
Consistency check for the bin packing constraint
revisited

Julien Dupuis1, Pierre Schaus2, and Yves Deville1

1 Department of Computer Science and Engineering, UCLouvain, Belgium
{julien.dupuis,yves.deville}@uclouvain.be

2 Dynadec Europe, Belgium
pschaus@dynadec.com

1 Introduction
The bin packing problem (BP) consists in finding the minimum number of bins neces-
sary to pack a set of items so that the total size of the items in each bin does not exceed
the bin capacity C. The bin capacity is common for all the bins.

This problem can be solved in Constraint Programming (CP) by introducing one
placement variable xi for each item and one load variable lj for each bin.

The Pack([x1, . . . , xn], [w1, . . . , wn], [l1, . . . , lm]) constraint introduced by Shaw
[1] links the placement variables x1, . . . , xn of n items having weights w1, . . . , wn

with the load variables of m bins l1, . . . , lm with domains {0, . . . , C}. More precisely
the constraint ensures that ∀j ∈ {1, . . . ,m} : lj =

∑n
i=1(xi = j) · wi where xi =

j is reified to 1 if the equality holds and to 0 otherwise. The Pack constraint was
successfully used in several applications.

In addition to the decomposition constraints ∀j ∈ {1, . . . ,m} : lj =
∑n

i=1(xi =
j) · wi and the redundant constraint

∑n
i=1 wi =

∑n
j=1 lj , Shaw introduced:

1. a filtering algorithm based on a knapsack reasoning inside each bin, and
2. a failure detection algorithm based on a reduction of the partial solution to a bin

packing problem.

This work focuses on improvements of the failure detection algorithm.

2 Reductions to bin packing problems
Shaw describes in [1] a fast failure detection procedure for the Pack constraint using a
bin packing lower bound (BPLB). The idea is to reduce the current partial solution (i.e.
where some items are already assigned to a bin) of the Pack constraint to a bin packing
problem. Then a failure is detected if the BPLB is larger than the number of available
bins m.

We propose two new reductions of a partial solution to a bin packing problem. The
first one can in some cases dominate Shaw’s reduction and the second one theoretically
dominates the other two.

Paul Shaw’s reduction: R0 Shaw’s reduction consists in creating a bin packing prob-
lem with the following characteristics. The bin capacity is the largest upper bound of
the load variables, i.e. c = maxj∈{1,...,m}(lmax

j ). All items that are not packed in the
constraint are part of the items of the reduced problem. Furthermore, for each bin, a vir-
tual item is added to the reduced problem to reflect (1) the upper bound dissimilarities



of the load variables and (2) the already packed items. More precisely, the size of the
virtual item for a bin j is (c−lmax

j +
∑
{i|xi=j} wi), that is the bin capacity c reduced by

the actual capacity of the bin in the constraint plus the total size of the already packed
items in this bin. An example is shown in Figure 1(b).

1 2
1

partial packing

1
4

unpacked

ca
pa

ci
ty

(a) Initial problem

bins

2 3

virtual

1
4

unpacked
ca

pa
ci

ty

(b) R0

bins

1
virtual

1
4

unpacked

ca
pa

ci
ty

(c) RMin

bins

4 5

virtual

1
4

unpacked

ca
pa

ci
ty

(d) RMax

Fig. 1. Example of the three reductions for the bin packing problem

RMin We introduce RMin that is obtained from R0 by reducing the capacity of the bins
and the size of all the virtual items by the size of the smallest virtual item. The virtual
items have a size of (c− lmax

j +
∑
{i|xi=j} wi−mink(c− lmax

k +
∑
{i|xi=k} wi)). This

reduction is illustrated in Figure 1(c).

RMax We propose RMax that consists in increasing the capacity and the size of the
virtual items by a common quantity, so that, when distributing the items with a bin
packing algorithm, it is guaranteed that each virtual item will occupy a different bin. In
order to achieve this, each virtual item’s size must be larger than half the bin capacity.

In R0, let p be the size of the smallest virtual item, and c the capacity of the bins.
The size of the virtual items and the capacity must be increased by (c − 2p + 1). The
smallest virtual item will have a size of s = (c−p−1) and the capacity of the bins will
be (2c− 2p+ 1) = 2s− 1. As one can observe, the smallest virtual item is larger than
the half of the capacity. If c = 2p− 1, this reduction is equivalent to Shaw’s reduction.
Note that if c < 2p− 1, the capacity and the virtual items will be reduced.

