
Constraint Satisfaction over Connected Row Convex Constraints

Yves Deville Olivier Barette
Universit�e catholique de Louvain,

Pl. Ste Barbe 2,

B-1348 Louvain-la-Neuve, Belgium

fyde,baretteg@info.ucl.ac.be

Pascal Van Hentenryck
Brown University

Box 1910

Providence, RI 02912, USA

pvh@cs.brown.edu

Abstract

In this paper, we study constraint satisfac-
tion over connected row convex (CRC) con-
straints, a large class of constraints subsum-
ing, in particular, monotone constraints. We
�rst show that CRC constraints are closed un-
der composition, intersection, and transposi-
tion, the basic operations of path-consistency
algorithms. This establishes that path consis-
tency over CRC constraints produces a mini-
mal and decomposable network, strenghtening
the results of van Beek and Dechter [1995]. We
then present a path-consistency algorithm for
CRC constraints running in time O(n3d2) and
space O(n2d), where n is the number of vari-
ables and d is the size of the largest domain.
This improves the traditional time complexity
O(n3d3) and space complexity O(n3d2). Fi-
nally, we show that a solution can be found in
time O(n2), once the graph is path-consistent.

1 Introduction

Constraint satisfaction techniques have been found use-
ful in many areas such as Operations Research, hard-
ware design, robotics, knowledge bases, and temporal
resaoning to name a few. Some applications require to
�nd one or all solutions, in which case consistency tech-
niques such arc and path consistency are instrumental in
reducing the size of the search space. Other applications
require to put the graph of constraints in minimal form,
e.g., to remove redundant information.
Increasing attention has been devoted recently to the

study of special classes of constraints or contraint graphs.
These studies are motivated both by practical consider-
ations (e.g., constraint languages are based on a set of
primitive constraints) and by theoretical considerations,
since stronger results and more e�cient algorithms can
be obtained by exploiting special properties.
This paper considers the class of connected row con-

vex (CRC) constraints. CRC constraints were moti-
vated by van Beek's row convex constraints, their prop-
erties, and their applications to various tasks in arti-
�cial intelligence [van Beek and Dechter, 1995]. The

class of CRC constraints include many constraints such
as ax + by + c � 0, ax + by + c � 0, axy + b � 0,
axy+ b � 0, af(x) + by + c � 0, and af(x) + by + c � 0,
where a; b; c are rationals and f(x) is a function whose
derivative does not change sign in the considered do-
main as well as conjunctions of these constraints, some
of which being non-monotone. We show that, contrary to
row convex constraints, CRC constraints are closed un-
der intersection, composition, and transposition, the ba-
sic operations of path-consistency algorithms. We then
propose a generic path-consistency algorithm PC-GEN
which mimics the generic arc-consistency algorithm AC-
5 and we show that it can be instantiated to produce
a path-consistency algorithm running in time O(n3d2)
and in space O(n2d) for CRC constraints. Finally, we
show that �nding a solution to a path-consistent graph
of CRC constraints can be done in O(n2) time.
The rest of the paper is organized as follows. Section 2

introduces the necessary background on Constraint Sat-
isfaction Problems (CSPs) and Section 3 discusses re-
lated work. Section 4 introduces CRC constraints and
studies their properties Section 5 presents PC-GEN and
Section 6 instantiates it for CRC constraints. Section 7
concludes the paper.

2 Background

In this paper, variables are represented by the natural
numbers 1; : : : ; n. Each variable i has an associated �-
nite domain Di. All constraints are binary and relate
two distinct variables. If i and j are variables (i < j),
we assume, for simplicity, that there is at most one con-
straint relating them, denoted by Cij. A constraint Cij
denotes a set of couples (Cij � Di �Dj). The fact that
(v; w) 2 Cij is also be denoted by Cij(v; w). We denote
by D the union of all domains and by d the size of the
largest domain. We assume the existence of a total or-
dering over D. Following Montanari [1974], a constraint
Cij will also be seen as a (0,1)-matrix with j Di j rows
and j Dj j columns. Rows and columns are ordered ac-
cording to the underlying order over D. A 1 (resp. 0) at
position (v; w) in the matrix means (v; w) 2 Cij (resp.
(v; w) 62 Cij). To simplify the presentation, each domain
Di is also represented by a (pseudo-binary) constraint
Cii such that Cii(v; v) holds i� v 2 Di. Domain Di and

