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Abstract. The Open-Shop Problem is a hard problem that can be
solved using Constraint Programming or Operation Research methods.
Existing techniques are efficient at reducing the search tree but they usu-
ally do not consider the absolute ordering of the tasks. In this work, we
develop a new propagator for the One-Machine Non-Preemptive Prob-
lem, the basic constraint for the Open-Shop Problem. This propagator
takes this additional information into account allowing, in most cases, a
reduction of the search tree. The underlying principle is to use shaving
on the positions. Our propagator applies on one machine or one job and
its time complexity is in O(N2 log N), where N is either the number of
jobs or machines. Experiments on the Open-Shop Problem show that
the propagator adds pruning to state-of-the-art constraint satisfaction
techniques to solve this problem.

1 Introduction

Open-Shop Problems (OSP) are disjunctive scheduling problems known to be
really hard to solve. Up to now, some problems with less than 50 tasks remain
unsolved, although several powerful techniques and algorithms mentioned below
have been designed to reduce efficiently the search.

The Open-Shop Problem aims at finding the order in which a set of tasks is
executed such as to minimize the makespan, i.e. the ending time of the latest
tasks. Each task must be executed on a particular machine for a given duration
and without interruption. A machine cannot process two tasks at the same time.
Additionally, tasks are part of jobs and two tasks of the same job cannot be
processed at the same time. There is no predefined ordering between tasks.

This problem fits very well in the framework of Constraints Programming
(CP). Propagators have been developed to remove inconsistent values from the
domains as early as possible in order to reduce the size of the search tree.
The more prominent techniques are Edge-Finding (EF) and Not-First-Not-Last
(NFNL). Edge-Finding [1–4] consists in testing whether a particular task must
start before or after a set of tasks. It can be implemented with a time complex-
ity of O(N log N) where N is the number of tasks on one machine or one job.
Not-First-Not-Last [5–7] checks if a task can be the first or the last among a set
of tasks. Its best time complexity is O(N log N).



Shaving [5, 6, 8] is an orthogonal technique that performs well in practice
for solving the OSP. It consists in iteratively assigning to a variable its possi-
ble values and checking if this assignment leads to inconsistency. In that case,
the value is removed from the domain of the variable. Every constraint can be
propagated to check consistency until the fixpoint is observed. Since it can be
costly to reach this fixpoint, simpler propagators are used. For instance, in [6],
only Edge-Finding is used to look for inconsistencies. Even so, shaving is costly
because the size of the domain of the starting time variables can be huge. For
this reason, shaving in OSP usually considers only the bounds of the domain.

We propose here a new propagator for the One-Machine Non-preemptive
Problem that exploits information given by the position of the tasks. This idea
has already been used successfully in [9], [10] and [11]. The first work uses the
positions as permutation variables in a sorting constraint. An extension of Edge-
Finding is also applied. Second, [10] proposes a possible way to decide if a task
can start at some position looking at the number of other tasks that can come
before and after this task. Finally, [11] extends this idea proposing tighter bounds
with an algorithm running in O(N3)

In this paper, we present an alternative way to use the position of the tasks
based on the idea of shaving. For each possible position of a task, lower and
upper bounds on the possible starting time of the task are computed using the
duration and the domain of the variables of the tasks in the same job or machine.
The resulting propagator is applied on the tasks that are part of the same job
or machine with a time complexity of O(N2 log N), where N is the number of
tasks that are part of the job or that must be processed on the machine. This
propagator permits additional pruning that is not performed by NFNL and EF
and permits to detect about 14 % extra inconsistent nodes of the search tree on
a standard benchmark [12].

The next section explains the problem under interest and its mapping in
CP. Section 3 presents the new propagator and Section 4 describes experimental
results assessing the pruning efficiency of the technique. In the last section,
conclusions are drawn as well as directions for future work.