The virtual items have a size of (2c−2p+1− lmax
j +

∑
{i|xi=j} wi). This reduction

is illustrated in Figure 1(d).

Generic reduction: Rδ All these reductions are particular cases of a generic reduc-
tion (Rδ) which, based on R0, consists in adding a positive or negative delta (δ) to the
capacity and to all the virtual items’ sizes.

For R0, δ = 0. For RMin, δ is the minimum possible value that keeps all sizes
positive. A smaller δ would create an inconsistency, as the smallest virtual item would
have a negative size. δRMin is always negative or equal to zero. For RMax, δ is the
smallest value guaranteeing that virtual items cannot pile up. Note that in some cases,
δRMin or δRMax can be zero. Also note that δR0 can be larger than the others.

3 Theoretical comparison of the three reductions
Definition 1 (Dominate). Let A and B be two reductions of the Pack constraint to
bin packing. We say that A dominates B if, for any instance of the Pack constraint, the
number of bins required in A is larger than the number of bins required in B.



Theorem 1. Rδ is a relaxation of the problem of testing the consistency of the Pack
constraint.

Proof. If a partial solution of the Pack constraint can be extended to a solution with
every item placed, then Rδ also has a solution: if each virtual item is placed in its initial
bin, then the free space of each bin is equal to its free space in the partial solution, and
so all the unplaced items can be placed in the same bin as in the extended solution from
the partial assignment.

Theorem 2. R0 does not dominate RMin and RMin does not dominate R0.

Proof. Consider the partial packing {4, 2} of two bins of capacity 6, and the unpacked
items {3, 3}. R0 only needs two bins, where RMin needs three bins.

Now consider the partial packing {2, 3, 1} of three bins of capacity 4, and the un-
packed items {3, 3}. In this case, R0 needs four bins, where RMin only needs three
bins.

Theorem 3. RMax is equivalent to testing the consistency of the Pack constraint

Proof. By Theorem 1, RMax is a relaxation of the partial solution of the BP problem.
There remains to show that if there is a solution for RMax, then the partial solution
can be extended to a complete solution of the Pack constraint. Let’s call v the bin
from which the virtual item v is from. It is guaranteed by the size of the virtual items
that they will each be placed in a different bin bv . The remaining space in each bin bv
corresponds to the free space in bin v in the original problem. An extended solution of
the Pack constraint is obtained by packing in v all items packed in bv .

Corollary 1. RMax dominates R0 and RMin.

From a theroretical standpoint, the RMax reduction is always better or equivalent to
R0, RMin, and any other instance of Rδ. In practice, though, this is not always the case,
as it is shown in the next section.

4 Experimental comparison
The failure test of Shaw [1] uses the bin packing lower bound L2 of Martello and Toth
[2] that can be computed in linear time. Recently the lower bound L3 of Labbé [3] has
been proved [4] to be always larger than or equal to L2 and to benefit from a better
worst case asymptotic performance ratio (3/4 for L3 [4] and 2/3 for L2 [2]), while still
having a linear computation time. Experiments show us that L3 can help detect about
20% more failures than L2. Throughout the next experiments, we are using L3.

Although in theory, RMax always outperforms R0 and RMin, the practical results
are less systematic. This is because L3 (as well as L2) is not monotonic, which means
that a BP instance requiring a larger number of bins than a second instance can have a
lower bound smaller than the second one. In fact, L3 is more adapted to instances where
most item sizes are larger than the third of the capacity. RMax increases the capacity,
making unpacked items proportionally smaller. For each of R0, RMin and RMax, there
are instances where they contribute to detecting a failure, while the other two do not.



Table 1 presents the performance of the failure detection using each one of the re-
ductions. It shows the ratio of failures found using each reduction over the total number
of failures found by at least one filter. Additional reductions have been experimented,
with δ being respectively 25%, 50% and 75% on the way between δRMin and δRMax.
These results were obtained by generating more than 1,000 random instances and com-
puting L3 on each of their reductions. Here is how the instances were produced:

Inst1 Number of bins, number of items and capacity C each randomly chosen between
30 and 50. Bins already filled up to 1..C. Random item sizes in {1, . . . , C}.

Inst2 50 bins. Capacity = 100. Number of items is 100 or 200. Size with normal distri-
bution (µ = 5000/n, σ ∈ {3n, 2n, n, n/2, n/3} where n is the number of items).
Among these, percentage of items already placed ∈ {10%, 20%, 30%, 40%, 50%}.

