
COTTAGE: Test Data Generation based on

Consistency Techniques

Nguyen Tran Sy, Yves Deville
Université catholique de Louvain

Place Saint-Barbe 2
B-1348 Louvain-la-Neuve, Belgium

{tsn,yde}@info.ucl.ac.be

November 26, 2004

Abstract

This paper1 presents a new approach for automated test data gen-
eration of imperative programs containing integer, boolean and/or �oat

variables. A test program (with procedure calls) is represented by an In-
terprocedural Control Flow Graph (ICFG). The classical testing criteria
(statement, branch, and path coverage), widely used in unit testing, are
extended to the ICFG. Path coverage is the core of our approach. Given
a speci�ed path of the ICFG, a path constraint is derived and solved
to obtain a test case. The constraint solving is carried out based on a
consistency notion. For statement (and branch) coverage, paths reaching
a speci�ed node or branch are dynamically constructed. The search for
suitable paths is guided by the interprocedural control dependences of the
program. The search is also pruned by our consistency �lter. Finally,
test data are generated by the application of the proposed path coverage
algorithm. The COTTAGE system, a 13,000 Java lines software, imple-
ments our approach for C programs. For each generated test data, the
system also automatically generates an instrumented C program, allowing
the user to verify the correctness of the test data. Experimental results,
including complex numerical programs from [29], demonstrate the feasi-
bility of the method and the e�ciency of the COTTAGE system, as well
as its versatility and �exibility to di�erent classes of problems (integer
and/or �oat variables; arrays, procedures, path coverage, statement cov-
erage).

Keywords software testing, test data generation, path coverage, state-
ment coverage, procedures, arrays, constraint satisfaction, consistency

1 Introduction

1.1 Test Data Generation

Software testing is an expensive and di�cult task, accounting for up to 50% of
the cost of software development [21]. Test data generation is a component of
software testing, where one tries to generate test inputs covering some testing

1This paper is an extended version of [32, 33]

1

criteria (testing requirements). Structural testing is usually concerned with
the use of a Control �ow graph (CFG) for a program under test to guide the
generation of test data. To adequately test the program at the structural level,
one must consider structural elements (nodes, branches, or paths) of the CFG
for coverage. For example, statement coverage criteria requires developing test
cases to execute certain nodes of the CFG. Similarly, branch coverage requires
test cases to traverse certain branches, and path coverage requires test cases
to execute certain paths. Structural testing thus includes: (1) the choice of a
criteria (statement, branch, or path), (2) the identi�cation of a set of nodes,
branches or paths, and (3) the generation of test data for each element of this
set. The automation of the last phase (automated test data generation) is a
vital challenge in software testing.

In the next, test data generation for a node will be referred to as statement
coverage, for a branch as branch coverage, for a path as path coverage.

1.2 Related Work

For path coverage, one �nds the following categories. Symbolic evaluation [5, 20]
consists in replacing input variables by symbolic values, and then symbolically
evaluates the statements along a path. A path constraint over these symbolic
values is produced, and then solved to obtain test input. It is generally limited in
handling arrays, indeterminate loops, and procedure calls. A solution for dealing
with arrays in symbolic evaluation is however proposed in [6]. Program execution
based approaches start by executing the program with an arbitrary test input(s).
This input is then iteratively re�ned, by execution of the program, to obtain a
�nal input(s) executing the path. The re�nement is done by applying function
minimization search algorithms [22], an iterative relaxation method [14], etc.
These approaches exploit its dynamic nature to overcome some limitations of
the approaches based on symbolic evaluation. However, the number of iterations
required before the �nding of a �nal input depends much on the complexity of
the constraints on the path. Moreover, if the path is infeasible and the associated
constraints nonlinear, this approach may become di�cult to apply.

For statement (or branch) coverage, various approaches can be found in the
literature. They are generally classi�ed [10] as random, path-oriented, or goal-
oriented. We can also classify them following the underlying technique used by
each approach. Path-oriented means that one needs to select a path(s) to reach
the speci�ed statement, and then generates test input for the path; while with
goal-oriented, the generation of test data to execute the statement is carried out
irrespectively of the path taken, i.e. the path selection is not needed.

Random test data generation [9] consists in trying test data generated ran-
domly until the statement is executed. Many experiences [10] have shown how-
ever that it can be very ine�cient to generate test data for complex programs.
In program execution based (or dynamic) approaches, as discussed above, a �rst
test data(s) is initiated with a (randomly) chosen input(s). If an undesirable
execution �ow is observed at some branch in the program, then a re�nement
process is used to �nd a new input(s) that will change the execution �ow at
this branch. The re�nement is realized by applying function minimization algo-
rithms [10] (goal-oriented), an iterative relaxation method [16] (path-oriented),
genetic algorithms [28] (goal-oriented), simulated annealing [34] (goal-oriented),
etc. Note that [16] is an extension of [14] for branch coverage. The results of
[10] are extended in [23] to programs with procedures by considering the pos-

2

sible e�ect of statements in the called procedures on execution of the selected
element. Another approach [27] incorporates ideas from symbolic evaluation
and dynamic test data generation. Although dynamic approaches are powerful
in handling arrays and dynamic data structures, it may require a great num-
ber of executions when the program involves many nonlinear conditions. A
goal-oriented approach, based on Constraint Logic Programming (CLP) tech-
niques, is given in [13]. The test data generation problem for a given statement
is translated into constraints, solved by an instance of the CLP scheme. This
approach o�ers advantages such as the handling of arrays and a restricted class
of pointers. However, only integer inputs are treated. Note that a constraint
solver over �oat numbers has recently been proposed in [25]. It is, on the other
hand, limited to �oat inputs. In [13], procedure calls are handled, but only
intraprocedural control dependences of the test program are used in the search
process, even with the presence of procedure calls. Therefore, this is not precise
for certain classes of programs as will be shown later. A summary of existing
approaches with functionalities close to our method is given in Section 7 (Table
4).

1.3 Results and Contribution

Among the di�culties in the generation of test data is the presence in the
program of arrays, procedure calls, pointers, unstructured control statements
(such as goto, break), and �oating-point variables. In this paper, we propose
a consistency-based approach, referred to as the consistency approach, for test
data generation of imperative programs containing integer, boolean and �oat
variables, arrays, and procedure calls. Path and statement coverage are both
handled. The results with statement coverage can easily extended to branch
coverage.

Path coverage is the basic bloc of our approach. It is a constraint solving
approach based on a consistency notion, e-box consistency, generalizing box-
consistency [17] to integer, boolean, and �oat variables. For statement cover-
age, paths reaching the speci�ed statement are dynamically constructed using
consistency techniques, and the path coverage method is applied on these paths
to �nd suitable test input. Our method for path coverage includes the following
steps. (1) A path constraint is derived from a speci�ed path. Such a constraint
involves integer, boolean and �oat variables, as well as operations with arrays.
(2) The path constraint is solved by an interval-based constraint solving algo-
rithm, that provides interval solutions. (3) A test case is �nally extracted from
the interval solutions.

A prototype system, called COTTAGE (COnsistency Test daTA GEnera-
tor), a 13,000 Java lines software, implements our approach for programs writ-
ten in (a subset of) the C language. In the current implementation, we focus
on C programs with integer and �oat variables, arrays, function calls, and a re-
stricted class of one-dimensional pointers (to simulate by-reference parameters);
but without dynamic data structures.

Contribution The main contribution of the paper is a new approach (based
on consistency techniques) to the generation of test data for numeric programs
(programs with integer, boolean and �oat variables) with procedure calls and
arrays. This approach handles path and statement coverage criteria. Beside this
general contribution, speci�c technical contributions of the paper include the

3

following. (1) A new system of test data generation (COTTAGE) as mentioned
above. For each generated test data, the system also automatically generates an
instrumented C program, allowing the user to verify the correctness of the test
data. Experimental results, including complex numerical programs from [29],
demonstrate the feasibility of the method and the e�ciency of the COTTAGE
system, as well as its versatility and �exibility to di�erent classes of problems
(integer and/or �oat variables; arrays, procedures, path coverage, statement
coverage). (2) Inside the system is a constraint solver suitable for test data gen-
eration (e.g. dealing with integer, boolean and �oat variables). (3) An extended
framework on interval logic so as to handle interval constraints involving at the
same time, integer, �oat and boolean variables, as well as the logical operators
such as AND, OR, NOT .

Remark The other known method [12, 13], related to our work and also based
on consistency, is limited to integer variables, and does not handle interproce-
dural control dependence. A constraint solver over �oat numbers has been
proposed [25], where it is shown how such a solver could be used for test data
generation. The solver is however limited to �oat variables, and no implemen-
tation is provided.

Compared with other approaches handling integer and �oat variables in the
literature (e.g. [15, 28]), our approach can be seen as an alternative or as a com-
plement. Our consistency method could be combined with dynamic approaches
when searching a test data exercising a speci�ed statement of the program.

1.4 Organization

The organization of the paper is as follows. The background is presented in the
next section. An overview of our consistency approach is given in Section 3.
Section 4 illustrates the generation of path constraints. Section 5 describes our
test data generation algorithm for path coverage, while Section 6 proposes an
algorithm for statement coverage. The COTTAGE System is then described in
Section 7 and our experiments are shown in Section 8. Conclusions are �nally
presented in Section 9.