constraint Cii can be used in an interchangeable way.
Consistency algorithms generally work on the graph

representation of the CSP. We associate a graph G to a
CSP in the following way. G has a node i and an arc
(i; i) for each variable i. The constraint associated to
arc (i; i) is Cii. For each constraint Cij relating vari-
ables i and j (i < j), G has two directed arcs, (i; j)
and (j; i). The constraint associated to arc (i; j) is Cij
and the constraint associated to (j; i) is Cji, which is the
transposition of Cij. The graph is thus de�ned by the
nodes, the arcs, and their associated constraints. We
use arc(G) and node(G) to denote the set of arcs and
the set of nodes of graph G. A CSP uniquely de�nes a
graph and vice versa. The tuple (v1; : : : ; vn) 2 Dn is a
solution of G if Cij(vi; vj) holds for all (i; j) 2 arc(G).
Two graphs G and G0 are equivalent if G and G0 have
the same solutions.
Let us review some of the basics in the area of path

consistency. A tuple hvi0 ; vimi is path-consistent for path
(i0; : : : ; im) wrt G if 9vi1 ; : : : ; vim�1 such that vik 2 Dik

(1 � k < m) and Cikik+1(vik ; vik+1) (0 � k < m). The
path p = (i0; : : : ; im) in G is path-consistent wrt G if
for all vi0 2 Di0 and vim 2 Dim with Ci0im (vi0 ; vim),
hvi0 ; vimi is path-consistent for p wrt G. A graph G is
path consistent if for all paths p in G, p is path consis-
tent wrt G. Montanari [1974] showed that a complete
graph is path consistent i� all paths of length two are
path-consistent. Typically, path-consistency algorithms
work on complete graphs, and an incomplete graph can
be easily transformed into a complete graph by adding
TRUE constraints. The objective of a path-consistency
algorithm is thus, given a complete graph G, to compute
new constraints which are path consistent and have the
same solutions as G. Path-consistency algorithms are
generally de�ned in terms of interesection and composi-
tion of the matrix representation de�ned as

(Cik : Ckj)(v; w) = _u2DCik(v; u) ^Ckj(u;w)
(C1 \C2)(v; w) = C1(v; w) ^C2(v; w)

A graph G is minimal if, for all i; j 2 node(G) and
for all v; w 2 D, Cij(v; w) implies that (v; w) is part
of some solution of G. A graph G is decomposable if,
for all vi1 : : : vik satisfying all the constraints relating
nodes i1 : : : ik(1 � k < n) and for any new node ik+1,
there exists vik+1 such that vi1 : : : vik ; vik+1 satisfy all the
constraints relating nodes i1 : : : ik; ik+1. A decompos-
able graph is also called strongly n-consistent [Freuder,
1982]. Decomposable graphs have thus the property that
any consistent instantiation of some variables can be ex-
tended to a solution without backtracking. A decompos-
able graph is of course minimal. In a minimal graph, it
is not possible to prune further the constraints without
removing solutions.

3 Related Work

This research was motivated by van Beek's result on row
convex constraint. A constraint Cij is row convex if, in
each row of its matrix representation, all the ones are

consecutive. Van Beek and Dechter [1995] show that,
when the constraints of a path-consistent graph are row
convex (or can be made row convex by permutation of
values in the domain), then the graph is minimal and
decomposable. One can thus compute a solution with-
out backtracking in O(n2d). Solving the CSP can then
be done in O(n3d3), the time complexity of the PC al-
gorithm. Unfortunately, row convex constraints are not
closed under composition and intersection. As a conse-
quence, no conclusion can be drawn a priori for a graph
of row convex constraints, since its path consistent sub-
graph may or may not be row convex. CRC constraints
remove this problem, since a graph of CRC constraints,
after application of a path consistency algorithm, is still
CRC and is thus minimal and decomposable.
In [1995], Jeavons and Cooper identify the class of