2 The One Machine Non-preemptive Problem

The OSP is an optimization problem that can be solved using branch-and-bound
techniques. The goal of the optimization is to minimize the makespan, i.e. the
ending time of the latest task. Branch-and-bound consists in solving successive
feasibility versions of our problem. The feasibility version consists in determining
if there exists a solution with a makespan smaller than a fixed value. Each time
a solution with makespan m is found, another solution is searched with the
constraint that its makespan is at most m − 1. When no more solution exists,
the last solution found is an optimal one.

The feasibility version of the OSP can be stated as the conjunction of smaller
problems called One Machine Non-preemptive Problem (1NP). This problem
aims at scheduling a set of tasks on a machine such that there is only one not
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interruptible task processed at a time. Each task is given a duration, an earliest
and a latest starting times. To model the OSP, it is sufficient to define a 1NP
for every machine and every job (and to link them with the makespan). Indeed,
jobs and machines in the OSP have the same behavior: No two tasks associated
with a same job or a same machine can be processed simultaneously. The 1NP
is also the basis for other disjunctive problems such as the Job-Shop Problem
for instance.

Formally, the 1NP is defined as follows: T is the set of tasks that must be
processed and N is its cardinality. For each task t ∈ T , d(t), initial est(t) and
initial lst(t) are given and denote respectively the duration, earliest and latest
starting times of the task t. The problem is to find for each task t, the value S(t)
of its starting time such that est(t) ≤ S(t) ≤ lst(t) and without task overlap:
∀t1, t2 ∈ T, S(t1) + d(t1) ≤ S(t2) ∨ S(t2) + d(t2) ≤ S(t1).

2.1 Problem Modelling in CP

To model the 1NP, several variables are defined for each task t ∈ T . An integer
variable S(t) represents the starting time of the task t. Its domain ranges from
the earliest starting time to the latest starting time of the task (dom(S(t)) =
[est(t), lst(t)]). To model the relative order between the tasks, a set variable
B(t) represents the set of tasks that come before the task t. Its initial domain
is dom(B(t)) = [∅, {u|u ∈ T, u 6= t}]. Indeed, initially no task is known to come
before t and all the tasks might come before t. The symbol B(t) (resp. B(t))
represents the upper (resp. lower) bound of the variable B(t). Furthermore, an
additional variable P (t) represents explicitly the absolute order (or the position)
of the tasks in the machine. The domain of this variable ranges from 0 to N − 1
with N being the number of tasks to be processed. The link between the relative
and absolute orders of the tasks is that P (t) represents the size of B(t).

The starting time and the relative ordering between tasks are commonly used
in the modelling of disjunctive scheduling. The use of an absolute order comes
from [9] where the author solves the Job-Shop Problem fixing the permutations
of task orders. In their proposed formulation, a variable is defined for the starting
time of each task, a variable for the starting time of the task in each position and
a variable for the position of each task. Those three sets of variables are linked
together with a sorting constraint and various reduction rules are then defined.
As an initial approach, we chose here for simplicity not to use the variables for
the starting time of the task in each position.

2.2 Constraints

With three complementary representations, the 1NP can be equivalently ex-
pressed using anyone of the three following sets of constraints stating that two
tasks cannot be processed at the same time.

1. ∀t1, t2 ∈ T, (S(t1) + d(t1) ≤ S(t2)) ∨ (S(t2) + d(t2) ≤ S(t1))
2. ∀t1, t2 ∈ T, (t1 ∈ B(t2)) ∨ (t2 ∈ B(t1))
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3. ∀t1, t2 ∈ T, (P (t1) < P (t2)) ∨ (P (t2) < P (t1))

Our model uses the three sets of constraints to speed-up propagation. Addi-
tionally, the following channeling constraints ensure the consistency between
variables of each representation. The position of a task t is the number of
tasks that come before t (|B(t)| = P (t)). Also, a task t1 ends before another
task t2 starts if and only if the position of t1 is less than the position of t2
(S(t1) + d(t1) ≤ S(t2) ⇔ t1 ∈ B(t2) ⇔ P (t1) < P (t2)).