2 Background

2.1 Background on Test Data Generation

Transforming a Test Program into an Equivalent one The purpose of
this transformation is to isolate all embedded function calls from their enclosing
expressions. For each embedded function call, a new variable is added to hold
its return value into the test program [1]. The transformed program is equiva-
lent to the original one, assuming that, in an expression, all embedded function
calls are evaluated. This might not be the case for non-strict operators such as
the conditional AND (&&) in Java. In an expression like x>1 && f(x), if x>1
evaluates to false, the value of the expression is false, and f(x) is not evalu-
ated. This restriction can easily be lifted by a more elaborated transformation,
e.g. conditional AND are transformed into conditional statements.

For example, the C program (Program-1) in Figure 1 contains the function
B with two embedded function calls. Figure 2 shows the transformed function

4

B without embedded function calls. In the sequel, when we refer to a program,
we mean an equivalent one without embedded function calls.

void M(double a[10], int c) { void B(double a[10]) {

int i = 1; int i,j;

while (i <= c) { scanf("%d %d", &i, &j);

B(a); if (F(i) < F(j))

i = i+1; C(&a[i], &a[j]);

} else C(&a[j], &a[i]);

} }

void C(double *x, double *y) {

double t; int F(int i) {

if (*x > *y) { if (i >= 0 && i <= 9)

t = *x; return i;

*x = *y; else exit(1);

*y = t; }

}

}

Figure 1: Program-1

B(double a[10]) {

int i,j,fi,fj;

scanf("%d %d", &i, &j);

fi = F(i);

fj = F(j);

if (fi < fj)

C(&a[i], &a[j]);

else C(&a[j], &a[i]);

}

Figure 2: An equivalent of Program-1's function B

Control Flow Graph The control �ow of a program is usually represented
by a Control Flow Graph (CFG) [31]. Formally, the CFG for a procedure P is
a directed graph, where the nodes represent statements and the edges represent
possible �ow of control between nodes. The CFG contains two distinguished
nodes, EntryP and ExitP , representing respectively a unique entry node and a
unique exit node of P . A node, representing a (conditional or loop) statement,
is called a decision node (a point where control �ow can diverge). A list of
assignments without decisions is grouped in a basic block node. Each procedure
call is represented by two nodes, a call node and a return node. An outgoing edge
from a decision node is called a branch. Each branch of the CFG is associated
with a condition.

Control-�ow interactions among a procedure and its related called proce-
dures are usually represented by an Interprocedural Control Flow Graph (ICFG)
[31, 24]. Formally, the ICFG for a procedure P is a directed graph, which
consists of a unique global entry node Entryglobal, a unique global exit node
Exitglobal, and the CFGs (for P and all procedures called directly or indirectly
by P). Apart from the edges of the individual CFGs, the ICFG also contains
the following kinds of edges: (1) the edges (Entryglobal; EntryP) and (ExitP ;
Exitglobal); (2) each procedure call (represented by a call node c and a return

5

node r) to procedure M corresponds to a call edge (c; EntryM) and a return
edge (ExitM ; r); (3) the edges that connect the nodes (representing a halt

statement) to node Exitglobal. Note that a halt statement represents an un-
conditional program halt such as the exit() system call in C. Each statement
such as x:=f(...), where f(...) is a function call, is represented by a pair
of call and return nodes as in a procedure call. However, these nodes are now
associated with x:=f(...). Informally, an ICFG is constructed by connecting
the individual CFGs at call sites.

2. Entry M

3. i = 1

4. i <= c

5a. call: B(a)

6. i = i + 1
7. Exit M

9. read i,j

10a. call: fi = F(i)

12. fi < fj

8. Entry B

10b. return: fi = F(i)

11a. call: fj = F(j)

11b. return: fj = F(j)

15. Exit B

5b. return: B(a)

F4 T4

T12 F12

16. Entry F

17. i>=0 && i<=9

19. halt
F17

18. return i

20. Exit F

21. Entry C

22. *x > *y

F22T22

24. Exit C

14a. call:C(&a[j],&a[i])

14b. return:C(&a[j],&a[i])13b. return:C(&a[i],&a[j])

13a. call:C(&a[i],&a[j])

T17

*x = *y
23. t = *x

*y = t

1.GlobalEntry M

25.GlobalExit M

Figure 3: Interprocedural control �ow graph for M

Figure 3 shows the ICFG for procedure M of Program-1 in Figure 1. The
individual CFGs are connected by edges shown in dashed lines. If node i is
a decision node, its true branch is labeled with a condition T i, while its false
branch is labeled with a Fi, that is the negation of T i (Fi = :T i). In this
ICFG, the conditions T4, T12, T17, and T22 are respectively i � c, fi < fj,
i � 0&& i � 9, and �x > �y.

Path A Path is a sequence of nodes from the global entry node Entryglobal to a
node of the ICFG. Note that a (partial) execution of a procedure P corresponds
to an execution path in the ICFG for P . Paths, where a return edge does not
match the corresponding call edge, are obviously infeasible execution paths.
We thus restrict paths to feasible execution paths, where every return edge is
properly matched with its corresponding call edge. Note that a path can be
an unbalanced-left path [24], representing an execution in which not all of the
procedure calls have been completed, i.e. there are more call edges than return

6

ones in the path.

2.2 Background on Consistency

Path Constraint A basic constraint is a simple relational expression of the
form E1 op E2, where E1 and E2 are arithmetic expressions and op is one
of the following relational operators f<;�; >;�;=; 6=g. A constraint is a ba-
sic constraint or a logical combination of basic constraints using the following
logical operators fNOT;AND;ORg. We assume that the logical operators of
the programming language of the program under analysis correspond to those
constraints. Otherwise, the constraints can easily be extended. A path of the
ICFG can be represented by a list of constraints with one constraint for each
condition on the path. This list of constraints is called a path constraint where
the constraints of the list are connected by the logical AND.

CSP, Consistency, and Constraint Solving Many important problems
in areas like arti�cial intelligence and operations research can be viewed as
Constraint Satisfaction Problems (CSP). A CSP (V ;D; C) is de�ned by a �nite
set of variables V taking values from �nite or continuous domains D and a set of
constraints C between these variables. A solution to a CSP is an assignment of
values to variables satisfying all constraints and the problem amounts to �nding
one or all solutions. Most problems in this class are NP-complete, which means
that backtracking search is an important technique in their solution.

Consistency techniques are constraint algorithms that reduce the search
space by removing, from the domains and constraints, values that cannot appear
in a solution. Consistency algorithms play an important role in the resolution
of CSP [35], and have been used extensively in many constraint softwares such
as Numerica [17], Prolog IV [3], CLP(BNR) [2], etc.

Notations R denotes the set of real numbers (reals); F the set of �oating-
point numbers (�oat numbers) represented on a computer; Bool the set ffalse; trueg.
F is thus a �nite subset of R. The elements of F are called F-numbers. The
set of intervals is denoted by I; the set of boolean intervals by BI, where
BI = f[0; 0]; [0; 1]; [1; 1]g (0 and 1 represent respectively false and true). BI is
thus a subset of I. Capital letters denote intervals. If a is a real (F-number
or not), a+ denotes the smallest F-number strictly greater than a, and a� the
largest F-number strictly smaller than a.

If x is a real, bx c denotes the largest integer that is not larger than x
and dx e the smallest integer that is not smaller than x. The lower and upper
bounds of an intervalX are F-numbers, and denoted respectively by left(X) and
right(X). Boldface letters denote vectors of objects. The domain of a simple
variable x is denoted by dom(x). If a is an array variable, dom(a) denotes
the domain for its array elements and length(a) its length (i.e. the number of
elements). A canonical interval is an interval of the form [a; a] or [a; a+], where
a is a F-number. An interval X is an � interval (� > 0) if X is canonical or
right(X)�left(X) � �. A box (X1; : : : ; Xn) is an � box if Xi (1 � i � n) is an
� interval [17].

Test cases An (integer, boolean or �oat) input variable is either an input
parameter or a variable in an input statement of program P . The domain of
a boolean variable is an element of BI . The domain of an integer variable is

7

an interval, representing a set of consecutive integers. The domain of a �oat
variable is an interval of F-numbers. Let x1; : : : ; xn be n input variables of P ,
and Dk be the domain of variable xk (1 � k � n). Then a test input is a vector
of values (i1; : : : ; in), where ik 2 Dk (1 � k � n).

The execution of the program (on the speci�ed path) uses operators de�ned
on F-numbers, integers, and booleans. We assume here that the test program
is written in some �xed imperative language L.

De�nition 1 (eval). Let c be a constraint, and v be a test input. The pred-
icate eval(c;v) holds if execution of c with v using the operators of the pro-
gramming language L yields true. The test input v is said to be a �oat L
solution.

De�nition 2 (Path Constraint). A constraint c is said to be a path con-
straint for a path p if for all test input v, eval(c;v) holds i� the execution of
the program traverses the path p.

De�nition 3. Given a path p (of an ICFG), a test input v is a test case for p
if eval(c;v) holds, where c is a path constraint for p.

