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Abstract

This paper studies constraint satisfaction over connected row convex (CRC) con-
straints. It shows that CRC constraints are closed under composition, intersec-
tion, and transposition, the basic operations of path-consistency algorithms. This
establishes that path consistency over CRC constraints produces a minimal and
decomposable network and is thus a polynomial-time decision procedure for CRC
networks. This paper also presents a new path-consistency algorithm for CRC con-
straints running in time O(n3d2) and space O(n2d), where n is the number of
variables and d is the size of the largest domain, improving the traditional time and
space complexity by orders of magnitude. The paper also shows how to construct
CRC constraints by conjunction and disjunction of a set of basic CRC constraints,
highlighting how CRC constraints generalize monotone constraints and presenting
interesting subclasses of CRC constraints. Experimental results show that the algo-
rithm behaves well in practice.

1 Introduction

Constraint satisfaction techniques have been found useful in many areas such
as combinatorial optimization, hardware design, robotics, knowledge bases,
and temporal reasoning to name only a few. Some applications require to �nd
one or all solutions, in which case consistency techniques (e.g., arc and path
consistency) are instrumental in reducing the size of the search space. Other
applications require to put the constraints network in minimal form, e.g., to
remove redundant information, in which case consistency techniques apply as
well since they remove values which cannot appear in solutions.

In recent years, increasing attention has been devoted to the study of special
classes of constraints or constraint networks. These studies are motivated both
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by practical considerations (e.g., constraint languages are based on a set of
primitive constraints) and by theoretical considerations, since stronger results
and more e�cient algorithms can be obtained by exploiting special properties
and tractable classes of constraints can be identi�ed.

The research described in this paper was motivated by the class of row-convex
constraints identi�ed by van Beek and Dechter [vBR95]. When the constraints
of a path-consistent constraint network are row-convex (or can be made row-
convex by permutation of values in the domain), then the constraint network
is minimal and decomposable and a solution can be found without backtrack-
ing in O(n2d) after application of a path-consistency algorithm (which runs
in O(n3d3)). Unfortunately, row-convex constraints are not closed under com-
position and intersection, the main operations of path-consistency algorithms.
As a consequence, no conclusion can be drawn a priori for a constraint network
of row-convex constraints, since its path-consistent subnetwork may or may
not be row-convex.

The �rst contribution of this paper is the de�nition of a a new class of con-
straints, called connected row-convex (CRC) constraints, which is closed un-
der the operations of path-consistency algorithms. As a consequence, the class
of CRC constraints is shown to be tractable. The paper also shows how to
construct CRC constraints by conjunction and disjunction of a set of basic
CRC constraints, highlighting how CRC constraints generalize monotone con-
straints [Mon74] and presenting interesting subclasses of CRC constraints.

The second contribution of the paper is a path-consistency algorithm, called
PC-CRC, tailored to CRC constraints and running in O(n3d2) time and in
O(n2d) space. PC-CRC improves traditional algorithms by an order of mag-
nitude and is a decision procedure for networks of CRC constraints. The
algorithm is obtained by instantiating a generic path-consistency algorithm
PC-GEN. Such an approach facilitates the understanding of the algorithm,
provides a framework for the description and comparison of existing path-
consistency algorithms, and can be reused for the development of new (spe-
cialized or not) path-consistency-like algorithms.

The rest of the paper is organized as follows. Section 2 introduces the necessary
background and Section 3 discusses related work. Section 4 describes the class
of CRC constraints and shows that this class is tractable. Section 5 presents
the generic algorithm PC-GEN which is then instantiated to CRC constraints
in Section 6. Section 7 provides analysis and experimental results. Section 8
concludes the paper. Additional detail on some of the presented results can
be found in [Bar97].

2 Preliminaries

De�nition 1 (Binary constraint network [Mon74])

2



A (binary) constraint network N = (Var ;D;C) is a set Var of n variables
f1; : : : ; ng represented by natutal numbers, a �nite domain Di of possible val-
ues for each variable i (the set D is the union of all domains), and a set C
of binary constraints bewteen variables. A constraint between variable i and j,
denoted by Cij , is a set of couples (Cij � Di �Dj) that speci�es the allowed
pairs of values for i and j.

The fact that (v;w) 2 Cij is also denoted by Cij(v;w). Given a constraint
network N = (Var ;D;C), d will denote the size of the largest domain, and
arc(N ) the set f(i; j) j Cij 2 Cg. We assume the existence of a total ordering
over D. It is �nally required that (v;w) 2 Cij i� (w; v) 2 Cji. As usual, a
constraint Cij will also be seen as a Boolean matrix with j Di j rows and j Dj j
columns. The Boolean value are represented by 0 and 1 for convenience. Rows
and columns are ordered according to the underlying order over D. A 1 (resp.
0) at position (v;w) in the matrix means (v;w) 2 Cij (resp. (v;w) 62 Cij). To
simplify the presentation, each domain Di is also represented by a (pseudo-
binary) constraint Cii such that Cii(v; v) holds i� v 2 Di. Domain Di and
constraint Cii can be used in an interchangeable way.

Consistency techniques aim at reducing the size of the problem without alter-
ing its set of solutions. Such techniques are usually called local consistency as
they analyze di�erent parts of the problem and remove elements that cannot
belong in a solution of the problem.

De�nition 2 hv1; : : : ; vni is a solution of N i� Cij(vi; vj) holds for all (i; j) 2
arc(N ).

De�nition 3 Two constraint networks N and N 0 are equivalent i� N and
N 0 have the same solutions.

The following de�nition describe path consistency of constraint networks
[Mac77]) .

De�nition 4 A constraint network N = (Var ;D;C) is path-consistent i�, for
every triple (i; k; j) of variables, we have that for every vi 2 Di and vj 2 Dj

such that Cij(vi; vj), there exists vk 2 Dk such that Cik(vi; vk) and Ckj(vk; vj).

Note that if the de�nition of path consistency does allow identical nodes
(i; k; i), then path consistency implies arc consistency. The purpose of a
path-consistency algorithm is to compute, given a constraint network N =
(Var ;D;C), an equivalent constraint network N 0 = (Var ;D0; C 0) which
is path-consistent. The resulting constraint network will thus also be arc-
consistent.

We can draw a parallel between path- and arc-consistency algorithms. An
arc-consistency algorithm removes arc inconsistent values from the domains
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of variables. Hence the outputs of an arc-consistency algorithm are domains.
Working on domains is not su�cient for a path-consistency algorithm. Sup-
pose that Di = Dj = fa; bg. It can be the case that ha; bi is path inconsistent
for some path (i; k; j). Such a path inconsistency does not mean that a (or b)
should be removed from Di (or Dj) but that, in a solution, it is impossible to
have ha; bi as value for the couple of variables i; j. Hence a path-consistency
algorithm should \remove" path-inconsistent tuples from constraints, and the
output should be constraints. Such algorithms usually handle explicit repre-
sentation of constraints and assume a complete constraint network. An in-
complete constraint network can be easily transformed into a complete one by
adding TRUE constraints (constraints allowing any combination of values)
between every pair of variables (i; j) where (i; j) =2 arc(N ).

De�nition 5 A constraint network N is minimal i�
8i; j 2 arc(N ) 8v;w 2 D : if Cij(v;w) then there is a solution of N with
values v and w assigned to i and j.

