes yes
Relaxation [7] yes yes yes yes yes yes
InKa [5] yes no yes partial1 no yes
Genetic [15] yes yes yes no no yes
Symbolic [1] yes yes partial2 yes yes no

1 The pass-by-reference mechanism for passing parameters is not handled
2 Array references depending on input variables are not handled

tended our previous work to numeric programs (containing
integer and float variables) with procedure calls and arrays.
Test programs (with procedure calls) are represented by an
interprocedural control flow graph (ICFG). The testing cri-
teria (path, statement and branch coverage) are then defined
in terms of the ICFG. For path coverage, the search for test
data is reduced to the solving of path constraints. Such a
solving is based on consistency techniques, aiming at reduc-
ing the domains of the variables. For statement coverage,
the search for suitable paths is guided by the interprocedu-
ral control dependences of the programs. The underlying
algorithms have been described. The developed prototype
illustrated the versatility and the efficiency of the method,
as well as its potential to handle complex programs.
Different areas will be investigated in future work. Front-

ends for specific languages, translating the program under
test into ICFG, will be considered. Different strategies for
the FindSolution functions will also be developped. The
introduction of pointers will also be investigated. The pos-
sibility of error detection will also be considered, by adding
new kinds of constraints modeling error conditions such as
in [17].

8. ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers, Michel

Rueher, and Baudouin Le Charlier for their helpful com-
ments and suggestions.

9. REFERENCES
[1] L. Clarke. A system to generate test data and

symbolically execute programs. IEEE Transactions on
Software Engineering, 2(3):215–222, 1976.

[2] J. Duran and S. Ntafos. An Evaluation of Random
Testing. IEEE Transactions on Software Engineering,
10(4):438–444, July 1984.

[3] R. Ferguson and B. Korel. The chaning approach for
software test data generation. ACM Transactions on
Software Engineering Methodology, 5(1):63–86, 1996.

[4] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its uses in
optimization. ACMTransactions on Programming
Languages and Systems, 9(3):319–349, July 1987.

[5] A. Gotlieb, B. Botella, and M. Rueher. A CLP
framework for computing structural test data. In
Computational Logic, pages 399–413, 2000.

[6] N. Gupta, A. P. Mathur, and M. L. Soffa. Automated
test data generation using an iterative relaxation
method. In ACM SIGSOFT Sixth International
Symposium on Foundations of Software
Engineering(FSE-6), Nov. 1998.

[7] N. Gupta, A. P. Mathur, and M. L. Soffa. Generating
test data for branch coverage. In 15th IEEE
International Conference on Automated Software
Engineering(ASE00), September 2000.

[8] P. V. Hentenryck, L. Michel, and Y. Deville. Numerica.
A modeling language for global optimization. The MIT
Press, Cambridge, Massachusetts, London, 1997.

[9] T. Hickey. An interval arithmetic library, 2000.
http://interval.sourceforge.net/interval/index.html.

[10] J. King. Symbolic Execution and Program Testing.
Communications of the ACM, 19(7):385–394, July 1976.

[11] B. Korel. Automated test data generation for
programs with procedures. In Proceedings of the 1996
International Symposium on Software Testing and
Analysis (ISSTA), pages 209–215, 1996.

[12] D. Melski and T. W. Reps. Interprocedural path
profiling. In Computational Complexity, 1999.

[13] C. Michel, M. Rueher, and Y. Lebbah. Solving
constraint over floating-point numbers. In Seventh
International Conference on Principles and Practice of
Constraint. Springer Verlag, LNCS, 2001.

[14] R. Moore. Interval Analysis. Prentice-Hall, Englewood
Cliffs, NJ, 1966.

[15] R. P. Pargas, M. J. Harrold, and R. Peck. Test-data
generation using genetic algorithms. Software Testing,
Verification and Reliability, 9(4):263–282, 1999.

[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. Numerical Recipes in C. The Art of
Scientific Computing. Second Edition. Cambridge
University Press, 1992.

[17] D. J. Richardson and M. C. Thompson. An analysis of
test data selection criteria using the RELAY model of
fault detection. IEEE Transactions on Software
Engineering, 19(6):533–553, June 1993.

[18] G. Schumacher and A. Bantle. Automatic test case
generation using interval arithmetic. In Proceedings of
the SCAN2000/INTERVAL2000, Germany, 2000.

[19] S. Sinha, M. J. Harrold, and G. Rothermel.
Interprocedural control dependence. Software
Engineering and Methodology, 10(2):209–254, 2001.

[20] N. T. Sy and Y. Deville. Automatic test data
generation for programs with integer and float
variables. In 16th IEEE International Conference on
Automated Software Engineering(ASE01), 2001.

[21] E. Tsang. Foundations of Constraint Satisfaction.
Academic Press, 1993.