De�nition 4. Given a node n (of an ICFG), a test input v is a test case for n
if there exists a path p traversing n such that v is a test case for p.

A test case is thus a test input traversing the speci�ed path or reaching the
speci�ed statement. When no test case exists, the path is said to be infeasible.

The predicate eval(c;v) can be realized in di�erent ways by either executing
the program under analysis, or by simulating such an execution (when the real
environment is not available).

It is important to distinguish the real (or mathematical) solutions of a path
constraint from its test cases (�oat L solutions). First, a mathematical solution
may not be a �oat number. Second, a �oat (mathematical) solution v of a
path constraint may not traverse the speci�ed path, i.e. c(v) 6) eval(c;v).

For example, the constraint, c(x) , x = x
3 + x

3 + x
3 , is mathematically

true for all F-number in F . However eval(c; 1) may evaluate to false in some
programming languages. Likewise, constraints may have �oat L solutions, while
having no mathematical solution, i.e. eval(c;v) 6) c(v). [25] illustrates that the
constraint, 16:0+ x = 16:0 ^ x > 0, actually possesses many �oat L solutions.

Classical Interval Programming Computation with the reals is actually
di�cult, since only a �nite subset of reals can be represented on a computer.
This means that the computer can only work with F-numbers, and all real
operations are actually operations on F-numbers, which are commonly known
as not sound. Because the result of an operation may not be computed exactly
(due to round-o� errors with sub-operations), or may not be representable in F .
One must approximate a real r by r+ (upward rounding), or by r� (downward
rounding). To solve continuous constraints (over the reals) with traditional
numerical methods, one thus obtains F-numbers that are approximations of the
mathematical solutions.

Interval methods solve the constraints by a di�erent approach, which returns
small intervals enclosing the mathematical solutions. They automatically bound
numerical errors, and so ensure the reliability of the results. The basic idea
consists in associating with each variable an interval representing its domain.
The original problem is then pruned (by some consistency techniques) before

8

divided into sub-problems (by splitting the interval associated with a variable),
until all solutions are obtained. Such consistency techniques (on intervals) are
designed to reduce the size of the intervals without removing solutions of the
constraints [17].

We give here some important de�nitions of Interval Analysis [26], borrowed
directly from, or based on, those in [17]. Since the goal is to work with intervals,
all objects of the real space�such as reals, real sets, real functions, and real
relations� should have an interval extension in the interval space. Note that
interval extensions are not unique.

De�nition 5 (Interval). An interval I = [a; b], with a; b 2 F , denotes the set
fx 2 R j a � x � bg. Also, given an interval I , left(I) and right(I) denote
respectively a and b. The set of intervals is denoted by I.

De�nition 6 (Interval Extension). Let S be a subset of R. The interval
extension of S, denoted by 2S, is the smallest interval I such that S � I .
When S = frg, we denote its interval extension by 2r, and its value is the
interval [r; r] if r is an F-number, and [r�; r+] otherwise.
An interval function F : In ! I is an interval extension of f : Rn ! R if
8I 2 In : f(I) � F (I), where f(I) = ff(r) j r 2 Ig.

De�nition 7. An interval relation C : In ! Bool is an interval extension of
the relation c : Rn ! Bool if
8I 2 In : (9r 2 I : c(r))) C(I)

The objective of an interval extension is to preserve the mathematical solu-
tions. Given a function f , the optimal interval extension is the interval function
returning 2(f(I)). Many usual functions possess an optimal interval extension.
For example, the interval function �, [a1; b1]� [a2; b2] = [(a1+a2)

�; (b1+ b2)
+],

is an optimal interval extension of the addition of two reals. Note that a1 + a2
or b1 + b2 may not be representable in F . [7] reported however that there exist
functions, due to practical reasons, we cannot calculate their optimal interval
extension, namely the function f(x) = x � sin(x).

Given an arbitrary function, one can obtain several (non-optimal) interval
extensions [7], based on interval extensions for its primitive operations. The
natural interval extension is however used in our work so as to also conserve
�oat solutions, as illustrated hereafter.

De�nition 8 (Natural Interval Extension). Given a function f , the natu-
ral interval extension of f is obtained by replacing in the de�nition of f , each
constant k by its approximation (2k), each real variable x by the interval vari-
able X , each real operation g by its interval extension G.

Proposition 1 ([26]). If F : In ! I is the natural interval extension of f :
Rn ! R, then F is an interval extension of f , i.e. 8I 2 In : f(I) � F (I).

By Proposition 1, F (I) contains thus at least all real solutions of f(I).
For instance, the natural interval extension of, f(x) = x2:3 � 2x + sin(x),

is the interval function, F (X) = (X � 22:3) 	 22
 X � SIN(X), where
	,
, �, and SIN are the interval extensions of subtraction, multiplication,
exponentiation, and the trigonometric sin function.

9

2.3 Extended Framework on Interval Logic

We here extend the classical de�nition of interval extension, and build a new
interval logic framework to handle interval constraints involving at the same
time, integer, �oat and boolean variables, as well as the logical operators such
as AND, OR, NOT . Such a framework is needed for the following reasons.
First, De�nition 7 means that C is a mapping from In to the set ffalse; trueg.
Assuming C is an interval extension of relation c, let us denote c(I) = fc(r) j r 2
Ig with I 2 In. If (9r 2 I) c(r), then we have fC(I)g � c(I). This leads to
the following consequence: [2; 4] < [1; 3] evaluates to true, from which one can
deduce that not([2; 4] < [1; 3]) evaluates to false. Paradoxically, the negation
can evaluate to true if one treats not([2; 4] < [1; 3]) as [2; 4] � [1; 3]. Second,
we need a framework in which we can de�ne interval extensions for constraints
involving boolean variables as well as the logical operators, such as c(b; x; y) ,
not(b) and (x > 1) or (y < 2), where b is a boolean variable, while x; y are
(integer or �oat) variables. We must then be able to evaluate C(b : [0; 1]; x :
[2; 3]; y : [3; 5]), for instance.

De�nition 9 (Interval Extension of a Relation (Constraint)). An inter-
val relation C : In ! BI is an interval extension of the relation c : Rn ! Bool
if 8I 2 In : c(I) � C(I), where c(I) = fc(r) j r 2 Ig, and the convention that
ffalseg = [0; 0], ftrueg = [1; 1], and ffalse; trueg = [0; 1].

Interval extensions for the relational operators f<;�; >;�;=; 6=g are devel-
oped, based on the following de�nition.

De�nition 10. Given a relation c : Rn ! Bool, the corresponding interval
relation C : In ! BI is constructed such that for all I 2 In

if 6 9x 2 I : c(x) then C(I) = [0; 0]
if 9x 2 I : c(x)

V
9y 2 I : :c(y) then C(I) = [0; 1]

if 8x 2 I : c(x) then C(I) = [1; 1]

Proposition 2. The interval relation C, as de�ned in De�nition 10, is an in-
terval extension of the relation c.

For instance, an interval extension of the relational operator � is the follow-
ing: [a1; a2] � [b1; b2] is [0; 0] if a1 > b2, [1; 1] if a2 � b1, and [0; 1] otherwise.
We now de�ne interval extensions for the logical operators not, and, and or.

De�nition 11. Let a1, b1, a2, and b2 be values taken in f0; 1g such that a1 � b1
and a2 � b2, then the interval logical operatorsNOT , AND, and OR are de�ned
as follows

� NOT ([a1; b1]) = [1� b1; 1� a1],

� [a1; b1] AND [a2; b2] = [min(a1; a2);min(b1; b2)],

� [a1; b1] OR [a2; b2] = [max(a1; a2);max(b1; b2)].

Proposition 3. The interval logical operatorsNOT , AND, andOR, as de�ned
in De�nition 11, are respectively interval extensions of the logical operators not,
and, and or.

An interval solution of a set of constraints is a box containing solutions of
the di�erent constraints. It is de�ned as follows.

10

De�nition 12. Let S = fc1; : : : ; cmg be a set of constraints. A box X 2 In is
an interval solution of S if right(Ci(X)) = 1, for all i (1 � i � m), where the
Ci are respectively the natural interval extension of the ci.

For simplicity, C(X) will denote right(C(X)) = 1 (i.e. C(X) is [0; 1] or
[1; 1]) and :C(X) for right(C(X)) = 0 (i.e. C(X) is [0; 0]).

3 Overview of the consistency approach

We are now able to precisely state our test data generation problem.

Problem statement Given a node n, a branch b or a path p of the ICFG
associated with a test procedure P (possibly with procedure calls), generate a test
input i such that P when executed on i will cause n, b or p to be traversed.

This section describes the consistency approach for test data generation with
path and statement coverage. It is a constraint solving approach based on
a consistency notion, e-box consistency, generalizing box-consistency [17] to
integer, boolean, and �oat variables. Path coverage is the core of our approach.
It includes the following steps.

1. A path constraint is derived from the speci�ed path of the ICFG. Such a
constraint involves integer, boolean and �oat variables, as well as opera-
tions with arrays.

2. The path constraint is solved by an interval-based constraint solving al-
gorithm. The idea of such a solving algorithm is as follows.

� An initial box is provided.

� Consistency techniques are used to prune the box.