De�nition 6 A constraint network N is decomposable i�, 8vi1 : : : vik satis-
fying all the constraints relating nodes i1 : : : ik(1 � k < n) and for any new
node ik+1, there exists vik+1 such that vi1 : : : vik ; vik+1 satisfy all the constraints
relating nodes i1 : : : ik; ik+1.

A decomposable constraint network is also called strongly n-consistent [Fre82].
Decomposable constraint networks have thus the property that any consis-
tent instantiation of some variables can be extended to a solution, without
backtracking. A decomposable constraint network is of course minimal. In a
minimal constraint network, it is not possible to prune further the constraints
without removing solutions.

3 Related Work

This research was motivated by van Beek's result on row-convex constraint.
A constraint Cij is row-convex if, in each row of its matrix representation,
all the ones are consecutive. Van Beek and Dechter [vBR95] show that, when
the constraints of a path-consistent constraint network are row-convex (or
can be made row-convex by permutation of values in the domain), then the
constraint network is minimal and decomposable. One can thus compute a
solution without backtracking in O(n2d). Solving the CSP can then be done
in O(n3d3), the time complexity of the PC algorithm. Unfortunately, row-
convex constraints are not closed under composition and intersection. As a
consequence, no conclusion can be drawn a priori for a constraint network of
row-convex constraints, since its path-consistent subnetwork may or may not
be row-convex.

This paper proposes a subclass which is closed under the main operations
of path-consistency algorithms. Di�erent subclasses are already presented
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in [vBR95]. It covers binary relations on domains with two elements (graph
2-coloring), and linear binary constraints which is a particular cases of CRC
constraints. Closed classes are also analysed and identi�ed in [JC95,JCC98],
where Jeavons and Cooper identify the class of max-closed constraints that
can be solved in polynomial time (O(n4d4) for binary constraints). Our class of
CRC constraints, which can be solved in O(n3d2), intersects with max-closed
constraints, but is not a subset. The authors alos presents implicational rela-
tions and also other tractables constraints not based on row convexity. Mon-
tanari [Mon74] already shows that a path-consistent tree or distributive net-
works are minimal. He also shows that path consistency of (total) monotone
constraints produces a decomposable network. Note that CRC constraints are
not distributive and generalize the monotone functions of Montanari.

The class of CRC constraints is also related to discrete temporal reasoning
[vB92b]. Vald�es-Peres [VP87] shows that path-consistency algorithms �nd the
minimal network for a subclass of Allen's interval algebra [All83]. Such a result
has also been proposed in the context of point algebra [VK86,vB89].

The idea of row convexity has also been exploited in the context of continuous
constraints [HF94,HF96]. They start from the result that, when constraints
are convex and binary, path-consistency is su�cient to ensure decomposability.
They show that for continuous domains, this result can be generalized to
ternary and n-ary constraints using some other notion of consistency ((3,2)-
relational consistency).

4 Connected Row-Convex Constraints

This section introduces CRC constraints, a particular case of row-convex con-
straints. CRC constraints are preserved by path-consistency algorithms (i.e.,
the application of a path-consistency algorithms on a CRC network produces
a CRC-network), which is not the case of general row convex constraints.
As a consequence, applying path consistency on CRC-constraints produces a
minimal and decomposable network. In this section, we use the matrix rep-
resentation of constraints. Given the initial domains Di and Dj , a constraint
Cij can be represented by a Boolean matrix. We assume a total ordering of
the elements in the domains. The rows and columns are ordered according to
the underlying order of the domain.

4.1 Row-Convex Constraints

Van Beek introduced the concept of row-convex constraint [vB92a].

De�nition 7 A constraint Cij is row-convex if, in each row of the matrix
representation of Cij, all the ones are consecutive (i.e., no two ones within a
single row are separated by a zero in that same row.
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In [vB92a], van Beek showed that if the constraints of a path-consistent con-
straint network are row-convex (or can be made row-convex by permutation
of values in the domain), then the constraint network is minimal and decom-
posable. One can thus compute a solution without backtracking.

The problem is that the class of row-convex constraints is too large as row
convexity can be lost during the path-consistency algorithm. Van Beek sug-
gested to restrict the class of row-convex constraints to a class closed under
composition, intersection, and transposition, the basic operations in PC algo-
rithms. Following this suggestion, we present in the next section such a class
of row-convex constraints.

4.2 CRC Constraints

Row-convex constraints exhibits two problems during path-consistency algo-
rithms. First, when a row-convex constraint is composed of disjoint blocks
of 1s, its composition with another row-convex constraint may not be row-
convex. Second, even if disjoint blocks are forbidden, intersection may create
empty rows and columns and thus disjoint blocks. Here is an illustration of
these two problems :
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1 0 0
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1
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CRC constraints avoid both problems. Informally, a constraint is CRC if, after
removing the empty rows, it is row-convex and connected (two successive rows
either intersect or are consecutive).

De�nition 8 The reduced form of a constraint Cij, denoted by C�
ij, is ob-

tained by removing all the empty rows and columns in its matrix representa-
tion. The domain of i through the constraint Cij, denoted by Di(Cij), is the
set fv 2 D j 9w : hv;wi 2 Cijg

De�nition 9 Let Cij be a row-convex constraint and v 2 Di(Cij). The image
of v in Cij is the set fw j hv;wi 2 Cijg. Because of the row convexity of
Cij, this set is represented as an interval [w1; wm] (over the domain Dj(Cji))
and we denote w1 and wm by min(Cij; v) and max(Cij; v) respectively. We
also denote by succ(w;Dj(Cji)) and pred(w;Dj (Cji)) the successor and the
predecessor of w in Dj(Cji). For ease of notation, these two operations will be
denoted succ(w) and pred(w) when there is no ambiguity on the underlying
domain.
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not row convex

CRC constraints non CRC constraints

not connected

Fig. 1. Examples CRC constraints

De�nition 10 A row-convex constraint Cij is connected i� the images [a; b]
and [a0; b0] of two consecutive rows in C�

ij is such that

b0 � pred(a) ^ a0 � succ(b)

De�nition 11 A constraint Cij is connected row-convex (CRC) i�

(i) C�
ij and C

�
ji are row-convex,

(ii) C�
ij and C

�
ji are connected.

We assume that Cij is always the transposition of Cji. Examples of CRC
constraints are given in Figure 4.2 (1 are in black, empty rows/columns are in
grey). Notice that CRC constraints are not necessarily row-convex (because
of empty rows) and that row-convex constraints are not necessarily CRC (not
connected rows). The top right constraint in Figure 4.2 is an example showing
that a CRC constraint cannot always be made CRC by permutations of rows
and columns.

It is interesting to notice that, in the de�nition of CRC, the second condition
can be simpli�ed, as suggested by the following property.

Theorem 12 Assuming that C�
ij and C

�
ji are row-convex, C

�
ij is connected i�

C�
ji is connected.
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Proof. Let C�
ij and C�

ji be row-convex. Suppose C
�
ij not connected. A simple

case analysis on the cause of the non connectivity of C�
ij leads to the non

connectivity of C�
ji. 2

4.3 Properties of CRC Constraints

This section shows that CRC constraints are closed under composition, inter-
section and transposition.

Lemma 13 The deletion of rows and columns in a CRC constraint produces
a CRC constraint.