Inst3 Idem as 2, but the number of placed items is 90% or 95%.

Table 1. Comparison of the number of failures found with different reductions

Instances Number of failures detected (%)
RMin R25 R50 R75 RMax R0

Inst1 74.16 78.87 86.40 89.53 99.58 74.79
Inst2 99.93 86.75 87.03 87.8 87.15 99.93
Inst3 80.64 86.55 93.37 97.75 99.39 98.52

This reveals that some types of instances are more adapted to R0 or RMin, while
some are more adapted to RMax. The intermediate reductions R25, R50 and R75 were
never better in average than RMin and RMax. Thus, they were not considered in the
following experiments.

Comparison on benchmark instances. For the analysis to be more relevant, we com-
pared the behavior of the three proposed reductions on real instances. CP algorithms
were run over Scholl’s SALBP-1 benchmark [5] and on Scholl’s bin packing instances
[6] (first data set with n=50 and n=100), and at every change in the domains of the vari-
ables, the current partial solution was extracted. We randomly selected 30,000 extracted
instances from each. In the second case, only instances for which at least one reduction
could detect a failure were selected. The three reductions using L3 were applied on
these selected instances. Figure 2 gives a schema of the results.

69%69%

∼0% 1.5%4%

1.5%1.5%

1.5%10% 1.5%0.5%

1.5%15%

R0 (94%) RMin (88.5%)

RMax (84%)

54%

0% 6%

∼0%

40% 0%

∼0%

R0 (94%) RMin (60%)

RMax (94%)

Fig. 2. Proportions of failure detections using each reduction on SALBP-1 instances (left) and BP
instances (right)

These results show that R0 detects a larger number of failures. But (almost) all of
its failures are also detected by one of the others. Hence, combining RMin and RMax
is better than using R0 alone. It is also useless to combine R0 with RMin and RMax.



Impact on a CP search. We compared the effect of applying the failure detection strat-
egy in a CP search on Scholl’s bin packing instances N1 and N2 (360 instances), using
R0, RMin, RMax and then RMin and RMax combined, with a time limit of five min-
utes for each instance. For the instances for which all reductions leaded to the same
solution, the mean computation time of the searches was computed. All these results
are presented in Table 2. One can observe that RMin and Rmax combined find more
optimal solutions (though there is no significative difference with R0), and lead faster
to the solution than the others (33% speedup compared to R0).

Table 2. Comparison of the reductions on solving the BPLB problem

No pruning R0 RMin RMax RMin & RMax
Number of optimal solutions 281 317 315 309 319

Mean time (s) 5.39 1.88 1.60 3.50 1.25

5 Conclusion
We presented two new reductions of a partial solution of the Pack constraint to a bin
packing problem. Through a CP search, these reductions are submitted to a bin packing
lower bound algorithm in order to detect failures of the Pack constraint as suggested
by Shaw in [1].

We proved that our second reduction (RMax) theoretically provides a better failure
detection than the others, assuming a perfect lower-bound algorithm. We conclude that
the best strategy is to consider both RMin and RMax filters in a CP search.

Acknowledgments The first author is supported by the Belgian FNRS (National Fund
for Scientific Research). This research is also partially supported by the Interuniversity
Attraction Poles Programme (Belgian State, Belgian Science Policy) and the FRFC
project 2.4504.10 of the Belgian FNRS.

References
1. Shaw, P.: A constraint for bin packing. Principles and Practice of Constraint Programming

CP 2004 3258 (2004) 648–662
2. Martello, S., Toth, P.: Lower bounds and reduction procedures for the bin packing problem.

Discrete Appl. Math. 28(1) (1990) 59–70
3. Labbé, M., Laporte, G., Mercure, H.: Capacitated vehicle routing on trees. Operations Re-

search 39(4) (1991) 616–622
4. Bourjolly, J.M., Rebetez, V.: An analysis of lower bound procedures for the bin packing

problem. Comput. Oper. Res. 32(3) (2005) 395–405
5. Scholl, A.: Data of assembly line balancing problems. Technische Universität Darmstadt (93)
6. Scholl, A., Klein, R., Jürgens, C.: Bison: A fast hybrid procedure for exactly solving the

one-dimensional bin packing problem. Computers & Operations Research 24(7) (1997) 627
– 645