� The box is splitted into some parts, which are then explored recur-
sively until obtaining epsilon boxes �very small boxes� containing
�oat solutions of the path constraint. These epsilon boxes are called
interval solutions.

3. A test case is �nally extracted from the interval solutions.

For statement coverage, paths reaching the speci�ed statement are dynam-
ically constructed. The search for such paths is guided by the interprocedural
control dependences of the program, as well as pruned by our e-box consistency
�lter to avoid exploring infeasible paths. Our algorithm for path coverage is
then applied on these paths to generate test data. It should be noted that as a
branch is dual to a statement in the control �ow graph, all the following results
with statement coverage can easily be extended to branch coverage.

It is important to precise the speci�cities of solving a path constraint com-
pared to classical interval-based constraint solving. First, a path constraint is
usually under-constrained; there usually exist many test inputs traversing the
speci�ed path (except for an infeasible path) while we are interested by �nding
one of them. Existing constraint systems, such as Numerica [17], are not al-
ways appropriate for under-constrained systems as they try to generate all the
solutions. Second, existing solvers�Numerica, Prolog IV [3], and CLP(BNR)
[2]�will produce (small) intervals containing the mathematical solutions of the
path constraint. A mathematical solution can be a real which is not a �oat
number. Moreover, even if a mathematical solution is a �oat number, this

11

mathematical solution as test input is not guaranteed to traverse the speci�ed
path as the path constraint is executed using the programming language �oat
operators, which are not mathematically sound. Third, the goal of existing
consistency techniques is to preserve all mathematical solutions in pruning the
search space, and therefore may not ensure preserving all �oat solutions (solu-
tions with the programming language operators) [25]. In contrast, the goal of
our consistency techniques is to preserve �oat solutions. Our constraint solver
in turn returns �oat solutions as test cases, and therefore ensure traversing the
path. These di�erences make that existing constraint solving approaches can-
not be used solely to generate test data for programs with integer, boolean, and
�oat variables. Finally, it should be noticed that any constraints solving system
may produce an interval without mathematical solution.

4 Generation of Path Constraints

4.1 Algorithm

Given a path of an ICFG, we propose an algorithm (Algorithm 1) to construct a
path constraint. Indexed variables are used to hold the de�nitions of the original
variables in the path.(Assignments to a variable are referred to as its de�nitions)
For example, for variable x, its �rst de�nition in the path is assigned to x0, its
second to x1, and so on. All uses of this variable are renamed accordingly and
refer to its last de�nition. Since indexed variables have a unique de�nition, we
will refer to them as value instances of the original variables.

Algorithm 1 Path constraint generation for a path in the ICFG

function PathConstraintGeneration(P:Procedure,G:ICFG,p:Path) : CSP;

PRE G is the ICFG for test procedure P

p is a path p1; : : : ; pn in G

POST return a path constraint for path p

declare

PC : path constraint for path p

begin

PC := ;; {PC is initially empty}

for each i from 1 to n do

PC := PC ^ ConstraintsForNode(pi);

if (pi is a decision node) and (i < n) then

PC := PC ^ ConstraintsForBranch(< pi; pi+1 >);

return PC;

end

The algorithm PathConstraintGeneration (Algorithm 1) takes as input a
path in the ICFG. It makes a traversal of the path to generate constraints for
its nodes and branches. The generated path constraint is the conjunction of all
these constraints.

ConstraintsForNodeand ConstraintsForBranch respectively generate con-
straints for a node and a branch of the ICFG. They will be described by the
following de�nition.

De�nition 13. Let p be a path of the ICFG, pi be a node of p, and < pi; pi+1 >

be a branch of p. Then PC(p; pi) and PC(p;< pi; pi+1 >) respectively denote
constraints generated for pi and < pi; pi+1 >.

12

Let PC(p) denote the path constraint generated for the path p, then from
Algorithm 1 and De�nition 13, we have

PC(p) =
^

pi : a node of p

PC(p; pi)
^

<pi;pi+1> : a branch of p

PC(p;< pi; pi+1 >)

Depending on the type of pi (which can be a global entry, an assignment,
an input statement, a call node, etc.), PC(p; pi) and PC(p;< pi; pi+1 >) are
constructed accordingly as follows.

Global Entry Node pi is the global entry node of the ICFG associated with
a test procedure P . Suppose that P has the following parameters: x (a simple
variable), a (an array variable). Then, PC(p; pi) is

x0 2 dom(x) ^
^

0�i<length(a)

a0[i] 2 dom(a)

where dom(x) denotes the domain for x, and dom(a) the domain for all array
elements of a. These constraints thus aim to de�ne input variables from the
formal parameters of procedure P .

Note that the initial domain (interval) may depend on the programming
language L, but can also be �xed by the user. We focus our presentation to
one-dimensional arrays, but the approach itself can be easily generalized to
multi-dimensional arrays. We also suppose that the size of array variable a is
speci�ed. If this is not the case, we note only that a0 is an input variable. And
no a0[i] are created at this node, since length(a) is unknown. Later, when we
deal with an a0[i] (i is a number), and if no input variable representing a0[i]
exists, then an input variable a0[i] is created.

De�nition 14. Let exp be an expression. Then exp denotes a version of exp
in which each variable is substituted by its last value instance.

Assignment

� If pi is an assignment to a simple variable, x := exp, then PC(p; pi) is

xk = exp

where k is the smallest integer not yet used for identi�er x. Note that this
sort of equality constraints, associated with assignments, will be denoted
as xk := exp.

� If pi is an assignment to an array element, a[j]:=exp, then PC(p; pi) is

na4(ak0 ; ak; j; exp)

where ak is the last value instance of a; k0 is the smallest integer not yet
used for identi�er a. The constraint na4 (na represents New Array) is
de�ned hereafter.

De�nition 15. The constraint na4(b; a; j; v) states that b is an array which is
of the same size as a and has the same component values, except for v as the
value of its j-th component. It can be de�ned more formally as follows.

na4(b; a; j; v) , b[j] = v
^

i6=j

b[i] = a[i]

13

De�nition 16. By convention, when all the elements of array a are null (non-
initialized), we will denote this as a = null.

For example, a code such as, int a[5]; a[0] = 8; a[1] = 7;, generates
the following constraint, na4(a0; null; 0; 8)^ na4(a1; a0; 1; 7).

Input Statement

� If pi is an input statement to a simple variable, read x (in C, this is
realized by scanf), then PC(p; pi) is

xk 2 dom(x)

where k is the smallest integer not yet used for identi�er x. This constraint
de�nes xk as an input variable.

� If pi is an input statement to an array element, read a[j], then PC(p; pi)
is

na3(ak0 ; ak; j)

where ak is the last value instance of a; k0 is the smallest integer not yet
used for identi�er a. The constraint na3 is de�ned as follows.

De�nition 17. The constraint na3(b; a; j) is formally de�ned as

na3(b; a; j) , b[j] 2 dom(b)
^

i6=j

b[i] = a[i]

The goal of this constraint is to de�ne b[j] as an input variable.

Decision Node If pi is a decision node, then PC(p; pi) is empty.
However PC(p;< pi; pi+1 >) is c, where c is the condition associated with the
branch < pi; pi+1 >.

Procedure Call If pi is a call node to a procedure P (the control is going to
pass to P), then for each pair (x0; x) �where x0 is an actual parameter of the
call, and x is the corresponding formal parameter of P (that is a by-value or by-
reference parameter)� an assignment x := x0 is generated. These assignments
are converted into constraints, that are then a�ected to PC(p; pi).

If pi is the return node of a call to procedure P (the control just quits P), an
assignment x0 := x is generated if x is a by-reference parameter. Moreover, if
the return node is associated with z := P (: : :), an assignment is also generated.
All these assignments are converted into constraints, that are then a�ected to
PC(p; pi).

This way of handling parameters is commonly known as the call by value-
result mode of parameter passing, where the parameters of the procedure are
not directly bound to the variable's address. Rather, they have their own space
within their scope, and the new values of the parameters are copied back into
the caller's variables only when the procedure is terminated.

To illustrate the di�erence between the call by reference and the call by
value-result modes, consider the following C code [8]:

14

void a(int *x, int *y) {

*x = 1;

*y = 2;
}

int t;
a(&t,&t);

Then with the call by value-result mode, the value of t after the call depends on
the order of parameter copies when the call is �nished; while with the call by
reference mode, the value of t will always be 2. This problem is due to aliasing
(i.e. if x and y refer to the same variable or address, then x and y are aliased).
Since in this work, we rather focus our attention to the feasibility of applying
our consistency approach for test data generation, the aliasing problem is left
for future work.

4.2 Example

Example 1. We illustrate the operation of the algorithm on the path 1-2-3-4-5a-
8-9-10a-16-17-18-20-10b-11a-16-17-18-20-11b-12-13a-21-22-23-24-13b-15-5b-6-4-
7-25 (in Figure 3). Constraints are generated for the nodes as follows.
Node 1:

V
0�i<10 a0[i] 2 dom(a) ^ c0 2 dom(c);

a and c are the parameters of procedure M (Figure 1). The constraint
de�nes thus input variables.