Proof. It is su�cient to prove that the suppression of one (non empty) row
to Cij preserve the CRC property. Let v the corresponding element, and C 0

ij

be the resulting matrix. We observe that C 0�
ij has exactly one row less, and

possibly less columns than C�
ij. It is easy to see that C 0�

ij and C 0�
ji are row-

convex.
Removing a row does not a�ect the fact that C 0�

ji is connected. The images in
Cji which contained v has now one less element in C 0

ji. If the interval becomes
empty, the corresponding row is simply suppressed.
Let [a1; b1]; [a2; b2] be the images in C 0

ji of the rows preceding and fol-
lowing the suppressed row. If these interval were not connected (say be-
cause b2 < pred(a1)), then the columns of C�

ij corresponding to position
succ(b2); : : : ; pred(a1) are empty, except at row v. Otherwise C�

ij would not
be row-convex. Hence removing row v in Cij induces that these columns will
be suppressed in C 0�

ij. The intervals [a1; b1]; [a2; b2] are thus connected in C 0�
ij.
2

Lemma 14 Let Cij be a CRC constraint. Let v1; v; v2 be in Di(Cij) such that
v1 < v < v2 and their respective images are [a1; b1], [a; b] and [a2; b2] in Cij .

b2 < a1 ) [a; b]\ [b2; a1] 6= ;

a2 > b1 ) [a; b]\ [b1; a2] 6= ;

b2 � a1 ^ a2 � b1 ) [a1; b1] \ [a2; b1] � [a; b]

Theorem 15 The intersection of two CRC constraints is a CRC constraint.

Proof. Let Aij and Bij be two CRC constraints. Let Cij = Aij \Bij.
If Aij or Bij have empty rows or columns, we may suppress in Aij and in Bij

all rows and columns which are empty either in Aij or in Bij, and repeat this
process until no more rows or columns can be suppressed. The elements in Cij

not in the intersection of the obtained reduced matrices are obviously null.
We may thus assume that Aij and Bij have no empty rows or columns.

8



v1

v2

ijA Bij Cij

v

1

1

1

w

v

v1

v21

1

0

0

1

0

0

w w1

1

1

0
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0
0
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w

1

empty
=

w2 w1 w2 w1 w2

Fig. 2. Intersection of two CRC constraints

Suppress inAij andBij all rows and columns which are empty either inAij or in
Bij. Repeating this process until no more rows or columns can be suppressed.
Let Aij and Bij be the resulting matrices, and Cij be Aij \Bij. The elements
of Cij not in Cij are obviously null. It is thus su�cient to show that Cij is
CRC.
By Lemma 13, Aij and Bij are CRC. The row convexity of Cij (and Cji) is
obvious as each row (and column) is the intersection of intervals.
Let v1; v2 2 Di(Cij) such that v1 and v2 have non empty rows in Cij , the
rows between v1 and v2 are empty, and row v1 and row v2 are not connected,
as illustrated in Figure 4.3. Let the leftmost 1 in row v1 be at position w1,
and the rightmost 1 in row v2 be at position w2. The other possible cases are
symmetrical. We show that all the columns between w2 and w1 are empty.
Hence that Cij is CRC.
Assume that such a column is not empty (e.g., Cij(v;w) = 1).
We necessarily have a 1 at positions (v1; w1), (v2; w2) and (v;w) in Aij and in
Bij. As Cij(v1; w) = 0, either Aij or Bij has a 0 at position (v1; w). Without
loss of generality, we suppose that Bij(v1; w) = 0. By row convexity of Bij,
all elements below (v1; w) are also null in Bij . The matrix Bij is then not
connected somewhere between row v1 and row v2. This is impossible as Bij is
CRC. 2

Theorem 16 The composition of two CRC constraints is a CRC constraint.

Proof. Let Cij = Cik:Ckj.
Empty rows in Cik and empty columns in Ckj can be removed as producing
empty rows/columns in Cij . An empty column in Cik can be suppressed to-
gether with its corresponding row in Ckj without a�ecting the result. Similarly
for empty rows in Ckj . Repeating this process leads to two constraints included
in C�

ik and C
�
kj . By Lemma 13, these two constraints are CRC constraints. We

may thus assume that Cik has no empty rows, and Ckj no empty columns.
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Let us �rst show that Cij = Cik:Ckj is row-convex. Let v1 < v < v2 such
that Cij(v1; w) = 1 and Cij(v2; w) = 1. Let [a1; a01], [a; a0] and [a2; a02] be the
images of v1; v, and v2 in Cik. Let [b; b0] be the image of w in Cjk. We have

[a1; a01] \ [b; b0] 6= ;

[a2; a02] \ [b; b0] 6= ;

From the application of Lemma 14 on a simple case analysis on the relative
positions of [a1; a01] and [a2; a02], we can conclude that [a; a0]\ [b; b0] 6= ;, hence
that Cij(v;w) = 1.

Let us now prove that Cij is CRC. Let v1; v2 2 Di such that v1 and v2 have
non empty rows in Cij, the rows between v1 and v2 are empty, and rows v1
and v2 are not connected, as illustrated in Figure 4.3. Let the leftmost 1 in
row v1 be at position w1, and the rightmost 1 in row v2 be at position w2. The
other possible cases are symmetrical. We show that all the columns between
w2 and w1 are empty. Hence that Cij is CRC.

Assume that such a column is not empty (e.g., Cij(v;w) = 1 and
Cij(v; succ(w)) = 0).

From Cij(v1; w1), there exists some u1 such that Cik(v1; u1) = 1, Ckj(u1; w1) =
1. As hv1; w1i is the leftmost 1, Ckj(u1; b) = 0 for b < w1. By the row convexity
of Cij, hv1; w1i is also the lowest 1. Hence Cik(a; u1) = 0 for a > v1.

From Cij(v2; w2), there exists some u2 such that Cik(v2; u2) = 1, Ckj(u2; w2) =
1. As hv2; w2i is the rightmost 1, Ckj(u2; b) = 0 for b > w2. By the row
convexity of Cij, hv2; w2i is also the highest 1. Hence Cik(a; u2) = 0 for a > v2.

From Cij(v;w), there exists some u such that Cik(v; u) = 1, Ckj(u;w) = 1. As
hv;wi is the downmost 1, Cik(a; u) = 0 for a > v. Given that Cik is CRC, we
must have u < u1 < u2. By the row convexity of Ckj, Ckj(c; w) = 0 for c � u1.
This makes Ckj not connected somewhere between rows u1 and u2. Impossible
as Ckj is CRC.

The proof for the symmetrical cases is similar. 2

Theorem 17 The transposition of a CRC constraint is a CRC constraint.

Theorem 18 Let N be composed of CRC constraints. The application of a
path-consistency algorithm to N produces a minimal and decomposable con-
straint network.
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Fig. 3. Composition of two CRC constraints

Proof. Straightforward as path-consistency can be achieved by only using
composition, intersection and transposition of (the matrix representation of)
constraints. 2

Theorem 19 The class of CRC constraints is tractable.

4.4 Examples of CRC Constraints

It is important to discuss some examples of CRC constraints and to show how
they generalize monotone constraints [Mon74]. Let us assume the existence of
a (total) ordering in each domain Di. For ease of notation, we will use the
same ordering symbol � for all the domains.

De�nition 20 Let � and � be total orderings on Di and Dj , respectively. A
(binary) constraint Cij is (�;�)-monotone if

{ 8v; v0 2 Di; 8w 2 Dj : if Cij(v;w) and v0 � v then Cij(v0; w)
{ 8v 2 Di; 8w;w0 2 Dj : if Cij(v;w) and w0 � w then Cij(v;w0)

A constraint is monotone if it is (�;�)-monotone. It is possible to generalize
the class of monotone constraints by allowing any combination of the ordering
relations. This provides some insights on why CRC constraints are important
and how they generalize monotone constraints.