In addition to these basic constraints, other redundant constraints can be
defined. First, if t1 comes before t2, every task that comes before t1 comes also
before t2 (t1 ∈ B(t2) ⇔ B(t1) ⊂ B(t2)). An AllDifferent constraint is also
defined on the position variables (alldiff ({P (t) : t ∈ T})), because two tasks
cannot have the same order of execution.

This last constraint is a first example of global constraint. Global constraints
take into account more than two tasks at a time. NFNL and EF are also such
global propagators that allow a much better pruning than the basic constraints.
However, NFNL and EF do not use the information given by the position of the
tasks to derive their information. This work shows how to use this additional
information.

3 The Propagator

The main idea of the new propagator is to apply shaving on the position vari-
ables. Commonly, shaving is applied on the starting time variables and only on
their bounds because of the size of their domains. On the contrary, the domain of
the position variables is rather small and could be shaved in a reasonable time.
To test if the task can be scheduled in a particular position, we compute bounds
on its earliest and latest starting time under this assumption. If the resulting
range does not intersect the domain of S(t), the task cannot be scheduled in that
position. Furthermore, shaving P (t) permits also to reduce the domain of S(t)
to the union of the ranges computed for every position. Following this scheme,
two issues need to be addressed. Firstly, the way to use the bounds on the task
starting time to reduce the domains of the variables (Section 3.1). Secondly, the
approximations used to compute ranges as tight as possible (Section 3.2). Notice
that our approach of shaving is local to this propagator.

Let us first introduce some additional notations. As est(t) represents the
earliest starting time of a task t, ect(t) will denote its earliest completion time.
Those values are linked by ect(t) = est(t) + d(t). The same quantities can be
defined for set of tasks. If U is a non-empty subset of T , d(U) is the sum of the
durations of the tasks in U and est(U) is the earliest starting time of the set
of tasks U . It is equal to the earliest starting time of any tasks in U (est(U) =
mint∈U est(t)). The dual quantity ect(U) is the earliest completion time of the
set U , the time when every task in U is finished. This last quantity cannot be
computed easily but several lower bounds are known. Especially, the maximum,
among every subset U ′ of U , of the sum of the earliest starting time of U ′ and
the duration of U ′ will be used in this work to approximate ect(U) (Equation
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1). This is only a bound because it does not take into account the latest starting
time of the tasks. We denote it b ect(U).

b ect(U) = max
∅6=U ′⊆U

(est(U ′) + d(U ′)) (1)

3.1 Shaving on position variables

Shaving enumerates every possible value of P (t). Under the assumption that the
position P (t) of a task t takes a particular value p of its domain, the possible
starting time of t belongs to an interval [est(t, p), lst(t, p)] where est(t, p) and
lst(t, p) denote respectively the earliest and latest possible starting times when
t is in position p.

The value est(t, p) is related with ect(B(t), p) that is the earliest time when
p tasks among those in B(t) have been processed and when all the tasks in B(t)
have been processed. Indeed, in position p, the task t cannot start before that p
tasks among those that can come before t have been processed. Furthermore, t
cannot start before the tasks that must come before are completed. This leads
to the relation

est(t, p) = max (ect(B(t), p), est(t)) .

In this formula, ect(B(t), p) cannot be computed exactly with a reasonable com-
plexity. We propose however to compute a lower bound as tight as possible.
Section 3.2 details how to approximate the value of ect(B(t), p). A very similar
reasoning, not detailed here, can be made to compute lst(t, p).

Once the ranges [est(t, p), lst(t, p)] have been computed for each p ∈ P (t),
the domain of P (t) and S(t) can be reduced with two simple rules:

∀p ∈ dom(P (t)) : ([est(t, p), lst(t, p)] ∩ dom(S(t)) = ∅) ⇒ P (t) 6= p (2)

dom(S(t)) := dom(S(t)) ∩ (∪p∈dom(P (t))[est(t, p), lst(t, p)]) (3)