max-closed constraints that can be solved in polynomial
time (O(n4d4) for binary constraints). Our class of CRC
constraints, which can be solved in O(n3d2), intersects
with max-closed constraints, but is not a subset.
The idea of row convexity has also been exploited in

the context of continuous constraints [Haroud and Falt-
ings, 1996]. They start from the result that, when con-
straints are convex and binary, path-consistency is su�-
cient to ensure decomposability. They show that for con-
tinous domain, this result can be generalized to ternary
and n-ary constraints using some other notion of consis-
tency ((3,2)-relational consistency).
The class of CRC constraint is also related to dis-

crete temporal reasoning [van Beek, 1992b]. Vald�es-
Peres [Vald�es-P�erez, 1987] shows that path-consistency
algorithms �nd the minimal network for a subclass of
Allen's interval algebra [Allen, 1983]. Such a result has
also been proposed in the context of point algebra [Vilain
and Kautz, 1986; van Beek, 1989].
Montanari [Montanari, 1974] already shows that a

path-consistent tree or distributive networks are min-
imal. He also shows that path consistency of (total)
monotone constraints produces a decomposable network.
Note that CRC constraints are not distributive and gen-
eralize the total monotone functions of Montanari.
Finally, recall that best path-consistency algorithms

[Chmeiss, 1996; Han and Lee, 1988; Mohr and Hender-
son, 1986; Singh, 1995] run in time O(n3d3) and in space
O(n3d2) (PC-6). These algorithms do not take advan-
tage of properties of the constraints. A generic arc-
consistency algorithm AC-5 has been proposed in [Van
Hentenryck et al., 1992] and it can be instantiated to pro-
duce linear algorithms for di�erent classes of constraints
such as functional and monotone constraints.

4 Connected Row Convex Constraints

Row convex constraints exhibits two problems during
path-consistency algorithms. First, when a row convex
constraint is composed of disjoint blocks of 1s, its com-
position with another row convex constraint may not be
row convex. Second, even if disjoint blocks are forbidden,
intersection may create empty rows and columns and

2

thus disjoint blocks. Here is an illustration of these two
problems :

�
1 1 1

0 1 1

0 0 1

�
:

�
1 1 0

1 0 0

0 0 1

�
=

�
1 1 1

1 0 1

0 0 1

�
�

1 1 1

0 0 1

0 0 1

�
\

�
1 0 0

1 0 0

1 1 1

�
=

�
1 0 0

0 0 0

0 0 1

�

CRC constraints avoid both problems. Informally, a
constraint is CRC if, after removing the empty rows, it
is row convex and connected (two successive rows either
intersect or are consecutive).

De�nition 1 The reduced form of a constraint Cij, de-
noted by C�

ij, is obtained by removing all the empty rows
and columns in its matrix representation. The domain
of i through the constraint Cij, denoted by Di(Cij), is
the set fv 2 D j 9w : hv; wi 2 Cijg.

De�nition 2 Let Cij be a row convex constraint and
v 2 Di(Cij). The image of v in Cij is the set fw j
hv; wi 2 C�

ijg. Because of the row convexity of Cij, this
set is represented as an interval [w1; wm] (over the do-
mainDj(Cji)) and we denote w1 and wm by min(Cij; v)
andmax(Cij; v) respectively. We also denote by succ(w)
and pred(w) the successor and the predecessor of w in
Dj(Cji).

De�nition 3 A row convex constraint Cij is connected
if the images [a; b] and [a0; b0] of two consecutive rows in
C�

ij is such that b0 � pred(a) ^ a0 � succ(b).

De�nition 4 A constraint Cij is connected row convex
(CRC) if C�

ij and C
�

ji are both row convex and connected.

We assume that Cij is always the transposition of Cji.
Notice that CRC constraints are not necessarily row con-
vex (because of empty rows) and that row convex con-
straints are not necessarily CRC (not connected rows).
The main result of this section is the fact that CRC

constraints are closed under composition, intersection
and transposition.

Lemma 1 The deletion of rows and columns in a CRC
constraint produces a CRC constraint.

Connectivity in Lemma 1 can be proven by showing that
all the columns between two non-connnected rows are
necessarily empty and must thus be deleted when con-
sidering the connectivity property.