De�nition 21 A constraints is staircase if it is (�; �)-monotone with �; � 2
f�;�g.

Examples of staircase constraints are : ax + by + c � 0, ax + by + c � 0,
axy + b � 0, axy + b � 0, af(x) + by + c � 0, af(x) + by + c � 0, with
a; b; c rationals, f(x) a function such that f 0(x) is either always positive or
always negative on the considered interval. Intersection and/or composition
of staircase constraints are CRC but not necessarily staircase. For instance,
assuming a domain D = f1::10g, the two constraints
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5x� 3y � 4 � 0 ^ 2x� y � 7 � 0
x:y � 10 ^ x+ y � 0

are CRC but not staircase. It is also possible to de�ne other (sub)classes of
CRC constraints, such as y � (ax+ by + c)2, with b integer, and assuming a
domain of positive integers. These constraints are CRC, but not staircase.

Staircase constraints are an important generalization of monotone constraints
and are tractable.

Proposition 22 The class of staircase constraints is tractable.

The di�erence between monotone constraints and CRC constraints appears
clearly if a contructive de�nition of CRC constraints is given. This de�nition
involves conjunctions and disjunctions of basic CRC constraints. Intuitively, a
basic constraint de�nes a rectangle within the domain, or it de�nes an empty
row/column.

De�nition 23 A basic CRC constraint between variables i and j is a con-
straint of one of the following forms :

(Upper Right) URab
ij (v;w) = v � a ^ w � b

(Upper left) ULab
ij (v;w) = v � a ^ w � b

(Lower Right) LRab
ij (v;w) = v � a ^ w � b

(Lower Left) LLab
ij (v;w) = v � a ^ w � b

A basic domain constraint is a constraint of the form

(Domain) DCa
i (v) = v 6= a

Notice that a (�;�)-monotone constraint over a domain D can also be ex-
pressed as a disjunction of Upper Right basic constraints. The next de�nition,
and its associated theorem, thus show clearly the generalization provided by
CRC constraints. The de�nition provides a constructive de�nition of CRC
constraints.

De�nition 24 A CNF-CRC constraint is a constraint of the form :

(
W
ak2Di
bk2Dj

URakbk
ij ) ^ (

W
ak2Di
bk2Dj

ULakbk
ij ) ^ (

W
ak2Di
bk2Dj

LRakbk
ij ) ^ (

W
ak2Di
bk2Dj

LLakbk
ij )

^ (
W
ak2Di

DCak
i ) ^ (

W
bk2Dj

DCbk
j )

Theorem 25 The following classes of constraints are tractable and equiva-
lent :

(i) CRC constraints,
(ii) CNF-CRC constraints,
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(iii) the closure, by intersection and composition, of staircase constraints and
basic domain constraints.

5 PC-GEN: a Generic Path-Consistency Algorithm

In this section we present a new generic path-consistency algorithm PC-GEN

that can be parametrized like the arc consistency algorithm AC-5 [VDT92].
This approach has many advantages. The generic algorithm can be instanti-
ated to existing path-consistency algorithms, providing thus a framework for
the description and comparison of existing algorithms. New path-consistency
algorithms can also be derived from the generic one. Only the two procedures
PathCons and LocalPathCons have to be implemented. The correctness
of the obtained instantiation is then a consequence of the correctness of the
generic algorithm. This approach is used in the next section to design PC-
CRC, an e�cient path-consistency algorithm specialized to CRC constraints.

5.1 Basic Operations

The speci�cation of the basic operations in PC-GEN are given in Figure 4. All
speci�cations assume a constraint network N = (Var ;D;C). A parameter p
subscripted with 0 (p0) represents the value of p at call time. As is traditional,
PC-GEN uses a queueQ to drive the algorithm. A tuple hi; k; j; vi in Q implies
that it is necessary to reconsider the constraint Cij wrt path (i; k; j) knowing
that, for some u, hv; ui has been removed from Cik. Procedure Enqueue is
required to take O(s) time, where s is the number of new elements to insert in
the queue and procedure Dequeue must take constant time. The deletion of
tuples is performed by procedure Prune, which removes tuple hv;wi from Cij

and hw; vi from Cji. Hence,

hv;wi 2 Cij () hw; vi 2 Cji

will be an invariant of the algorithm, assuming it holds initially.

5.2 Parametric Procedures

PC-GEN is parametrized by two procedures (Figure 5), PathCons and Lo-
calPathCons whose implementations are left open. Procedure PathCons
computes the set � of tuples in Cij which are not path-consistent for the
path (i; k; j). Because of the relationship between Cij and Cji, � is also the
set of tuples (in reverse order) of Cji that are not path-consistent for path
(j; k; i). This is illustrated in Figure 5.2(a)

Procedure LocalPathCons returns in � a set of tuples of Cij that are not
path-consistent for (i; k; j) after tuple hv; ui (for some u) has been removed
from the constraint Cik. The set � is also the set of tuples (in reverse order)
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procedure Prune(in �; i; j)
Pre: i; j 2 arc(N ).
Post: Cij = Cij0 n fhv; wi j hv; wi 2 �g,

Cji = Cji0 n fhw; vi j hv; wi 2 �g.

procedure InitQueue(out Q)
Post: Q = fg.

function EmptyQueue(in Q): Boolean
Post: EmptyQueue , (Q = fg ).

procedure Dequeue(inout Q, out i; k; j; v)
Post: hi; k; j; vi 2 Q0 and Q = Q0 n fhi; k; j; vig.

procedure Enqueue(i, j, �, inout Q)
Pre: � � Cij .
Post: Q = Q0 [fhi; j; k; vi j k 2 arc(N ) and j 6= k and hv; wi 2 �g.

[fhj; i; k; wi j k 2 arc(N ) and j 6= i 6= k and hv; wi 2 �g.

Fig. 4. The basic operations for PC-GEN

Let PCikj(v; w) = 9u : hv; ui 2 Cik and hu; wi 2 Ckj .

procedure PathCons(in i, k, j, out �)
Pre: i; k; j 2 arc(N ).
Post: � = �2, with

�2 = fhv; wi 2 Cij j :PCikj(v; w)g

procedure LocalPathCons(in i; k; j; v, out �)
Pre: i; k; j 2 arc(N ).
Post: �1 � � � �2, with

�1 = fhv; w0i 2 Cij j :PCikj(v; w
0)g.

�2 = fhv0; w0i 2 Cij j :PCikj(v
0; w0)g.

Fig. 5. Parametric procedures for PC-GEN

of Cji that are not path-consistent in path (j; k; i) after tuple hu; vi has been
removed from Cki.

The size of � computed by LocalPathCons can vary. The set �1, illus-
trated in Figure 5.2(b), contains the tuples in Cij that become path inconsis-
tent for (i; k; j) due to the removal of tuple hv; ui from Cik. In some cases, it
is possible, but not always desirable, to prune a larger set of tuples. As an ex-
treme case, �2 prunes all tuples in Cij which are path inconsistent wrt (i; k; j)
at call time, regardless of whether they can be supported by hv; ui (see Figure

14
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Fig. 6. Pruning of PathCons and LocalPathCons

5.2(c)). The speci�cation of the parametric procedures takes advantage of this
fact and allows for both 
exibility and e�ciency. Any intermediate � can be
computed.