The first rule removes from the domain of P (t) the values p for which there is
no valid starting time, i.e. when the range [est(t, p), lst(t, p)] is empty or when it
does not intersect with the domain of S(t). The second rule restricts the domain
of S(t) to be included in the union of the computed ranges. Alternatively rule
(3) could only reduce the bounds of the domain of S(t), while ensuring that S(t)
remains a single interval. The latter is standard in scheduling. S(t) must then
be greater than the least value among the est(t, p) for valid p’s and less than the
greatest value among the lst(t, p) for valid p’s.

dom(S(t)) := [ min
p∈dom(P (t))

(est(t, p)) , max
p∈dom(P (t))

(lst(t, p))] (4)

Experiments will consider the two versions of the reduction of S(t). The
reduction of S(t) (using rule (4)) and P (t) can be done with a time complexity
of O(N) where N is the number of tasks to be processed on the machine, thus
an upper bound on the size of the domain of P (t).
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3.2 Bounding the earliest completion time of a task subset

This section presents the evaluation of ect(B(t), p) that is useful to evaluate
est(t, p). The algorithm to compute lst(t, p) is similar but is not exposed. In
order to compute a lower bound of ect(B(t), p), we compute the minimum of
the earliest completion time over all the sets U of cardinality p that are superset
of B(t) and subset of B(t). In the following, b ect(B(t), p) will denote the lower
bound of ect(B(t), p). This is a lower bound because it makes use of b ect(U)
which is a lower bound itself.

b ect(B(t), p) = min
U

(b ect(U)) (5)

where |U | ≥ p and B(t) ⊆ U ⊆ B(t)

Interestingly, this lower bound can be computed efficiently using rules similar
to the ones in the Jackson Preemptive Schedule [13] for computing the earliest
ending time of a set of task supposing preemption. Our algorithm also allows
preemption for the tasks but does not take into account the latest starting time
of the tasks. Instead, the duration of the tasks is considered to schedule a subset
of tasks of fixed size as soon as possible in a preemptive way. It is done respecting
the following precedence rules:

– Whenever a task t is available and the machine is free, process t.
– When a task t1 becomes available during the processing of another task t2

and the remaining processing time of t1 is less than the remaining processing
time of t2, stop t2 and start processing t1.

– When a task t1 becomes available during the processing of another task t2,
such that t1 ∈ B(t) and t2 /∈ B(t), stop t2 and start t1.

The value b ect(B(t), p) is obtained when every tasks in B(t) have been
processed and at least p tasks in B(t) have been processed.

An important property is that, although the algorithm supposes the tasks to
be interruptible, the resulting quantities correspond exactly to the ones given by
equation (5) where no preemption is supposed. Indeed, it is possible to merge
the different parts of the completed tasks following the order of their starting
times. The result is a non-preemptive schedule of the set of tasks. Preemption
is not used here as a relaxation but just as a way to ease the computation.
The computed value of b ect(B(t), p) is however a relaxation of the exact value
because the latest possible starting times of the tasks are not considered.

Moreover a single run of the above algorithm gives the value b ect(B(t), p)
for every p. Indeed, it suffices to remember the successive times when a task ends
to have the b ect(B(t), p) value for the successive values of p.

A pseudo-code of the algorithm is presented in Algorithm 1. The algorithm
uses two priority queues. The first (Q1) sorts the tasks in order of earliest starting
time. It permits to put in the second priority queue (Q2) only the available
tasks at a particular time (lines 9-14). Q2 sorts the tasks in ascending order
of remaining duration. When a task is popped from Q2, two situations arise.
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Algorithm 1: Simplified Algorithm to Compute ect(B(t), p)
Input: B : the set of tasks
Input: D : vector of the duration of the tasks
Input: EST : vector of the est of the tasks
Output: ECT : vector of the b ect(B(t), p) for each position p