Node 2: no constraints are generated;
Node 3: i0 := 1;
Node 4-T4: i0 � c0;
Node 5a: a1 := a0;
Node 8: no constraints;
Node 9: i1 2 dom(i) ^ j0 2 dom(j);
Node 10a: i2 := i1;
Nodes 16, 17-T17, 18, 20: i2 � 0 ^ i2 � 9;
Node 10b: �0 := i2;
Node 11a: i3 := j0;
Nodes 16, 17-T17, 18, 20: i3 � 0 ^ i3 � 9;
Node 11b: fj0 := i3; Node 12-T12: �0 < fj0;
Node 13a: x0 := a1[i1] ^ y0 := a1[j0];
Nodes 21, 22-T22, 23, 24: x0 > y0 ^ t0 := x0 ^ x1 := y0 ^ y1 := t0;
Node 13b: na4(a2; a1; i1; x1) ^ na4(a3; a2; j0; y1);
Nodes 15, 5b: a4 := a3;
Nodes 6, 4-F4, 7, 25: i4 := i0 + 1 ^ :(i4 � c0).

A path constraint is composed of: (1) constraints de�ning input variables:
simple input variable and input array element (na3 constraints), (2) assignment
constraints: equality constraints with �:=� notation for simple variables, and
na4 constraints for array elements, (3) branch constraints (constraints for the
branches of the path). However, only the branch constraints (3) represent the
conditions which must be satis�ed so that the path is traversed. The other types
of constraints (1) and (2), as will be shown later, are used in the simpli�cation
of the branch constraints in terms of input variables. The solving of the path
constraint is the solving of its branch constraints. In the CSP associated with

15

a path constraint, only the input variables will have a domain. There is no
need to de�ne a domain for the other variables as they are de�ned in terms of
input variables or constraints. If it is not the case, the program is referring to
non-initialized variables, and is thus incorrect.

4.3 Analysis

Proposition 4. The constraint generated by Algorithm 1 is a path constraint.

Proof. The path can be seen as a program (called path program) if we replace
every condition ci of the path by an assignment bi := ci, where bi is a boolean.
A test input v will traverse the path if after executing the path program, all
the bi will become true. To prove that the constraint generated by Algorithm 1
�as denoted above by PC(p)� is a path constraint, we must show that

V
bi is

equivalent to PC(p).
As the above abstraction of the algorithm (namely, the idea of using indexed

variables) follows the same principle as the Static Single Assignment (SSA) form
[4] (which is an equivalent representation of a program), we can conclude that
the generated constraint PC(p) is actually equivalent to the path program. In
other words, PC(p) is a path constraint. This means that if a test input v
traverses the path p, then the constraint PC(p) (evaluated by using the operators
of the programming language L) will be satis�ed by that input.

Note that in an SSA form, there is only one assignment to each variable in the
entire program, and each use of a variable refers to only one assignment. Thanks
to this form, one can reason easily about variables because if two variables
have the same name, then they contain the same value wherever they occur in
the program. Here is an example of a simple sequence of assignments and its
corresponding SSA form :
Original form : x = 0; y = x+1; x = x+y; y = x+y;

SSA form : x1 = 0; y1 = x1+1; x2 = x1+y1; y2 = x2+y1;

Our constraints dealing with arrays such as na3 and na4 constraints, are also
inspired from SSA form. Indeed, SSA form provides a special expression, among
others, to handle arrays, update(a; j; w) which evaluates to an array that has
the same size and the same elements as a, except for the j-th element where the
value is w.

In another work [13], also based on SSA form, a de�nition statement a1 =
update(a0; j; w) is translated into

element(J;A1;W)
^

I 6=J

(element(I; A0; V) ^ element(I; A1; V))

where the constraint element(I; L; V) expresses that V is the I-th element in
the list L. Note that in [13], the initial program is �rst transformed into an SSA
form, and constraints reaching a node (statement) are then constructed from
this form; while in our work, given a speci�ed path, we rather make a traversal
of the path to construct directly an SSA-form-like path constraint.

5 Test Data Generation for Path Coverage

This section describes a constraint solving algorithm for test data generation
under the path coverage criteria. The ideas underlying the conservation of �oat

16

solutions in our �ltering algorithms will also be highlighted. We �rst de�ne a
consistency notion, called e-box consistency, that is the core of our solver for
the test data generation problem.

5.1 Consistency

We introduced e-box consistency in [32] as an extension of the classical box-
consistency [17] to integer, boolean, and �oat variables. The objective is to
reduce the domains of the variables (i.e. their intervals) without removing solu-
tions.

De�nition 18 (e-box consistency). Let P = (V ;D; C) be a CSP where V =
(x1; : : : ; xn), a set of (�oat and integer) variables; D = (X1; : : : ; Xn) with Xi =
[li; ri] the domain of xi (1 � i � n); C = (c1; : : : ; cm), a set of constraints de�ned
on x1; : : : ; xn and c 2 C be a k-ary constraint on the variables (x1; : : : ; xk). The
constraint c is e-box consistent in D if for all xi (1 � i � k)

� if xi is a �oat variable then
C(X1; : : : ; Xi�1; [li; l

+
i]; Xi+1; : : : ; Xk)

V

C(X1; : : : ; Xi�1; [r
�
i ; ri]; Xi+1; : : : ; Xk) when li 6= ri

or C(X1; : : : ; Xi�1; [li; ri]; Xi+1; : : : ; Xk) when li = ri

� if xi is a integer variable then
C(X1; : : : ; Xi�1; [li; li]; Xi+1; : : : ; Xk)

V

C(X1; : : : ; Xi�1; [ri; ri]; Xi+1; : : : ; Xk) when li 6= ri

or C(X1; : : : ; Xi�1; [li; ri]; Xi+1; : : : ; Xk) when li = ri

where C is the natural interval extension of constraint c.
The CSP P is e-box consistent in D if for all c 2 C, c is e-box consistent in

D.

Given the initial domains of the variables (the initial box), the purpose
of �ltering is to obtain the smallest box, satisfying the e-box consistency, and
without removing any solutions from the initial box. In constraint programming,
one �nds a lot of sophisticated consistencies dealing with real solutions, such
as used in Prolog IV, CLP(BNR), or Numerica. A consistency dealing with
�oat solutions was also proposed in [25], where the de�nition is simpler than
the e-box consistency as it concentrates only on �oat variables.

De�nition 19 (Filtering by e-box consistency). Filtering by e-box consis-
tency of a CSP P = (V ;D; C) is a CSP P 0 = (V ;D0; C) such that (1) D0 � D,
(2) P and P 0 have the same �oat solutions, and (3) P 0 is e-box consistent in D0.

Our �ltering algorithm is based on the property that if C(X) does not hold,
i.e. right(C(X)) = 0, then no solution of c lies in box X, that can then be
pruned. We denote by �e�box(P), the �ltering by e-box consistency of P . Note
that the �ltering by e-box consistency of a CSP, by its de�nition, always exists
and is unique. An implementation of �e�box(CSP), called PhiEBox, is presented
in Algorithm 2, that is an extension of a �ltering algorithm in [17]. Technically,
our LeftNarrow algorithm is simpler than a standard one [7] for the classical
box-consistency [17], but safe for �oat solutions. Our LeftNarrow consists in
applying recursively a domain-splitting on the initial interval to obtain the left-
most zero canonical interval, while the standard LeftNarrow recursively applies

17

two operations, an iterator of Newton and a domain-splitting on the initial in-
terval. Because of the use of the Taylor interval extension, and of the fact that
the iterator of Newton aims to prune parts �which do not have mathematical
solutions� to make the algorithm converge more quickly, it may not be safe for
�oat solutions as shown in [25].

Algorithm 2 �e�box

function PhiEBox(V : V ariables, D : Box, C : Constraints) : CSP;
PRE
V a set of variables
D a box of their corresponding domains
C a set of constraints over V

POST
Return a CSP (V ;D0; C) such that (V ;D0; C) = �e�box(V ;D;C)

begin
1: queue := C ;
2: while queue 6= ; do
3: c := dequeue(queue); {Suppose c is a constraint over x1; : : : ; xk}

updatedDomVars := ;; {A set of variables with domain updated}
4: for xi 2 variables(c) do
5: CX := C(X1; : : : ;Xi�1;X;Xi+1; : : : ; Xk);{univariate interval constraint}
6: left(X0

i
) := left(LeftNarrow(CX; Xi));

right(X0

i
) := right(RightNarrow(CX; Xi));

if Xi 6= X0

i
then

7: Xi := X0

i
;

8: if Xi = ; then return (V ; ;; C);
updatedDomVars := updatedDomVars

S
{xi};

endfor
9: queue := queue

S
{c ' 2 C j updatedDomVars

T
variables(c') 6= ;};

endwhile
10:return (V ;D;C);

end

5.2 Conservation of Float Solutions

Since interval libraries are traditionally constructed to preserve mathematical
solutions, it may be that �oat solutions will not be preserved when using such
libraries. As introduced in Section 2, our aim is to obtain �oat solutions. We
describe here the core results related to the conservation of �oat solutions in
our �ltering algorithms. We �rst give some necessary de�nitions.