Notice that the de�nition of PCikj(v; u) (Figure 5) does not require u 2 Dk.
This comes from the simple observation that the �xpoint of

Cij := Cij \ Cik:Ckk:Ckj

is the same as the �xpoint of

Cij := Cij \ Cik:Ckj

computed for all i; j; k 2 arc(N ).

The choice of not considering Ckk will simplify the instantiation of these pro-
cedures for particular classes of constraints, without a�ecting the correctness
of PC-GEN.

5.3 Algorithm PC-GEN

PC-GEN is depicted in Figure 7 and mimicsAC-5. In the loop on lines 2{7,
procedure PathCons identi�es the path-inconsistent tuples with respect to
each path of length two. The inconsistent tuples are enqueued and processed
in the second loop, on lines 8{14, where procedure LocalPathCons is used
to prune tuples of Cij which become inconsistent after the removal of a tuple
from Cik. The restriction i � j in the �rst loop is justi�ed by the fact that
PathCons(i; k; j;�) treats both paths (i; k; j) and (j; k; i). Note that paths
of the form (i; i; i) could be discarded since the resulting � set is empty. The
removal of the tuple hv;wi in Cij and hw; vi in Cji requires to reconsider all
length-two paths involving either (i; j) or (j; i) as the �rst or as the second
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Algorithm PC-GEN

Post: N is a path-consistent constraint network equivalent to N0.
begin

1 InitQueue(Q);
2 for each i; k; j 2 arc(N ) with i � j do

3 begin

4 PathCons(i,k,j,�);
5 Enqueue(i,j,�,Q);
6 Prune(�,i; j)
7 end;
8 while not EmptyQueue(Q) do
9 begin

10 Dequeue(Q,i,k,j,v);
11 LocalPathCons(i,k,j,v,�);
12 Enqueue(i,j,�,Q);
13 Prune(�,i; j)
14 end

end

Fig. 7. The Path-Consistency Algorithm PC-GEN

arc. It is however unnecessary to consider explicitly the second arc (in the En-
queue procedure) since LocalPathCons(i; j; k; v) covers both paths (i; j; k)
and (k; j; i) and LocalPathCons(j; i; k; w) covers paths (j; i; k) and (k; i; j).
This is because of the invariant maintained by procedure Prune.

5.4 Correctness

The correctness of PC-GEN is given in Appendix A.1.

Theorem 26 Algorithm PC-GEN terminates and is correct.

5.5 Complexity Bounds

Although we do not develop here a concrete implementation for the basic
operations of PC-GEN, we may assume the complexity bound of O(1) for
Dequeue, O(�) for prune, and O(s) for Enqueue, where s is the number
of elements to insert in the queue. As usual the O notation denotes an upper
bound of the worst case complexity.

If the complexity of PathCons is O(t), the loop at lines 2{7 takes O(n3)�O(t)
time. If PathCons takes O(�) time, the loop at lines 2{7 has a complex-
ity of O(q), where q is the total number of elements that can be enqueued
throughout the execution of PC-GEN. Also, if LocalPathCons takes O(t)
time (with O(t) � O(d)), the loop at lines 8{14 takes O(q)�O(t) time. Finally,
if LocalPathCons takes O(�) time, the loop at lines 8{14 has a complexity
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of O(q), These observations will become helpful when we will analyze partic-
ular instances of PC-GEN.

Theorem 27 Given a time complexity of O(d2) for procedurePathCons and
a time complexity of O(d) for procedure LocalPathCons, algorithm PC-

GEN is bounded by O(n3d3).

Theorem 28 Given a time complexity of O(d2) for procedurePathCons and
a time complexity of O(�) for procedure LocalPathCons, algorithm PC-

GEN is bounded by O(n3d2).

5.6 Relaxing the Speci�cation of the Parametric Procedures

The speci�cation of the generic procedures PathCons and LocalPathCons
can be further relaxed without a�ecting the correctness nor the complexity of
PC-GEN. Such a generalisation is important as it formalizes existing path-
consistency algorithms such as PC-4, and also allows an e�cient specialisation
of PC-GEN for CRC conctraints. The general idea is that, when some hv;wi is
not path-consistent wrt (i; k; j) (i.e.,:PCikj(v;w)), it is not necessary to prune
hv;wi immediately if we are ensured that hv;wi will eventually be pruned when
some other element in the queue will be processed.

De�nition 29 The tuple hv;wi is look-ahead-1 (LH(1)) for path (i; k; j) i�

hi; k; j; vi 2 Q _ hj; k; i; wi 2 Q

De�nition 30 The tuple hv;wi is look-ahead-m (LH(m)) for path (i; k; j)
(m > 1) i�

9u : hv; ui 2 Cik ^ 9k0 : :PCik0k(v; u) ^ (hv; ui is LH(m-1) for ik0k)
_ 9u : hu;wi 2 Cjk ^ 9k0 : :PCjk0k(u;w) ^ (hu;wi is LH(m-1) for jk0k)

The relaxed parametric procedures are speci�ed in Figure 8. We will denote
by PC-GEN� the algorithm PC-GEN using the procedures PathCons� and
LocalPathCons�. The correctness of PC-GEN� is proven in the Appendix
A.2.

One may also extend the queue by considering tuples of the form
hi; k; j; hv;wii. Such a tuple denotes it is necessary to reconsider constraint
Cij wrt to path (i; k; j) because hv;wi has been removed from constraint Cik.
Such an extension is useful for instantiating PC-GEN to PC-4.

The speci�cation of procedures Dequeue and Enqueue can easily be ex-
tended. A tuple hv;wi will now be LH(1) for path (i; k; j) i�

9u : hi; k; j; hv; uii 2 Q _ hj; k; i; hw; uii 2 Q
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Let PCikj(v; w) = 9u : hv; ui 2 Cik and hu; wi 2 Ckj .
PC�

ikj(v; w) = PCikj(v; w) _ 9m : hv; wi is LH(m) for ikj

procedure PathCons�(in i, k, j, out �)
Pre: i; k; j 2 arc(N ).
Post: ��

2 � � � �2, with
��
2 = fhv; wi 2 Cij j :PC

�
ikj(v; w)g

�2 = fhv; wi 2 Cij j :PCikj(v; w)g

procedure LocalPathCons�(in i; k; j; v, out �)
Pre: i; k; j 2 arc(N ).
Post: ��

1 � � � �2, with
��
1 = fhv; w0i 2 Cij j :PC�

ikj(v; w
0)g.

�2 = fhv0; w0i 2 Cij j :PCikj(v
0; w0)g.

Fig. 8. Relaxed parametric procedures for PC-GEN

With the given speci�cation of LocalPathCons, such an extension of the
queue is useless as only the element v is used in the de�nition of the resulting
� set 1 .

5.7 Instantiating PC-GEN to Existing PC Algorithms

One can show that PC-GEN can be instantiated to yield a PC algorithm
with a time complexity of O(n3d3), and a space complexity of O(n3d2). Such
complexities were obtained in [Sin95,Chm96]. The classical PC-4 has the same
time complexity, but a space complexity of O(n3d3).

PC-GEN can also be instantiated to existing path-consistency algorithms, pro-
viding thus a framework for their comparison. For instance, PC-GEN can be
instantiated to PC-2 [Mac77] and PC-6 [Chm96]. The classical PC-4 [HL88]
is an instance of PC-GEN� using the extended queue. It is here necessary to
use PC-GEN� instead of PC-GEN, as PC-4 uses a technique covered by our
de�nition of LH(1).