Q1 := new PriorityQueue()1

Q2 := new PriorityQueue()2

time := 03

p := 04

forall t ∈ B do5

RD(t) := D(t) //RD is the remaining duration6

Q1.put(t,EST(t))7

while not Q1.empty() do8

t := Q1.pop()9

time := EST(t)10

Q2.put(t,RD(t))11

while not Q1.empty() and EST(Q1.top()) = time do12

t := Q1.pop()13

Q2.put(t,RD(t))14

while not Q2.empty() and15

(Q1.empty() or time + RD(Q2.top()) < EST(Q1.top()) ) do16

t := Q2.pop()17

time := time +RD(t)18

RD(t) := 019

p := p+120

ECT(p) := time21

if not Q2.empty() then22

t := Q2.pop()23

RD(t) := RD(t) + time - EST(Q1.top())24

Q2.push(t,RD(t))25

time := EST(Q1.top())26

27

return ECT28
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Either it can be processed before a new task is available and the time when it
ends is recorded (lines 15-21). Or the task must be interrupted to check if a
newly available task could not end earlier (lines 23-26).

For simplicity, the outlined algorithm is a shortened version where the fact
that some tasks are part of B(t) is not considered. Taking it into account can
be done simply using a penalty in the second priority queue to ensure that
those tasks are chosen first. Two parallel queues can also be used and the one
containing the tasks in B(t) is emptied first. Additionally a counter must be
used to record when all mandatory tasks have been processed.

The time complexity of the algorithm is O(n log n) with n = |B(t)| which
in the worst case is equal to N − 1 (N is the number of tasks that must be
processed). Indeed, the operation put() and pop() of the priority queues can be
implemented in O(log n). There are exactly n tasks that are put in Q1 (lines
5-7) and at most 2n tasks that are put in Q2 because there are exactly n tasks
that can be extracted from Q1 (lines 9-14) and at most n reinsertions of task
due to interruption (lines 22-26).

Example 1. To show the computation of b ect(B(t), p), let us suppose the fol-
lowing tasks:

– t0 which is the task under consideration; dom(B(t0)) = [{t4}, {t1, t2, t3, t4}]
and dom(P (t0)) = [1, 4]

– t1 with est(t1) = 0 and d(t1) = 5.
– t2 with est(t2) = 1 and d(t2) = 3.
– t3 with est(t3) = 2 and d(t3) = 1.
– t4 with est(t4) = 3 and d(t4) = 3.

Following a chronological order, t1 is scheduled first, starting at the time 0.
On time 1, t2 is available and as its duration (d(t2) = 2) is shorter than the
remaining duration of t1 (5− 1 = 4), t1 is stopped and t2 is started. On time 2,
t2 is interrupted to let process t3 whose duration is shorter than its remaining
duration (3−1 = 2 > 1). On time 3, t3 has been fully processed. Tasks t1, t2 and
t4 are available but t4 is chosen as it is the only mandatory task among them.
Indeed, by definition of dom(B(t)), t4 is the only task which must be performed
before t0. This task is run for 3 units of time. When it is finished, t2 is run before
t1 as its remaining duration is less than the remaining duration of t1. After two
more units of time, t2 is fully processed and t1 is processed until time 12. The
next table gives the processing times of each task in a preemptive way.

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Task t1 t2 t3 t4 t2 t1

Recording the values when tasks are fully processed, we obtain the following
values:

– b ect(B(t0), 1) = b ect(B(t0), 2) = 6. Indeed, the mandatory task (t4) was
only finished in second position.

– b ect(B(t0), 3) = 8
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– b ect(B(t0), 4) = 12

Although the computation interrupts several tasks, the obtained bounds cor-
respond to non-preemptive schedules (as expected by equation (5)). The table
below shows the reordering for each position.

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
p = 1 t4
p = 2 t3 t4
p = 3 t2 t3 t4
p = 4 t1 t2 t3 t4

For instance, with the 4 tasks being scheduled, it is possible to run t1 from
time 0 until time 5 where t2 is run until time 8. At time 8, t3 is started for 1
time unit and afterward t4 is being run until the time 12 which corresponds to
the computed value. ut

Example 2. Figure 1 presents a small example where the new propagator per-
mits to remove inconsistent values. In this example, there are five tasks to be
processed. Their respective domains and duration are the following.