As discussed earlier, F-numbers are a �nite and discrete version of the real
numbers on a computer. And all real operations are thus replaced by operations
over F-numbers. As the result of an operation over F-numbers may not be an
F-number, rounding is necessary to close the operations over F . The IEEE
754 standard for �oating-point arithmetic proposes the following four rounding
modes:

� +1 : which maps x to the smallest F-number xk such that x � xk.

� �1 : which maps x to the greatest F-number xk such that xk � x.

� 0 : which is equivalent to the rounding mode +1 if x < 0 and to �1 if
x � 0.

� near : which maps x to the nearest F-number.

An overview of the IEEE 754 standard can be found in [25].

18

De�nition 20. Let f : Rn ! R be a real expression. Then we denote by fr,
a corresponding �oat expression of f , where r represents one of the following
rounding modes f+1;�1; 0; nearg

The following proposition, given in [25] with a sketch of proof, is the basis
of the conservation of �oat solutions.

Proposition 5. Assuming every basic operation has an optimal interval ex-
tension, if F : In ! I is the natural interval extension of a real expression
f : Rn ! R, then for all rounding mode r 2 f+1;�1; 0; nearg and 8I 2 In,
we have fr(I) � F (I),
where fr(I) = ffr(v) j v 2 I and v 2 Fng.
Note that for all r 2 f+1;�1; 0; nearg, f�1(v) � fr(v) � f+1(v).

This proposition states that natural interval extensions conserve �oat solu-
tions, when all the basic operations have an optimal interval extension. Conser-
vation of �oat solutions here is re�ected by the fact that for whatever rounding
mode r being used, interval evaluation on interval I, F (I), contains at least all
�oat solutions of fr(I).

Proposition 5 requires the interval extension of the basic operations to be
optimal, what may not be the case for some basic operations (e.g. sin, ln,
etc.). The following property extends a property in [19, 25] when the interval
extensions of some basic operations are not optimal.

8I 2 In; [min(f�1(I));max(f+1(I))] � F (I) (1)

If Property (1) is satis�ed by the non-optimal basic operations, then the interval
extension F conserves �oat solutions, because fr(I) � [min(f�1(I));max(f+1(I))],
whatever rounding mode r being used.

In practice, it is sometimes di�cult to have Property (1) for basic operations
when only the rounding mode near is used such as in Java. However, if Prop-
erties (2) and (3) below are satis�ed, then one can show that �oat solutions are
also preserved. Because for any I 2 In,
[min(f�1(I));max(f+1(I))] � [min(f�near(I));max(f

+
near(I))] � F (I).

8I 2 In; [min(f�near(I));max(f
+
near(I))] � F (I) (2)

where f�near(I) = f(fnear(v))� j v 2 I and v 2 Fng and f+near(I) = f(fnear(v))+ j v 2
I and v 2 Fng.

8v 2 Fn; (fnear(v))
� � f�1(v) � fnear(v) � f+1(v) � (fnear(v))

+ (3)

5.3 Algorithm

Our algorithm for path coverage (given in Algorithm 3) includes the following
steps. (1) A path constraint is derived from the speci�ed path of the ICFG
(by Function PathConstraintGeneration given in the previous section). Such
a constraint involves integer, boolean and �oat variables, as well as operations
with arrays. Note that the branch constraints BC mean constraints generated
for the branches of the path. They represent the conditions which must be

19

Algorithm 3 Generation of test data for path coverage

function TestDataGenPC(P:Procedure,G:ICFG,p:Path):Fn;
PRE G the ICFG for test procedure P

p a path in G
POST a test case on which the path p is executed
begin
PC:= PathConstraintGeneration(P,G,p);
BC := the branch constraints of PC;
OC := PC n BC;
V := the currently identified input variables in BC;
D := the domains of the variables in V ;
return SolvePathConstraints(V , V , D, BC, OC);

end

function SolvePathConstraints(V ; V 0:V ariables,D:Box,
BC:BranchConstraints,OC:OtherConstraints):Fn;

PRE V the currently identified input variables in BC
V 0 a subset of V (V 0 � V)
D a box representing the domains of the variables in V

POST Return some vector v 2 D such that v is a test case for path p
Otherwise it returns ;

begin
(Vt; Dt; BCt; OCt) := Filtering(V ; D; BC; OC);
if Dt is ; then return ;;
else
if Dt is an � box then return FindSolution(BCt,Dt);
else

if V 0 is not empty then
Choose arbitrarily a variable x in V 0;
m := (left(Xt) + right(Xt))=2;
if x is an integer variable then
ms := SolvePathConstraints(Vt; V 0 n fxg; Dt[Xt=[bmc; bmc]]; BCt; OCt);

else ms := SolvePathConstraints(Vt; V 0 n fxg; Dt[Xt=[m;m]]; BCt; OCt);
if ms 6= ; then return ms;
if x is an integer variable then
ls := SolvePathConstraints(Vt; V 0 n fxg; Dt[Xt=[left(Xt); bmc � 1]]; BCt; OCt);

else ls := SolvePathConstraints(Vt; V 0 n fxg; Dt[Xt=[left(Xt);m
�]]; BCt; OCt);

if ls 6= ; then return ls;
if x is an integer variable then
rs := SolvePathConstraints(Vt; V 0 n fxg; Dt[Xt=[bmc + 1; right(Xt)]]; BCt; OCt);

else rs := SolvePathConstraints(Vt; V 0 n fxg; Dt[Xt=[m
+; right(Xt)]]; BCt; OCt);

if rs 6= ; then return rs else return ;;
else return SolvePathConstraints(Vt; Vt;Dt; BCt; OCt);

end

20

satis�ed so that the path is traversed. The other types of constraints (OC) are
used in the simpli�cation of the branch constraints in terms of input variables.
(2) The path constraint is solved by an interval-based constraint solving algo-
rithm (Function SolvePathConstraints). Function Filtering (given below in
Algorithm 4) prunes �rst the path constraint before it is explored further by
a domain-splitting. (3) Given a path constraint, the output of the constraint
solver is either a (set of) interval solutions of size epsilon (� box), or that the
path constraint has no interval solution. When the path constraint has no in-
terval solution, the path is actually infeasible. When an � box is returned, a test
case is extracted by function FindSolution, as speci�ed hereafter.

Speci�cation 1 (FindSolution). Let C be a path constraint, e be an � box

and TS be a representative set of �oating-point vectors in e. The function
FindSolution(C; e) returns, if it exists, some vector v 2 TS such that eval(C;v)
holds. Otherwise it returns ;.

It is interesting to highlight the main di�erence between the following two
cases, the path constraint with and without arrays. Given a path constraint
without arrays, its branch constraints are simpli�ed once for all, in terms of
input variables by recursively replacing non-input variables by their de�nitions
in some assignment constraints of the path constraint. These simpli�ed branch
constraints together with an initial box (representing the domains of the input
variables) are then solved to develop test cases executing the path. However
when a path constraint involves arrays, it is not always possible to simplify all
of its branch constraints in terms of input variables with the initial box. For
example, suppose a[i] (i is an expression involving input variables) is an array
reference occurring in a branch constraint, then it is generally impossible to
determine which array element a[i] is. Therefore, the branch constraints will be
simpli�ed incrementally along with their resolution. The simpli�cation is thus
integrated in the �ltering (function Filtering in Algorithm 4), which in turn
is integrated in the path constraint solving (function SolvePathConstraints)
as illustrated above. Note also that the number of (currently identi�ed) input
variables can change over the solving process. Indeed, input variables are de�ned
by a constraint x 2 dom(x) (de�ning input variable x) or na3(b; a; j) (de�ning
input variable b[j]). If j is not a number, b[j] can only be added to the set of
input variables when j can be simpli�ed into a number. The function Filtering

realizes the �ltering on the path constraint. The path constraint is represented
by the branch constraints and the other constraints. As explained in Section 4,
the pruning is only performed on the branch constraints. The function Simplify
(Algorithm 5) simpli�es the branch constraints by extracting information from
the other constraints. The number of known input variables may increase after
a simpli�cation.

In Algorithm Filtering, the branch constraints are �rst simpli�ed (line
1). The pruning of the branch constraints involving only input variables is per-
formed in line 3. When the resulting box (D0

t) is empty, the CSP is inconsistent.
If there are branch constraints not involving input variables, these are simpli�ed
using the reduced domains. This is performed until C1 = ; (nothing to prune),
or no pruning is achieved (D0

t = Dt), or all branch constraints only involve input
variables (C2 = ;). Finally the function returns a new CSP (line 5), satisfying
(1) Store (all branch constraints involving only input variables) is e-box con-
sistent in box Dt, and (2) C2 (the other branch constraints involving non-input
variables) cannot be simpli�ed further with box Dt.