6 PC-CRC: a Path-Consistency Algorithm for CRC Constraints

In this section, we provide PC-CRC, an e�cient instance of PC-GEN special-
ized to CRC constraints. PC-CRC has a time complexity of O(n3d2) and a
space complexity of O(n2d). We describe the representation of CRC constaints
and the instanciation of the generic procedures. A precise and complete de-

1The value u could be used as follows in the speci�cation of LocalPathCons
(resp. LocalPathCons�). The set �1 (resp. �

�
1) can be further reduced by impos-

ing hu; w0i 2 Cinit
kj (where Cinit

kj denotes the original set of constraint tuples between

i and j).
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Let D = fb; : : : ; Bg.
Let Cij = fhv1; v1i; : : : ; hvm; vmig if i = j

= fhv1; w1i; : : : ; hvm; wmig if i 6= j (where vk ; wk 2 D)

Data Structure

Syntax

Cij :supmin: array [b::B] of element 2 D.
Cij :supmax: array [b::B] of element 2 D.
Cij :first: element 2 D.
Cij :succ: array [b::B] of element 2 D.
Cij :pred: array [b::B] of element 2 D.

Semantics

Cij :supmin[v] = min(Cij; v)
Cij :supmax[v] = max(Cij; v)
Cij :first = minfv 2 Di(Cij)g
Cij :succ[v] = succ(v) in Di(Cij)
Cij :pred[v] = pred(v) in Di(Cij)

Invariant

Cij = CT
ji

Cij :supmin[v] 2 Dj(Cji)
Cij :supmax[v] 2 Dj(Cji)

Interface

Let PC2
ikj(v; w) = PCikj(v; w) _ 9m � 2 : hv; wi is LH(m) for ikj

function EmptySupport(in v,w, i,k,j): Boolean
Post: EmptySupport(v,w, i,k,j) = :PC2

ikj(v; w)

function First(in i,j): Integer
Post: First(i,j) = minfv 2 Di(Cij)g

function Min(in v, i,j): Integer
Post: Min(v, i,j) = min(Cij; v)

function Max(in v, i,j): Integer
Post: Max(v, i,j) = max(Cij; v)

function Succ(in v, i,j): Integer
Post: Succ(v, i,j) = succ(v) in Di(Cij)

function Pred(in v, i,j): Integer
Post: Pred(v, i,j) = pred(v) in Di(Cij)

Fig. 9. The CRC Constraint Module

scription will be provided. As the application of PC-CRC produces a minimal
and decomposable constraint network, we also provide an algorithm to �nd a
solution of the constraint network.

6.1 Representation of CRC Constraints

CRC constraints can be represented in space O(d) as shown in Figure 9.
It is necessary to keep a description of Di(Cij), since row convexity is only
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procedure PathCons(in i; k; j, out �)
begin

1 � := ;;
2 for each v 2 Di(Cij) do

3 begin

4 LocalPathCons(i, k, j, v, �v);
5 � := � [�v;
6 end

end

procedure LocalPathCons(in i, k, j, v, out �)
begin

1 BoundedMin(i, k, j, hv, Max(v, i,j) i, �0, wmin);
2 if wmin =Max(v, i,j) then � := �0

3 else

4 begin

5 BoundedMax(i, k, j, hv, Min(v, i,j) i, �00, wmax);
6 Propagate(i,j,k,hv;wmini, BoundedMin, pred, �1);
7 Propagate(i,j,k,hv;wmini, BoundedMin, succ, �2);
8 Propagate(i,j,k,hv;wmaxi, BoundedMax, pred, �3);
9 Propagate(i,j,k,hv;wmaxi, BoundedMax, succ, �4);
10 � := �0 [�00 [�1 [�2 [�3 [�4;
11 end

end

Fig. 10. PathCons and LocalPathCons for CRC constraints.

enforced on the reduced form. Figure 9 also speci�es the operations on
CRC constraints which are all implemented in constant time. For instance,
EmptySupport(v;w; i; k; j) can be implemented by b0 � a ^ a0 � b with
a =Min(v; i; k), b =Max(v; i; k), a0 =Min(w; j; k), and b0 =Max(w; j; k).
As the domains Dk(Cki) and Dk(Ckj) are not necessarily identical, the
EmptySupport(v;w; i; k; j) does not compute PCikj(v;w), but PC2

ikj(v;w),
which is PC�

ikj(v;w) with LH(m) restricted to m � 2.

6.2 Instantiation of the Generic Procedures

An implementation of Procedures PathCons and LocalPathCons is given
in Figure 10. Note thatPathCons is expressed in terms of LocalPathCons.
In LocalPathCons,BoundedMin computes the interval �0 to be removed
on the left of the interval in row v while BoundedMax computes the interval
�00 to be removed on the right of the interval in row v. Although this pruning
is su�cient, it may destroy the CRC property. We know that removing all
the inconsistent tuples yields a CRC constraint. To preserve the property, we
thus perform additional pruning on the rows above or below v. This is the
role of the Propagate instructions. The speci�cations and implementations
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of the subproblems procedures are given Appendix A.3. The intuition be-
hind LocalPathCons is captured in Figure 11. Because Cij := Cij \Cik:Ckj

produces a CRC constraint, the implementation is guaranteed to keep Cij con-
nected row-convex. Note that Propagate works from v to the exterior, while
BoundedMin and BoundedMax work from the exterior to the interior.

1

2

3

4

*
ijC*

Wmax

VV

ijC

Wmin Wmin

Fig. 11. Illustrating LocalPathCons for CRC constraints : two possible cases.

The implementation of LocalPathCons could be optimized in several ways.
For instance, in Figure 11, there is an element above v, left to Wmin, which
is supported. As the resulting constraint is known to be CRC, every element
below v, left to Wmin, can directly be be suppressed.

6.3 Correctness

The LocalPathCons procedure for CRC constraints is an instance of the
LocalPathCons� procedure speci�ed in Figure 8, where LH(m) has been
restricted to the case m � 2. Lines 1 and 5 compute the set ��

1 which is su�-
cient for correctness. In order to keep the CRC property, the sets �1;�2;�3

and �4 are then computed in lines 6{10. We have �i � ��
2. Since �

�
2 � �2,

we have �i � �2.

The correctness of PathCons is a direct consequence of the correctness of
LocalPathCons.

6.4 Complexity

Prune can be performed in O(�) assuming the elements of � are ordered
to preserve the CRC property, as speci�ed in Figure 12. The ordering can
be performed during the construction of � during LocalPathCons without
incurring any cost. An implementation of � as a doubly-linked list is su�-
cient for this purpose given the way � is constructed as mentioned in the
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procedure Prune(in �; i; j)
Pre: i; j 2 arc(N ),

Cij is a CRC constraint,
Cij n� is a CRC constraint.

Post: Cij = Cij0 n fhv; wi j hv; wi 2 �g,
Cji = Cji0 n fhw; vi j hv; wi 2 �g.

Fig. 12. Pruning for PC-CRC.

previous section. The complexity of Procedures Propagate, BoundedMin

and BoundedMax is obviously O(�). Hence LocalPathCons is O(�). By
Theorem 28, the time complexity of PC-GEN is O(n3d2). The space com-
plexity per constraint is O(d) and O(nd) for all the constraints. The space
complexity of the queue is bounded by O(n2d) because elements in the queue
can be grouped as tuples of the form hi; j; E; vi, where the set E is initially
arc(N )nfjg. The set E can be shared by all elements of the queue except the
�rst one.

Theorem 31 For CRC constraints, PC-GEN has a time complexity of
O(n3d2) and a space complexity of O(n2d).