Lemma 2 Let Cij be a CRC constraint. Let v1; v; v2
be in Di(Cij) such that v1 < v < v2 and their respective
images are [a1; b1], [a; b] and [a2; b2] in Cij.

b2 < a1) [a; b]\ [b2; a1] 6= ;
a2 > b1) [a; b]\ [b1; a2] 6= ;
b2 � a1 ^ a2 � b1) [a1; b1] \ [a2; b1] � [a; b]

Theorem 5 The intersection and composition of two
CRC constraints and the transposition of a CRC con-
straint are CRC constraints.

Proof (Sketch) Transposition is obvious. For intersec-
tion and composition (C = A \ B or C = A:B), delete
the empty rows and columns in the operands to give
A+ and B+ . By Lemma 1, it is su�cient to show that

C+ = A+ \B+ or C+ = A+:B+ are CRC. Row convex-
ity is obvious for intersection and results from Lemma 2
for composition. Connectivity can be proven by showing
that all the columns between two non-connnected rows
are necessarily empty and must thus be deleted when
considering the connectivity property. 2

Theorem 6 Let G be composed of CRC constraints.
The application of a path-consistency algorithm to G
produces a minimal and decomposable graph.

5 PC-GEN: Generic Path Consistency

We now present a path-consistency algorithm for CRC
constraints. We proceed in two steps. We �rst present
a generic path-consistency algorithm PC-GEN which is
parametrized in a way similar to AC-5. We then instan-
tiate PC-GEN to CRC constraints.

procedure Prune(in �; i; j)
Pre: i; j 2 node(G).
Post: Cij = Cij0 n fhv;wi j hv; wi 2 �g,

Cji = Cji0 n fhw;vi j hv; wi 2 �g.

procedure InitQueue(out Q)
Post: Q = fg.

function EmptyQueue(in Q): Boolean
Post: EmptyQueue , (Q = fg).

procedure Dequeue(inout Q, out i; k; j; hv;ui)
Post: hi; k; j; hv; uii 2 Q0 and Q = Q0 n fhi; k; j; hv; uiig.

procedure Enqueue(i, j, �, inout Q)
Pre: � � Cij.
Post: Q = Q0 [fhi; j; k; hv;wii j k 2 node(G)

and j 6= k and hv;wi 2 �g.
[fhj; i; k; hw;vii j k 2 node(G)

and j 6= i 6= k and hv; wi 2 �g.

Let PCikj(v; w) = 9u : hv; ui 2 Cik and hu;wi 2 Ckj.
PC0

ikj
(v; w) = 9u : (hv; ui 2 Cik _ hi; k; j; hv;uii 2 Q)

and (hu;wi 2 Ckj _ hj; k; i; hw; uii 2 Q)

procedure PathCons(in i, k, j, out �)
Pre: i; k; j 2 node(G).
Post: � = fhv;wi 2 Cij j :PCikj(v;w)g.

procedure LocalPathCons(in i; k; j,hv;ui, out �)
Pre: i; k; j 2 node(G), and hv; ui 62 Cik.
Post: �1 � � � �2, with

�1 = fhv; w0i 2 Cij j hu;w0i 2 Cinit
kj

and :PCikj(v; w
0)g.

�2 = fhv0; w0i 2 Cij j :PCikj(v
0; w0)g.

Figure 1: Subproblems for for PC-GEN

The speci�cation of the main operations in PC-GEN
are given in Figure 1. In all speci�cations, a parameter
p subscripted with 0 (p0) represents the value of p at
call time and Cinit

ij is the original set of constraint tuples
between i and j. This justi�es the restriction i � j in line
2 of PC-GEN. As is traditional, PC-GEN uses a queue to
drive the algorithm. Procedure Enqueue is required to
take O(s) time, where s is the number of new elements to
insert in the queue, and procedure Dequeue must take
constant time. The deletion of tuples is performed by
procedure Prune, which removes tuple hv; wi from Cij,
and hw; vi from Cji. Hence, hv; wi 2 Cij , hw; vi 2 Cji
is an invariant of the algorithm.