– d(t1) = 3 and dom(S(t1)) = [8, 17]
– d(t2) = 5 and dom(S(t2)) = [0, 15]
– d(t3) = 4 and dom(S(t3)) = [5, 16]
– d(t4) = 4 and dom(S(t4)) = [1, 16]
– d(t5) = 2 and dom(S(t5)) = [7, 18]

Applying NFNL or EF on this set of tasks does not reduce any domain of the
starting time variables. However, our propagator allows to remove the value 8
from the domain of S(t1). Using the algorithm to compute the earliest and latest
possible starting time of t1 in each position, the obtained values are given next.

– est(t1, 0) = 8 and lst(t1, 0) = 2
– est(t1, 1) = 8 and lst(t1, 1) = 7
– est(t1, 2) = 9 and lst(t1, 2) = 11
– est(t1, 3) = 11 and lst(t1, 3) = 15
– est(t1, 4) = 15 and lst(t1, 4) = 17

From those values, it can be derived that t1 cannot be processed in position
0 or 1. Thus the domain of its starting time can be reduced to the union of
the ranges defined in position 2, 3 and 4, resulting in dom(S(t1)) = [9, 17]. In
comparison with the initial domain, the value 8 has been removed. ut

The computing of est(t, p) and lst(t, p) for each p ∈ dom(P (t)) is done in
O(N log N) with N the number of tasks and the reduction of the domains can
be done in O(N). The time complexity of the whole reduction algorithm for a
task t is thus O(N log N). This yields a total complexity of O(N2 log N) for one
pass of our reduction algorithm, as there are N tasks to consider. In comparison,
the well-known techniques NFNL and EF can be both implemented to run with
a time complexity of O(N log N).
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Fig. 1. Example of reduction, see Example 2 for details

4 Experiments

To assess the practical usefulness of the new propagator, we implemented it in
the open constraint environment Gecode [14]. Two versions of the propagator
have been written. The first that we will refer to as PS (standing for Position
Shaving) may remove values inside the domains of the starting time variables,
while the second, PSB (for Position Shaving with Bounds reduction), is limited
to reduce the bounds of the starting time variables. We implemented also the
NFNL and EF techniques following the algorithms described in [15]. Note that
the implementations of EF and NFNL described in that book run in O(N2)
but they use much simpler data structures than the theoretically most efficient
algorithm described respectively in [3] and [7]. Finally, we modeled the Open-
Shop Problem as described in the first section with the NFNL, EF and PS or PSB
propagators and the AllDifferent constraint. PS and PSB are never used together
as they are two versions of the same propagator. Concerning the branching, we
applied a simple heuristic that uses the position variables. It orders the tasks in
the machine before ordering them in the jobs. Among the tasks whose position is
not fixed, it chooses the task for which there is the smallest number of remaining
possible positions. In case of tie, the shortest task is chosen. The value-heuristic
chooses the smallest value in the position variable.

Our tests have been run using the instances of the Guéret and Prins bench-
mark [12]. It is composed of 80 square problems, i.e. the number of jobs and
machines are equal. There are 10 instances for each size ranging from 3x3 tasks
to 10x10 tasks. Every runs have been performed on an Intel Xeon 3 Ghz with
512 KB of cache.

The first experiment consists in observing the total runtime and the size of the
search tree to solve each instance of the benchmark, using different combinations
of propagators. The running time is limited to one hour for each instance. The
results are presented in Tables 1 and 2. Table 1 gives the number of solved
instances and the average number of nodes in the search tree. The mean is
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computed over the instances commonly solved whenever the number of solved
instances differs (only for problem size 7x7). In table 2, the same scheme is used
but the mean running time is presented instead of the size of the search tree.
The running time is given in seconds.

In the two tables, columns 2 and 3 present the results when only PS is used
but nor EF neither NFNL. Columns 4 and 5 presents the results when only
PSB is used. In the third setting (columns 6-7), NFNL and EF are activated
but not PS, nor PSB. In the columns 8-9 and 10-11, NFNL and EF are used in
conjunction respectively with PS and with PSB.