The above theorem is valid for incomplete constraint networks of CRC con-
straints as well, since the completion of the constraint network introduces
TRUE constraints which are CRC.

6.5 Finding a Solution

A path-consistent constraint network with CRC constraints is decomposable
due to Helly's theorem (e.g., [HF96]). The proof in [vBR95] is constructive
and the author proposes a O(n2d) algorithm to �nd a solution. We propose
in Figure 13 an Instantiate procedure with a time complexity of O(n2) for
CRC constraints. It is based on van Beek's algorithm, but takes advantage of
the data structure.

The total complexity to detect inconsistency or to �nd a solution of a con-
straint network composed with CRC constraints is thus O(n3d2), the time
complexity of the path-consistency algorithm.

Theorem 32 The class of CRC constraints is tractable in O(n3d2).

7 Analysis and Experimental Results

This section analysis the class of CRC networks. It also studies how PC-CRC
performs in practice (does it perform better than the theoretical complex-
ity? How large are the constant factors?). Extensive experimentations have
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procedure Instantiate(in N , out hx1; : : : ; xni)
Pre: N has only CRC constraints, and is path-consistent,

Di 6= ; (1 � i � n)
Post: hx1; : : : ; xni is a solution of N .

begin

1 for i := 1 to n do

2 begin

3 L := First(i,i);
4 for j := 1 to i-1 do L := max( L, Min(xj ,j,i) ) ;
5 xi := L
6 end

end

Fig. 13. Instantiate for CRC Constraints.
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Fig. 14. Pruning of PC-CRC

been performed. Data sets have been randomly generated for the following
combinations of the parameters:

{ n (number of node) : from 10 to 80;
{ d (size of the domain) : from 10 to 45;
{ density : from 10% to 80%.

Density is here de�ned as the probability that C(v;w) holds for v;w 2 D (i.e
the number of ones in the matrices compared to the size of the matrices). Only
complete constraint networks were considered and more than 2,000 executions
of PC-CRC have been recorded and analyzed using statistical methods. All
the experiments have been performed on a SUN Ultra 1 workstation running
Solaris.

7.1 Satis�able vs non-Satis�able Constraint Networks

We �rst analyse CRC constraint networks from the satis�ability point of view.
As PC-CRC produces a minimal and decomposable constraint network, if the
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algorithm terminates without detecting an inconsistency, then the constraint
network is known to be satis�able. Figure 7 depicts the pruning for n = 30,
d = 45, and densities from 10 to 80. The dark bars measure the density of the
constraints after application of PC-CRC (density-out). The grey bars indicate
the pruning factor ( (density-in � density-out) / density-in ). Non satis�able
networks thus have a pruning factor of 100%. For all the di�erent values of
density-in, the statistical error of the resulting density-out is less that 2.4 (i.e.,
the 95% con�dence interval is included in density-out �2:4).

From these experiments, one can observe that when density-in is less than 45,
the constraint network is always non-satis�able. When density-in is greater
than 55, the constraint network is always satis�able. Between 45 and 55, the
pourcentage of satis�able constraint networks is around 53%. The global shape
of the results also holds for other combinations of n and d, except for the
position of the frontier between the non-satis�able and satis�able problems.
In our data sets, the frontier always lies between 40 and 60.

7.2 In
uence of Density on Complexity

The theoretical time complexity of PC-CRC is O(n3d2). This complexity could
be re�ned to take into account the density of the constraint network. We then
have a time complexity of O(n3 (density � d)2).

It is interesting to compare this new theoretical complexity with experimen-
tal results. Figure 7.2 displays the execution time of PC-CRC for n = 30,
d = 45 and various densities. The top of the dark bar denotes the lower
bound of the 95% con�dence interval and the top of the grey bar the up-
per bound. This shows a signi�cative di�erence of execution time between
non-satis�able (density 10 to 45) and satis�able (density 55 to 80) constraint
networks. Interestingly, the execution time for sati�able constraint networks
is almost independent from the density.
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7.3 Theoretical Complexity vs Experimental Complexity

The theoretical time complexity of O(n3d2) only provides an upper bound of
the worst-case complexity. By experimental complexity, we mean to model the
real execution time of a set of test problems by a polynomial of the form:

P
aijn

idj (with i; j � 0, and i+ j � 5)

The degree 5 is infered by the theoretical complexity.

Such an experiment has been performed for a density of 70, since it is repre-
sentative of the di�cult cases. We used a statistical software package called
ECHIP. This software proposed an experimental plan (number of constraint
networks to generate, values of n and d to consider). For the measured execu-
tion times, the software proposed the following complexity :

2:23 � 10�5n03d0 + 0:00333n02d0 + 0:0772n02 + 0:154n0d0 + 3:82n0 + 2:79d0 + 59:29

Only the statically signi�cative coe�cients aij are considered, n0 = n�35 and
d0 = d� 17:5. The ECHIP software were also able to assess both the validity
and the predictive ability of the model.

These experiments show that the time complexity of PC-CRC is n3d, and that
the actual coe�cient of the polynomial are very small for the higher degree
terms (the �rst term is dominant only for n > 185). The CPU time of the
experiments is shown in Figure 7.3. As can be observed, the CPU time is linear
wrt d for a given n.
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7.4 PC-CRC vs Classical PC Algorithms

For solving CRC constraint networks, one may use the specialized PC-CRC
algorithm or any other PC algorithm. Although we know the theoretical com-
plexity of PC-CRC is better than the theoretical complexity of classical PC
algorithms, and that the experimental complexity of PC-CRC is very good,
it is intersting to analyse the experimental complexity of general PC algo-
rithms on CRC constraint networks. To perform this experimentation, we
used an instance of PC-GEN close to PC-4, but with a better space complex-
ity. We compare this algorithm and PC-CRC for d = 10, a density of 70, and
n = 10; 20; 30 (See Figure 7.3). The con�dence intervals of the execution times
for both algorithms are very small (always less than 5% of the measured exe-
cution time). The results clearly indicates that, in this case, the experimental
complexity of the general algorithm is worse than PC-CRC. Similar di�erences
appear for other values of the parameters.

8 Conclusion

This paper introduces the class of CRC constraints and showed that it is
closed under composition, intersection, and transposition, the basic opera-
tions of path-consistency algorithms. As a consequence, path consistency over
CRC constraints produces a minimal and decomposable network and is thus a
polynomial-time decision procedure for CRC networks. This paper then pre-
sented a new path-consistency algorithm for CRC constraints running in time
O(n3d2) and space O(n2d), where n is the number of variables and d is the size
of the largest domain, improving the traditional time and space complexity by
orders of magnitude. Experimental results show that the algorithm behaves
well in practice. The paper also showed how to construct CRC constraints by
conjunction and disjunction of a set of basic CRC constraints, highlighting
how CRC constraints generalize monotone constraints, presenting interesting
subclasses of CRC constraints, and highlighting how to construct CRC con-
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straints. The automatic recognition of CRC constraint constraint networks,
i.e.,

\given a constraint network, does there exist an ordering on the domains
that makes the constraint network CRC?"

remains an interesting open issue. To be useful, an algorithm answering this
question should run in time 
(n3d2) since otherwise it is preferable to apply a
general path-consistency algorithm (running in timeO(n3d3)) and to apply an
algorithm recognizing row-convex constraint constraint networks (which runs
in time O(n3d2) [vBR95]). Finally, current work is devoted to studying how to
use similar ideas for other classes of discrete and continuous constraints and
for other consistency notions (e.g. [FE96].
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Appendix

A.1 Correctness of PC-GEN

The correctness of PC-GEN is proved using a similar argument than in
[VDT92]. Given two constraint networks N = (Var ;D;C) and N 0 =
(Var ;D0; C 0), we de�ne N 0 v N if 8i; j 2 arc(N )Di � D0

i ^ Cij � C 0
ij.