3

PC-GEN is parametrized by two procedures, Path-
Cons and LocalPathCons whose implementations are
left open. Procedure PathCons computes the set �
of tuples in Cij which are not path consistent for the
path (i; k; j). Because of the relationship between Cij
and Cji, � is also the set of tuples (in reverse order) of
Cji that are not path consistent for path (j; k; i).
Procedure LocalPathCons returns in � a set of

tuples of Cij that are not path consistent for (i; k; j)
after the tuple hv; ui has been removed from the con-
straint Cik. The set � is also the set of tuples (in reverse
order) of Cji that are not path consistent in path (j; k; i)
after tuple hu; vi has been removed from Cki.
The size of � computed by LocalPathCons can

vary. The set �1 contains the tuples in Cij that be-
come path inconsistent for (i; k; j) due to the removal of
the tuple hv; ui from Cik. Speci�cally, a tuple hv; w0i is
included in �1 if u was a support (i.e., (u;w0) 2 Cinit

kj)

and (v; w0) is not supported anymore. In some cases, it
is possible, but not always desirable, to prune a larger
set of tuples. As an extreme case, �2 prunes all tuples
in Cij which are not path inconsistent wrt (i; k; j) at
call time, regardless of whether they can be supported
by hv; ui. In fact, the speci�cations can be made even
less restrictive by replacing PCikj by PC0

ikj in the def-
inition of � in PathCons, and in the de�nition of �1

in LocalPathCons. Our instantiation of PC-GEN to
CRC constraints uses this
exibility to improve the time
complexity of traditional path-consistency algorithms.

Algorithm PC-GEN

Post: G is the largest path-consistent graph for G0.
begin

1 InitQueue(Q);
2 for each i; k; j 2 node(G) with i � j do
3 begin
4 PathCons(i,k,j,�);
5 Enqueue(i,j,�,Q);
6 Prune(�,i; j)
7 end;
8 while not EmptyQueue(Q) do
9 begin
10 Dequeue(Q,i,k,j,hv;ui);
11 LocalPathCons(i,k,j,hv; ui,�);
12 Enqueue(i,j,�,Q);
13 Prune(�,i; j)
14 end
end

Figure 2: The Path Consistency Algorithm PC-GEN

PC-GEN is depicted in Figure 2 and mimics AC-5.
In the loop on lines 2{7, procedure PathCons identi�es
the path-inconsistent tuples with respect to each path of
length two. The inconsistent tuples are enqueued and
processed in the second loop, on lines 8{14, where pro-
cedure LocalPathCons is used to prune tuples of Cij
which become inconsistent after the removal of a tuple
from Cik. The removal of the tuple hv; wi in Cij and
hw; vi in Cji induces to reconsider all length-two paths
involving either (i; j) or (j; i) as the �rst or as the second
arc. It is however unnecessary to explicitly consider the

involvement as a second arc (in the Enqueue procedure)
since LocalPathCons(i; j; k; : : :) will cover both paths
(i; j; k) and (k; j; i), and LocalPathCons(j; i; k; : : :)
will cover paths (j; i; k) and (k; i; j).
It can be shown that PC-GEN is correct and that it

enqueues and dequeues at most O(n3d2) elements.

Theorem 7 Given a time complexity of O(d2) for pro-
cedure PathCons and a time complexity of O(�) for
procedure LocalPathCons, the time complexity of al-
gorithm PC-GEN is bounded by O(n3d2).

PC-GEN can be instantiated for general constraints to
produce a path-consistency algoritm with a time com-
plexity of O(n3d3) and a space complexity of O(n3d2).
We now turn to its instantiation for CRC constraints.

6 PC-GEN for CRC Constraints

Let D = fb; : : : ;Bg.
Let Cij = fhv1; v1i; : : : ; hvm; vmig if i = j

= fhv1;w1i; : : : ; hvm; wmig if i 6= j (where vk;wk 2 D)

Data Structure
Syntax

Cij:supmin: array [b::B] of element 2 D.
Cij:supmax: array [b::B] of element 2 D.
Cij:f irst: element 2 D.
Cij:succ: array [b::B] of element 2 D.
Cij:pred: array [b::B] of element 2 D.