Table 1. Number of solved instances and mean size of the search tree

PS PSB NFNL+EF PS+NFNL+EF PSB+NFNL+EF

Size Solved Nodes Solved Nodes Solved Nodes Solved Nodes Solved Nodes

3x3 10 39 10 38 10 38 10 39 10 38
4x4 10 128 10 127 10 134 10 127 10 126
5x5 10 451 10 456 10 371 10 369 10 373
6x6 10 3483 10 3896 10 2612 10 3402 10 3816
7x7 3 - 3 - 7 280914 8 208571 8 208582
8x8 0 - 0 - 1 120156 1 12953 1 12929
9x9 0 - 0 - 1 747146 0 - 0 -

10x10 0 - 0 - 0 - 0 - 0 -

Tot 43 43 49 49 49

Table 2. Number of solved instances and mean running time in seconds

PS PSB NFNL+EF PS+NFNL+EF PSB+NFNL+EF

Size Solved Time Solved Time Solved Time Solved Time Solved Time

3x3 10 0.008 10 0.008 10 0.006 10 0.01 10 0.008
4x4 10 0.075 10 0.047 10 0.054 10 0.069 10 0.068
5x5 10 0.38 10 0.32 10 0.19 10 0.36 10 0.32
6x6 10 3.9 10 3.5 10 1.9 10 4.3 10 3.9
7x7 3 - 3 - 7 338 8 496 8 432
8x8 0 - 0 - 1 106 1 43 1 37
9x9 0 - 0 - 1 1708 0 - 0 -

10x10 0 - 0 - 0 - 0 - 0 -

Tot 43 43 49 49 49

Whenever NFNL and EF are used, the same total number of instances are
solved with or without our new propagator. However, the solved instances are not
always the same. From the two first settings, it can be concluded that the new
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propagator is not able to solve hard problems alone. In conjunction with NFNL
and EF, Table 1 shows that PS and PSB are able to reduce the size of search
tree, sometimes substantially, as it is the case for the unique solved instance
of size 8x8. Concerning the size 6x6, surprisingly the mean size is greater when
using PS and PSB. Looking at the detail for each instance of this size, it appears
that only the first instance(GP06-01) has a greater search tree when using the
new propagators. For GP06-01, the search tree is ten times bigger when using
PS or PSB while it is on average 30% smaller for the nine other instances of size
6x6.

When the running times are considered, Table 2 shows that it is always
greater when using PS or PSB than without them, except for the solved instance
of size 8 where the time is 2 to 3 times smaller, while the search tree size was
almost 9 times smaller.

Note that the reported times are much longer than those presented in [15]
because we did not use an environment dedicated to scheduling but a general
purpose constraint engine. However, implementing our new propagator in a ded-
icated environment would be beneficial.

The next experiment (Table 3) compares the mean runtime to reach the
fixpoint when NFNL, EF and PS(B) are activated with the mean runtime when
PS(B) is not used. This comparison is performed on the search tree obtained
when NFNL, EF and PS(B) are activated with a maximum number of backtracks
of 300,000. For each instance, the runtimes to reach the fixpoints are summed
along every states in the search tree.

At the same time, the pruning is also compared. As for the runtime, this
pruning is computed along the search tree obtained when every propagators
are activated. The number of failed states with and without PS(B) activated
are counted. Additionally in each state the supplementary reduction performed
after adding PS(B) is counted for each type of variables (S(t), B(t) and P (t))
and these quantities are summed upon the whole search tree. The reduction
is computed as the difference between the size of the domains of the variables
in the initial state in a node of the search tree and their size after performing
propagation until the fixpoint in the same node. If a failure is detected, the node
is not taken into account for the reduction counts.

Table 3 presents the results averaged by size. The three first pairs of columns
presents the additional pruning of the variables S(t), B(t) and P (t). The next
two columns shows the additional failures detected and the last columns reports
the additional time spent to reach those improvements. Two cells are empty
because the running time was to short to compute them accurately.