21

Algorithm 4 Filtering of path constraints
function Filtering(V :V ariables,D:Box,BC:BranchConstraints,OC:OtherConstraints):CSP;
PRE
(V �;D;BC ^ OC) is a CSP where V � = vars(BC ^ OC)
V the set of input variables currently identified in branch constraints BC (V � V �)
D a box representing the domains of the variables in V

POST
Return a CSP (V ; ;; BC ^ OC) if BC is detected as inconsistent.
Otherwise return (V 0; D0; BC0 ^ OC0)
with � V � V 0 � V �

� (V �; D0; BC0 ^ OC0) CSP equivalent to (V �;D; BC ^ OC)
� BC0 = BC0

1 ^ BC0

2

� BC0

1 e-box consistent
begin
1:(Vt; Dt; BCt; OCt) := Simplify(V , D, BC, OC);
C1 := branch constraints (involving only input variables) of BCt;
C2 := BCt n C1;
Store := C1;

2:while C1 6= ; do
3: (Vt; D0

t
; Store) := PhiEBox(Vt, Dt, Store);

if D0

t
= ; then return (V ,;,BC,OC);

if D0

t
= Dt then break;

Dt := D0

t
;

if C2 = ; then break;
4: (V 0

t
; D0

t
; C0

2; OC0

t
) := Simplify(Vt; Dt; C2; OCt);

C1 := branch constraints (involving only input variables) of C0

2;

C2 := C0

2 n C1;
Store := Store ^ C1;
Vt := V 0

t
; Dt := D0

t
; OCt := OC0

t
;

endwhile
5:return (Vt; Dt; Store ^ C2; OCt);

end

We now analyze in detail the function Simplify. The function Simplify
returns an equivalent but simpli�ed CSP. The objective is to simplify the branch
constraints BC in terms of the input variables in V with the box D. If BC
involves only input variables (line 1), the function returns the input CSP without
modi�cations. Otherwise, it enters in the main loop until no more simpli�cation
can be done. The following simpli�cations are performed. In line 2, every non-
input simple variable x is replaced by its de�nition. A variable is simple if
it is neither an array variable nor an array element. Note that there must
exists an assignment constraint, x := def(x), for non-input variable x in OC.
The replacement of a simple variable by its de�nition is only carried out in a
�symbolic� manner. We illustrate our idea by an example. Assuming x appears
in a data structure DS1, and def(x) is represented by a structure DS2, then
a link is established between DS1 and DS2. Therefore, we are not dealing
with important-sized expressions as resulted from an actual simpli�cation. This
simpli�cation of simple variables is performed only once in the �rst call of the
5 function. The simpli�cation of array variables is however more complex and
must be done incrementally during the solving process.

Lines 4 and 5 simplify the constraints na3 and na4 in OC. Line 6 simpli�es
reference to array element b[i], where the index is known. Finally, in line 7, every
reference to such array element b[i] is propagated in some constraint of OC,
which can be one of the following constraints: b := a (this kind of constraints is
generated only during parameter passing of array variables), in line 7a; na3 (line
7b); and na4 (line 7c).(See De�nition 16 for the de�nition of null arrays.) An
inconsistency can be detected when an array element is used in an expression
without being initialized.

22

Algorithm 5 Simpli�cation of path constraints
function Simplify(V :V ariables,D:Box,BC:BranchConstraints,OC:OtherConstraints):CSP;
PRE
(V �;D;BC ^ OC) is a CSP with V � = vars(BC ^ OC)
V the set of input variables currently identified in branch constraints BC (V � V �)
D a box representing the domains of the variables in V

POST
Return a CSP (V ; ;; BC ^ OC) if BC is detected as inconsistent.
Otherwise, return (V 0;D0; BC0 ^ OC0)
with � V � V 0 � V �

� (V �; D0; BC0 ^ OC0) CSP equivalent to (V �;D; BC ^ OC)
begin
1:if BC involves only input variables then return (V ;D;BC;OC);
else

2: while 9 a simple and non-input variable x in BC ^ OC do
BC := BC[x=def(x)]; {There must exists a constraint, x := def(x), in OC}
OC := OC[x=def(x)]; {simplification for variable x once for all}

simplify := true;
3: while simplify do

simplify := false;
4: foreach constraint na3(b; a; j) in OC with b[j] not in V such that

j involves only input variables with their domains being point intervals do
jval := value of j;
OC[na3(b; a; j)=na3(b; a; jval)]; BC := BC[b[j]=b[jval]];
V := V [fb[jval]g;
simplify := true;

5: foreach na4(b; a; j; v) in OC such that
j involves only input variables with their domains being point intervals do
j is simplified into a number jval;
OC[na4(b; a; j; v)=na4(b; a; jval; v)];
simplify := true;

6: foreach b[i] in BC such that
i involves only input variables with their domains being point intervals do
i is simplified into a number ival;
BC[b[i]=b[ival]];
simplify := true;

7: foreach b[i] in BC such that i is a number and b[i] is not an input variable do
7a: case 9 (b := a) in OC : BC[b[i]=a[i]]; simplify := true;
7b: case 9 na3(b; a; j) in OC | j is a number :

if a 6= null then BC[b[i]=a[i]]; simplify := true; else return (V ; ;; BC;OC);
7c: case 9 na4(b; a; j; v) in OC | j is a number :

if i = j then BC[b[i]=v]; simplify := true;
else if a 6= null then BC[b[i]=a[i]]; simplify := true;
else return (V ; ;; BC;OC);

endcase
endwhile

8: return (V ; D; BC; OC);
endif

end

23

Example

Example 2. As an example for path coverage, with the path given in Example 1
(Section 4) and an initial box (a0 : [5; 20]; c0 : [1; 10]; i1 : [�5; 20]; j0 : [�5; 20]),
we obtained the test case: a0 = (12:5; 12:5; 12:5; 12:5; 12:5; 12:5; 12:5; 8:75; 12:5; 12:5),
c0 = 1, i1 = 4, j0 = 7. Note that a0 (array variable), c0, i1, and j0 are the input
variables generated during the path constraint generation.

Analysis Our constraint solving algorithm for path coverage (Algorithm 3) is
sound but not complete, because the FindSolution function is incomplete. If
it does not �nd test data, it could be that the path is infeasible. Indeed, given
an epsilon interval solution, we take only some points in it to check if they are
test cases. Of course, we can make a complete labeling in interval solutions,
and hence having a complete solver, but then the complexity may become too
expensive. However, since path constraints are usually under-constrained (there
are many test cases traversing the path if it is feasible), and the epsilon can be
chosen very small (usually 1e-16 in our experiments), even a middle point in
the interval solution turns out to be su�cient as will be illustrated by our
experiments.

The constraint solving problem handled in this work, as well as many other
constraint solving problems, is NP-complete, because the SAT problem in com-
putability theory can be reduced to such problems. This means that back-
tracking search is, in general, an important technique in solving them. As a
consequence, our constraint solving algorithm can be considered as belonged
to the class of algorithms based on backtracking search with propagation (in
Constraint Programming). The propagation is realized here by our e-box con-
sistency �lter.

6 Test Data Generation for Statement Coverage

This section proposes an algorithm of test data generation for statement cov-
erage (searching for test data traversing a node of the ICFG). As a branch is
dual to a statement in the control �ow graph, all the following algorithms can
easily be adapted for branch coverage. Given a node, di�erent paths reaching
the node will be dynamically generated. The search will be guided by a Control
Dependence Graph, as well as pruned by our e-box consistency �lter. First, two
di�erent control dependences for programs with procedure calls are introduced:
the intraprocedural and the interprocedural control dependences. We will show
that the interprocedural control dependence is better for our purpose.

6.1 Control Dependence Graph

Intuitively, a node a is linked to a node b in the control dependence graph if any
execution path reaching b contains also a. In other words, reaching statement a
is a necessary condition to reach statement b. Technically, control dependence
is de�ned in terms of a CFG and the post-dominance relation among the nodes
in the CFG [11].

De�nition 21. A node V is post-dominated by a node W in a CFG G, if every
directed path from V to ExitG (not including V) contains W . A node Y is
control dependent on node X i� (1) there exists a directed path P from X to

24

Table 1: Intraprocedural control dependences of Pro-
gram 1

Nodes Control Dependent On
3,4,7 (2, true)

4,5a,5b,6 (4, T4)
9,10a,10b,11a,11b,12,15 (8, true)

13a,13b (12, T12)
14a,14b (12, F12)
17,20 (16, true)
18 (17, T17)
19 (17, F17)

22,26 (21, true)
23,24,25 (22, T22)

Table 2: Interprocedural control dependences of
Program 1

Nodes Control Dependent On
3,4 (2, true)

5a,8,9,10a,16,17 (4, T4)
7 (4, F4)

13a,13b (12, T12)
14a,14b (12, F12)

4,5b,6,10b,11a,11b,12 (17, T17)
15,16,17,18,20,21,22 (17, T17)

19 (17, F17)
23,24,25 (22, T22)

Y with all Z in P (excluding X and Y) post-dominated by Y , and (2) X is not
post-dominated by Y .

Note that if node Y is control dependent on node X then node X must have
two branches. Following one of the branches results in Y being executed while
taking the other results in Y not being executed.

Intraprocedural control dependence analysis is carried out independently on
individual procedures, calculating thus control dependences that exist within
them. Concretely, given the CFG for each procedure, intraprocedural control
dependences for the procedure are obtained by applying an existing algorithm
for control dependence computation [11] to the CFG. Table 1 illustrates the
intraprocedural control dependences for all procedures of Program 1. Note that
(1) the CFGs for those procedures are extracted from the ICFG (in Figure 3)
by ignoring, for each call site, its pair of call and return edges, and connecting
directly its call node with its return node; (2) we view the entry node of the CFG
associated with a procedure as a predicate node representing the conditions that
cause the procedure to be executed, and therefore nodes in the CFG that are not
control dependent on any condition nodes are control dependent on the entry
node. In the table, for example, node 3 is control dependent on node EntryM
(node 2) with condition true, and node 5a on node 4 with condition T4.