Semantics
Cij:supmin[v] = min(Cij ; v)
Cij:supmax[v] = max(Cij; v)
Cij:f irst = minfv 2 Di(Cij)g
Cij:succ[v] = succ(v) in Di(Cij)
Cij:pred[v] = pred(v) in Di(Cij)

Invariant

Cij = CT
ji

Cij:supmin[v] 2 Dj(Cji)
Cij:supmax[v] 2 Dj(Cji)

Interface
function EmptySupport(in v,w, i,k,j): Boolean
Post: EmptySupport(v,w, i,k,j) = :PC0

ikj
(v;w)

function First(in i,j): Integer
Post: First(i,j) = minfv 2 Di(Cij)g

function Min(in v, i,j): Integer
Post: Min(v, i,j) = min(Cij ; v)

function Max(in v, i,j): Integer
Post: Max(v, i,j) = max(Cij; v)

function Succ(in v, i,j): Integer
Post: Succ(v, i,j) = succ(v) in Di(Cij)

function Pred(in v, i,j): Integer
Post: Pred(v, i,j) = pred(v) in Di(Cij)

Figure 3: The CRC Constraint Module

CRC constraints can be represented in space O(d)
as shown in Figure 3. It is necessary to keep a de-
scription of Di(Cij), since row convexity is only en-
forced on the reduced form. Figure 3 also spec-
i�es the operations on CRC constraints which are
all implemented in constant time. For instance,
EmptySupport(v; w; i; k; j) can be implemented by
b0 � a ^ a0 � b with a =Min(v; i; k), b =Max(v; i; k),
a0 =Min(w; j; k), and b0 =Max(w; j; k).

4

procedure PathCons(in i; k; j, out �)
begin

1 � := ;;
2 for each v 2 Di(Cij) do
3 begin
4 LocalPathCons(i, k, j, v, �v);
5 � := � [�v ;
6 end

end

procedure LocalPathCons(in i, k, j, v, out �)
Pre: i; k; j 2 node(G).
Post: �1 � � � �2, with

�1 = fhv;w0i 2 Cij j :PC
0
ikj

(v;w0)g.

�2 = fhv0;w0i 2 Cij j :PCikj(v
0; w0)g.

begin
1 BoundedMin(i, k, j, hv, Max(v, i,j) i, �0, wmin);
2 if wmin =Max(v, i,j) then � := �0

3 else
4 begin
5 BoundedMax(i, k, j, hv, Min(v, i,j) i, �00, wmax);
6 Propagate(i,j,k,hv;wmini, BoundedMin, pred, �1);
7 Propagate(i,j,k,hv;wmini, BoundedMin, succ, �2);
8 Propagate(i,j,k,hv;wmaxi, BoundedMax, pred, �3);
9 Propagate(i,j,k,hv;wmaxi, BoundedMax, succ, �4);
10 � := �0 [�00 [�1 [�2 [�3 [�4;
11 end

end

Figure 4: PathCons and LocalPathCons for CRC
constraints.

An implementation of Procedures PathCons and Lo-
calPathCons is given in Figure 4. Note that the spec-
i�cation of LocalPathCons has been relaxed further
by removing parameter u and that PathCons can now
be expressed in terms of LocalPathCons. In Local-
PathCons, BoundedMin computes the interval �0 to
be removed on the left of the interval in row v while
BoundedMax computes the interval �00 to be removed
on the right of the interval in row v. Although this prun-
ing is su�cient, it may destroy the CRC property. To
preserve the property, it is necessary to perform addi-
tional pruning on the rows above or below v. This is the
role of the Propagate instructions. The speci�cations
and implementation of the procedures are given in Fig-
ure 5 and the intuition behind LocalPathCons is cap-
tured in Figure 6. Because Cij := Cij\Cik:Ckj produces
a CRC constraint, the implementation is guaranteed to
keep Cij connected row convex. Note that Propagate
works from v to the exterior, while BoundedMin and
BoundedMax work from the exterior to the interior.