We also de�ne N 00 = N 0 t N , with N 00 = (Var ;D00; C 00), D00
i = Di [D0

i and
C 00
ij = Cij [ C 0

ij.

We prove that the output of PC-GEN is the largest path-consistent constraint
network for N . One can easily show that such a largest constraint network
always exists, is unique, and is equivalent to N . We �rst show that the invari-
ant N � v N is preserved in PC-GEN, where N � is the largest path-consistent
constraint network for N . Partial correctness (i.e. if the program terminates,
it produces a correct result) can then be proved by showing that, when PC-
GEN terminates, the constraint network is path-consistent. We �nally prove
termination, hence the (total) correctness of the algorithm.

Lemma 33 Let N � be the largest path-consistent constraint network for N0.
After the execution of PC-GEN, we have N � v N .

Proof. We prove a stronger result: The invariant N � v N is preserved in
PC-GEN at lines 2 and 8. The invariant holds for the �rst execution of line
2, as N = N0 and N � v N0. Execution of lines 4 to 6 preserves the invariant
because � contains path-inconsistent tuples that cannot belong to the path-
consistent N �. The proof for the invariant in line 8 is similar. 2

Theorem 34 (Partial Correctness) Algorithm PC-GEN is partially cor-
rect.

Proof. By Lemma 33, it is su�cient to show that, when PC-GEN terminates,
N is path-consistent. Assume that PC-GEN terminates with hv;wi 2 Cij such
that :PCikj(v;w). Let u1; : : : ; um be all the elements supporting hv;wi in the
initial constraint network N0 (i.e. Cik(v; ul) ^ Ckj(ul; w)). At the end of PC-
GEN, these supports have been deleted. We have m > 0, since otherwise
hv;wi would have been removed from Cij by line 2. Let u be the last support
of hv;wi during the computation. Since we have :PCikj(v;w) at the end of the
execution, either hv; ui has been removed from Cik or hu;wi has been removed
from Ckj. Such a removal implied the insertion of hi; k; j; vi or hj; k; i; ui in the
queue. As the algorithm is assumed to terminate, when this element will be
dequeue and treated by LocalPathCons, hv;wi will be removed from Cij

(since :PCikj(v;w)) and thus hv;wi belongs to �1. Contradiction. 2

Lemma 35 (Termination) In algorithm PC-GEN, if s1; : : : ; sp are the
numbers of new elements in Q after successive iterations of lines 5 or 12,
then s1 + : : :+ sp � O(n3d2).
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Proof. Given that a tuple hv;wi can only be pruned at most once per con-
straint Cij (speci�cation of the subproblems), and given the speci�cation of
Enqueue, it follows that, for all i; j; k 2 arc(N ), for all v 2 D, the element
hi; k; j; vi can be enqueued at most O(d) times in the queue Q during the
execution of PC-GEN. 2

Theorem 36 Algorithm PC-GEN terminates and is totally correct.

A.2. Correctness of PC-GEN�

The correctness of PC-GEN� is proved in three steps. We �rst show that in
PC-GEN, if a tuple has the LH(m) property, then it is eventually removed.
We then prove that, in an execution of PC-GEN, we may substitute execu-
tions of PathCons (or LocalPathCons) by executions of PathCons� (or
LocalPathCons�). Hence the correctness of PC-GEN�. Let us �rst observe
that the relaxed speci�cations does not in
uence Lemmas 33 and 35.

Lemma 37 If, during the execution of PC-GEN, we have :PCikj(v;w) and
hv;wi LH(m) wrt ikj, for some v;w; i; k; j;m, then the tuple hv;wi will even-
tually be pruned from Cij.
Proof. The proof is by induction on m. For m = 1, we have hi; k; j; vi 2
Q (the other case is similar). Termination ensures the existence of a call to
LocalPathCons(i; k; j; v). By hypothesis, we have :PCikj(v;w). The tuple
hv;wi will thus be in the resulting � set and pruned from Cij.
For m > 1, we have :PCikj(v;w) and

9u : hv; ui 2 Cik ^ 9k0 : :PCik0k(v; u) ^ (hv; ui is LH(m� 1) for ik0k)

(the other case is similar). By induction hypothesis, the tuple hv; ui will even-
tually be pruned from Cik, inducing the insertion of hi; k; j; vi in the queue.
We are now in a similar case than for m = 1. 2

Theorem 38 (Correctness of PC-GEN�) Algorithm PC-GEN� is totally
correct.

Proof. Given that PC-GEN� always terminates and that the parametric pro-
cedures may now compute smaller � sets, it is su�cient to prove that all
the postponed tuples will eventually be pruned. Let us consider an execution
of PC-GEN�. Let p be the number of sets � computed by PathCons� and
LocalPathCons� which do not respect the initial speci�cation of the para-
metric procedures. The proof is by induction on p. For p = 0, PC-GEN� is
PC-GEN. For p � 1, consider the pth call of these calls to PathCons� and
LocalPathCons�. Except for this call, the remaining part of the execution
of PC-GEN� is now identical to an execution of PC-GEN. By Lemma 37, all
the postponed tuples will eventually be pruned. The induction hypothesis can
now by applied to the other p � 1 calls; the remaining postponed tuples will
thus eventually be pruned. 2
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A.3. Subproblems for PC-CRC

procedure Propagate(in i, k, j, hv; wi, Bounded, Next,
out �)

Let vk = Nextk(v),
wk and �k such that Bounded(i; k; j; hvk; wi;�k; wk),
m = maxfk j �k 6= ; ^ wk = wg.

Post: � =
S
1�k�m+1�k

begin

1 � := ;;
2 vcalc := v;
3 repeat

4 vcalc :=Next(vcalc);
5 Bounded(i, k, j, hvcalc; wi, �calc, wcalc) ;
6 � := � [�calc ;
7 until (wcalc 6= w);
end

procedure BoundedMin(in i, k, j, hv; wi, out �, wmin)
Post: wmin = maxfw 2 Dj(Cji) j8w

0 2 [Min(v; i; j); w] :
EmptySupport(v; w0; i; k; j)g

� = f hv; w0i j w0 2 [Min(v; i; j); wmin] g
begin

1 � := ;;
2 w2 :=Min(v; i; j);
3 while (w2 � w) ^ :EmptySupport(v,w2,i,k,j) do

4 begin

5 � := � [ fhv; w2ig;
6 w2 := succ(w2);
7 end ;
8 wmin := pred(w2);

end

procedure BoundedMax(in i, k, j, hv; wi, out �, wmax)
Post: wmax = minfw 2 Dj(Cji) j8w

0 2 [w;Max(v; i; j)] :
EmptySupport(v; w0; i; k; j)g

� = f hv; w0i j w0 2 [wmax;Max(v; i; j)] g
begin

1 � := ;;
2 w2 :=Max(v; i; j);
3 while (w2 � w) ^ :EmptySupport(v,w2,i,k,j) do

4 begin

5 � := � [ fhv; w2ig;
6 w2 := pred(w2);
7 end ;
8 wmax := succ(w2);

end
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