It can be seen that the results are quite similar between PS and PSB, except
in the columns of the starting time variables, since PS may prune inside the
domain of S(t) while PSB cannot. However, this difference does not influence the
other variables nor the failures. Indeed, no other constraint considers forbidden
values inside domains. Concerning the increase of the running time to reach a
fixpoint, it is smaller with PSB because less values are removed by PSB. Taking
into account the pruning potential and the used time, we can conclude that
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Table 3. Additional Pruning and time spent with PS and PSB(in %)

Red. S(t) Red. B(t) Red. P(t) Fails Time

Size PS PSB PS PSB PS PSB PS PSB PS PSB

3 7.6 1.5 0.3 0.3 5.7 3.6 0 0 - -
4 13.6 5.6 7.0 7.4 14.2 12.7 2.1 2.1 184.0 165.7
5 14.1 5.6 4.8 4.9 11.2 9.8 0.7 0.8 192.1 182.2
6 27.3 14.9 9.0 9.2 15.6 14.1 8.0 8.2 241.3 181.0
7 108.7 58.3 21.3 21.8 42.5 42.7 13.9 14.2 333.2 325.3
8 116.9 34.9 17.4 16.7 30.1 26.1 13.3 13.9 281.1 254.0
9 78.9 25.4 13.9 13.2 20.5 18.0 37.7 36.3 291.5 272.0
10 64.6 17.9 9.9 10.3 20.9 19.5 37.4 37.3 155.5 196.5

Mean 54.0 20.5 10.4 10.5 20.1 18.3 14.1 14.1 239.8 225.3

PSB is more efficient than PS. Furthermore, there are about 14% more failures
detected with either version of our propagator. When no failure is detected, the
domains of the variables are also substantially reduced.

Looking at the evolution of the results in function of the size of the problem,
the amount of reduction of the domains increases until problems of size 7 and
then decreases. The time spent follows the same scheme while the number of
failures keeps increasing. Because from size 7 the search trees may be not full
(because the search is cut) and the explored part is smaller for increasing size,
we can suppose that our propagator detect more failures early in the search but
reduces more domains at the end or in the middle of the search than in the first
steps. Observing the failures for the smallest sizes, it can also be seen that PS
and PSB do not reduce further the small search trees of these instances. When
size grows (≥ 6) and complexity increases, PS and PSB prove their usefulness.

In conclusion, the experiments show that although the introduction of PS or
PSB does not increase the number of solved instances, the addition of such a
propagator substantially improves the pruning at the nodes of the search tree,
as well as the number of detection of inconsistencies.

5 Conclusion

This work addresses the Open-Shop Problem by Constraint Programming. It
presents a new propagator, in two versions, that uses the absolute position of
the tasks to detect new inconsistencies not discovered by standard algorithms,
known as Not-First-Not-Last or Edge-Finding. Based on the principle of shaving,
this propagator prunes the variables for the starting time of tasks and for the
position of tasks. In its first version, holes in the starting time variable are allowed
while this is not the case in the second version that only reduces the bounds of
the domains.

Experiments on a standard benchmark show that the new propagator helps
efficiently in the reduction of the domains and may detect about 14% more
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inconsistent states in the search tree but at a higher cost. Concerning the size
of the search tree, the reduction of the domains is not always reflected by a
reduction of the tree size. The search can be up to 10 time smaller but for the
majority of the problems the reduction is not as important. In a few cases, the
search tree is even increased with the new constraint.

Another observation comes from the comparison between the two versions of
the propagators. Making holes in the domain of the starting time variables is not
rewarding regarding the reduction of the other variables and of the search tree.
The cause is that no other constraint makes use of this additional information.

In conclusion, we argue that our propagator would be especially useful in
conjunction with other constraints that take into account the position of tasks
or the holes in the domains. This may be a good way to improve resolution of
hard disjunctive scheduling problems. The branching heuristic should also be
adapted in order to avoid an augmentation of the size of the search tree when
the filtering is strengthened.

Possible future work includes the definition of tighter bounds for the earliest
completion time of a subset of tasks of fixed size. It also covers the definition of
better branching heuristics and additional position-based constraints.
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