Complexity Prune can be performed in O(�) as-
suming the elements of � are ordered to preserve the
CRC property. The ordering can be performed during
the construction of � during LocalPathCons without
incurring any cost. An implementation of � as a doubly-
linked list is su�cient for this purpose given the way � is
constructed as mentioned in the previous section. The
complexity of Procedures Propagate, BoundedMin

and BoundedMax is obviously O(�). Hence Local-
PathCons is O(�). By Theorem 7, the time complexity
of PC-GEN is O(n3d2). The space complexity per con-

procedure Propagate(in i, k, j, hv; wi, Bounded, Next,
out �)

Let vk = Nextk(v),
wk and �k such that Bounded(i; k; j; hvk ; wi;�k ; wk),
m = maxfk j �k 6= ; ^wk = wg.

Post: � =
S

1�k�m+1
�k

begin
1 � := ;;
2 vcalc := v;
3 repeat
4 vcalc :=Next(vcalc);
5 Bounded(i, k, j, hvcalc; wi, �calc, wcalc) ;
6 � := � [�calc ;
7 until (wcalc 6= w);
end

procedure BoundedMin(in i, k, j, hv; wi, out �, wmin)
Post: wmin = maxfw 2 Dj(Cji) j8w0 2 [Min(v; i; j);w] :

EmptySupport(v;w0; i; k; j)g
� = f hv;w0i j w0 2 [Min(v; i; j);wmin] g

begin
1 � := ;;
2 w2 :=Min(v; i; j);
3 while (w2 � w) ^:EmptySupport(v,w2,i,k,j) do
4 begin
5 � := � [fhv;w2ig;
6 w2 := succ(w2);
7 end ;
8 wmin := pred(w2);

end

procedure BoundedMax(in i, k, j, hv; wi, out �, wmax)
Post: wmax = minfw 2 Dj(Cji) j8w

0 2 [w;Max(v; i; j)] :
EmptySupport(v;w0; i; k; j)g

� = f hv;w0i j w0 2 [wmax ;Max(v; i; j)] g
begin

1 � := ;;
2 w2 :=Max(v; i; j);
3 while (w2 � w) ^:EmptySupport(v,w2,i,k,j) do
4 begin
5 � := � [fhv;w2ig;
6 w2 := pred(w2);
7 end ;
8 wmax := succ(w2);

end

procedure Prune(in �; i; j)
Pre: i; j 2 node(G),

Cij is a CRC constraint,
Cij n� is a CRC constraint.

Post: Cij = Cij0 n fhv;wi j hv;wi 2 �g,
Cji = Cji0 n fhw; vi j hv; wi 2 �g.

Figure 5: Subproblems for PC-CRC.

*

Wmin Wmin

*
ijij CC

Wmax

VV

Figure 6: Illustrating LocalPathCons for CRC con-
straints : two possible cases.

5

straint is O(d) and O(nd) for all the constraints. The
space complexity of the queue is bounded by O(n2d) be-
cause procedure LocalPath does not use parameter u
and elements in the queue can be grouped as tuples of the
form hi; j; E; vi, where the set E is initiallynode(G)nfjg.
The set E can be shared by all elements of the queue ex-
cept the �rst one.

Theorem 8 For CRC constraints, PC-GEN has a time
complexity ofO(n3d2) and a space complexity ofO(n2d).

The above theorem is valid for incomplete graphs of
CRC constraints as well, since the completion of the
graph introduces TRUE constraints which are CRC.

Finding a Solution A path-consistent graph with
CRC constraints is decomposable due to Helly's theo-
rem (e.g., [Haroud and Faltings, 1996]). The proof in
[van Beek and Dechter, 1995] is constructive and the
author proposes a O(n2d) algorithm to �nd a solution.
We propose in Figure 7 an Instantiate procedure with
a time complexity of O(n2) for CRC constraints. It is
based on van Beek's algorithm, but takes advantage of
the data structure.

procedure Instantiate(in G, out hx1; : : : ; xni)
Pre: G has only CRC constraints, and is path-consistent,

Di 6= ; (1 � i � n)
Post: hx1; : : : ; xni is a solution of G.

begin
1 for i := 1 to n do
2 begin
3 L := First(i,i);
4 for j := 1 to i-1 do L := max(L, Min(xj,j,i)) ;
5 xi := L
6 end
end

Figure 7: Instantiate for CRC Constraints.

The total complexity to detect inconsistency or to
�nd a solution of a graph composed with CRC con-
straints is thus O(n3d2), the time complexity of the path-
consistency algorithm.

7 Conclusion

In this paper, we studied constraint satisfaction over
connected row convex (CRC) constraints, a large class
of constraints subsuming, in particular, monotone con-
straints. We showed that, contrary to row convex con-
straints, CRC constraints are closed under composition,
intersection, and transposition, establishing that path
consistency over CRC constraints produces a minimal
and decomposable network and strenghtening the results
of van Beek and Dechter [1995]. We then presented a
path-consistency algorithm for CRC constraints running
in time O(n3d2) and space O(n2d), where n is the num-
ber of variables and d is the size of the largest domain, as
an instantiation of a generic path-consistency algorithm.
This improves the traditional time complexity O(n3d3)
and space complexity O(n3d2). Finally, we show that a

solution can be found in time O(n2), once the graph is
path-consistent.
Further research will be devoted to studying how to

improve path consistency and its approximation to con-
tinuous domains, since path consistency has been shown
instrumental in speeding search considerably for some
transistor modelling problems, and to other classes of
discrete domains.

Acknowledgment We thank anonymous reviewers for
helpful comments. This research is partially supported by the
Actions de recherche concert�ees (ARC/95/00-187) of the Di-
rection g�en�erale de la Recherche Scienti�que { Communaut�e
Fran�caise de Belgique, by the O�ce of Naval Research (ONR
Grant N00014-94-1-1153 and a NSF National Young Investi-
gator Award with matching funds of Hewlett-Packard.

References
[Allen, 1983] J.F. Allen. Maintaining Knowledge About
Temporal Reasoning. J.ACM, 26:832{843, 1983.

[Chmeiss, 1996] A. Chmeiss. Sur la consistance de chemin
et ses formes partielles. In Actes du Congr�es AFCET-
RFIA'96, Rennes, 1996.

[Freuder, 1982] E.C. Freuder. A Su�cient Condition for
Backtrack-Free Search. J.ACM, 29:24{32, 1982.

[Han and Lee, 1988] C.C. Han and C.H. Lee. Comments on
Mohr and Henderson's Path Consistency Algorithm. Artif.
Intel., 36:125{130, 1988.

[Haroud and Faltings, 1996] D. Haroud and B. Faltings.
Consistency techniques for continuous constraints. Con-
straints, An International Journal, 1:85{118, 1996.

[Mohr and Henderson, 1986] R. Mohr and T.C. Henderson.
Arc and Path Consistency Revisited. Artif. Intel., 28:225{
233, 1986.

[Jeavons and Cooper, 1995] P.G. Jeavons and M.C. Cooper.
Tractable constraints on ordered domains. Artif. Intel..,
79:327-339, 1995.

[Montanari, 1974] U. Montanari. Networks of constraints:
Fundamental properties and applications to picture pro-
cessing. Information Science, 7(2):95{132, 1974.

[Singh, 1995] M. Singh. Path consistency revisited. In
IEEE-ICTAI'95, Washington DC, 1995.

[Vald�es-P�erez, 1987] R.E. Vald�es-P�erez. The satis�ability of
temporal constraint network. In AAAI-87, Seattle, pages
745{750, 1987.

[van Beek, 1989] P. van Beek. Approximation algorithms for
temporal reasoning. In IJCAI-89, pages 745{750, 1989.

[van Beek, 1992b] P. van Beek. Reasoning About Qualita-
tive Temporal Reasoning. Artif. Intel., 58:297{326, 1992.

[van Beek and Dechter, 1995] P. van Beek and R. Dechter.
On the Minimality and Global Consistency of Row Convex
Networks. J.ACM, 42:543-561, 1995.

[Van Hentenryck et al., 1992] P. Van Hentenryck, Y. Dev-
ille, and C. Teng. A generic arc-consistency algorithm and
its specializations. Artif. Intel., 57(2{3):291{321, 1992.

[Vilain and Kautz, 1986] M. Vilain and Kautz. Constraint
propagation algorithms for temporal reasoning. In AAAI-
86, Philadelphia, pages 132{144, 1986.

6