Interprocedural control dependence analysis accounts for interactions be-

25

tween individual procedures. Those interactions are re�ected by call and return
edges, connecting the individual CFGs, in the ICFG. Interprocedural control de-
pendence can be computed for the nodes of the ICFG by an existing technique
[31]. Table 2 illustrates the interprocedural control dependences for Program
1. A comparison between these dependences and those computed intraproce-
durally (in Table 1) shows several di�erences. (1) There are intraprocedural
dependences which are ignored in the interprocedural context, e.g. node 9 is
intraprocedurally control dependent on node EntryB (node 8) while this depen-
dence is not interprocedurally necessary. (2) There are interprocedural depen-
dences between nodes in di�erent procedures while these dependences cannot
be computed intraprocedurally, e.g. node 6 is interprocedurally control depen-
dent on node 17. Note that the presence of embedded halt statements in called
procedures are not the only cause of such dependences [31]. (3) There are in-
terprocedural dependences between nodes in the same procedures, yet these
dependences are not intraprocedurally established, e.g. node 7 is interprocedu-
rally dependent on node 4 while this is not intraprocedurally detected. All these
di�erences show that intraprocedural control dependences can be imprecise to
guide the search of test data for programs with procedure calls. We hence choose
to use an interprocedural control dependence graph for this purpose.

De�nition 22 (ICDG). An interprocedural control dependence graph (ICDG)
for a procedure P is a directed graph where the nodes are the nodes of the ICFG
associated with P . The edges represent the interprocedural control dependences
between nodes. Edges are labeled with conditions. An edge (X , Y) in a ICDG
means that Y is interprocedurally control dependent on X . There will be how-
ever no edge for a node that is interprocedurally control dependent on itself.

Figure 4 depicts the ICDG for Program 1, which is actually a graphical rep-
resentation of Table 2. Note that, for simplicity, additional nodes are introduced
in the ICDG to group all nodes with the same control conditions together, e.g.
nodes 5a,8,9, : : : (interprocedurally control dependent on node 4 with condition
T4) are grouped together under an additional node.

19

5a 8 9 10a 16

2

43

5b 6 10b 11a 11b 12 15 18 20 21

13a 13b 14a 14b 23 24 25

7

true true

F4
T4

T17

T17
T17

T22
T12 F12

F17

22

26

17

Figure 4: ICDG for Program 1

26

De�nition 23 (Reachability graph). The reachability graph for a node n in
a directed graph G (with a unique start node) is the smallest subgraph of G,
containing all the paths from the start node to node n.

De�nition 24 (Decision graph). The decision graph for a node n in an ICDG
G is the reachability graph for n in G.

The construction of the reachability graph and the decision graph for a node
is straightforward. For example, the decision graph for node 7 is depicted in
dashed lines in Figure 4. Given the decision graph for a node, a path from the
root of the graph to the node contains a set of constraints that must be satis�ed
by a class of inputs causing the node to be executed. For example, the path
2-4-7 in the decision graph for node 7 corresponds to inputs executing node 7
with no passage in the loop (associated with condition node 4), while the path
2-4-17-4-7 corresponds to inputs executing node 7 with one passage in the loop.
Therefore, the decision graph for a node captures all the possible constraints to
satisfy to reach the node.

6.2 Algorithm

Algorithm 6 Statement coverage

function TestDataGenerationSC(P:Procedure, G:ICFG, N:Node) : Fn;
PRE G The ICFG for test procedure P

N a node in G
POST a test case traversing node N
begin
G1 := reachability graph for node N in G;
G2 := ICDG for G;
DG := decision graph for node N in G2;
return TestGen(P, G1, <START>, START, N, DG);
{START is the start node in G1}

end

function TestGen(P:Procedure, G:ReachabilityGraph,
path:Path, start:Node, end:Node, DG:DecisionGraph) : Fn;

PRE path a path in G
DG the decision graph for node end

POST a test case traversing node end
begin

for each successor s of start in G do
{If start in DG, the successors in DG are selected first,}
{if start is a loop, the exit of the loop is selected first}
newPath = path . s ;
PC := PathConstraintGeneration(P,G,newPath);
BC := the branch constraints of PC;
OC := PC n BC;
V := the input variables currently identified in BC;
D := the domains of the variables in V ;
(V 0; D0; BC0; OC0) := Filtering(V ; D; BC; OC);
if (D0 6= ;) then

if (s = end) then
{test data generation for path coverage}
result = SolvePathConstraint(V 0,V 0,D0,BC0,OC0);
if result 6= ; then return result;

else return TestGen(P,G,newPath,s,end,DG);
endfor
return ;;

end

The generation of test data for statement coverage is described in Algorithm
6 (TestDataGenerationSC). Paths reaching the input node (node N) are dy-
namically constructed. When a path reaches this node, test data generation for

27

path coverage is used to �nd a test case. Note that the search for such paths
is carried out on the reachability graph for the input node in the ICFG. As the
potential number of paths reaching the node can be large (or in�nite), heuristics
and pruning are used during the search. First, the search is guided by the ICDG,
and more particularly by the decision graph. The algorithm always extends a
path by �rst choosing nodes in the decision graph, as such nodes are required
in the path. Second, the exit of the loop is also selected �rst to avoid in�nite
paths. Third, the search is pruned by our e-box �ltering operator (function
Filtering in Algorithm 4). A path is abandoned as soon as we detect that it is
an infeasible path. This algorithm can be optimized in many ways (incremental
construction of path constraints, : : :). We however prefer to present a simple
and comprehensive version.

As an example, consider node 7 in Figure 3, as well as its decision graph
shown in dashed lines in Figure 4. First, the path 1-2-3-4-7 will be constructed
by the algorithm. Assuming that the corresponding path constraint is inconsis-
tent, a path 1-2-3-4-5a-8- : : : (entering in the main loop) is next constructed.

6.3 Analysis

Our algorithm of test data generation for statement coverage is sound but not
complete. It may loop or fail to �nd test data. This follows from the fact
that determining whether a node of the control �ow graph is executable, is
undecidable in the general case (reduced to the halting problem in computability
theory) [36]. Also, it was reported in [12] that there exist loops, for which
the termination with some data is unknown up till now. So it is impossible to
determine if an instruction placed after a loop is executable in the general case.

7 The COTTAGE System

A system written in Java, called COTTAGE, was developed for test data gen-
eration of programs written in (a subset of) C. The system is an extension of
our previous prototype [33]. It uses an interval arithmetic library [18], based
on [19] for the implementation of the constraint solving algorithm, as well as
algorithms from [31] to construct the interprocedural control dependences of the
test program. Without these libraries, the COTTAGE system is about 13,000
Java lines. The implementation is designed, however, to be independent from
the programming language used by the program under test. This means that
the source code, written in some imperative language L, is �rst translated into
an internal representation, that are common for all languages, such as C, Pascal,
etc. We �rst describe the architecture of the COTTAGE system.

Implementation A data�ow diagram of the COTTAGE system is given in
Figure 5. A single source program (possibly containing multiple procedures)
and initial data, such as the domains for the input variables and the name of
a test procedure in the source program�are input to the Parser/Analyzer
component.

The TestGenerator component inputs an ICFG and its corresponding ICDG
(Interprocedural Control Dependence Graph) from the Parser/Analyzer com-
ponent. It tries to generate test cases for all nodes of the ICFG. This com-
ponent implements thus our algorithm of test data generation for statement

28

user

Parser/Analyser

Execution

ConstraintSolving

& InitialData
C-Program

Instrumented
C-Program

TestGenerator

Execution
Results

PathConstraint(s)

TestInput(s)

TestInputProgram(s)

TestInput(s)
ICFG & ICDG

TestInputProgram-Gen

& Coverage
TestInput(s)

Figure 5: Data�ow diagram of the COTTAGE system

coverage. For each node of the ICFG, a path(s) reaching the node is dynam-
ically constructed. A path constraint is then generated and passed to the
ConstraintSolving component. The ConstraintSolving component gener-
ates a test input following Algorithm 5, and passes it to the TestInputProgram-Gen
component. Since our implementation (more speci�cally our constraint solving
algorithm) is written in Java, the generated test input is thus a �oat solution, in
Java, of the path constraint. Since the program under test is in C, we must also
verify that the test input is a �oat solution, in C, of the path constraint. In other
words, we must verify that the test input actually traverses the path on execu-
tion of the C program under test. This can be veri�ed by running a correspond-
ing instrumented C program with the test input. The TestInputProgram-Gen
component therefore receives a test input and an instrumented C-program. It
then generates a C program (referred to as a TestInputProgram) for running the
instrumented C-program on the test input.

The Execution component �rst compiles, and then runs the TestInputPro-
gram. Currently, the user carries out this component, and veri�es the execution
results for the actual coverage of the test inputs generated. However, the com-
ponent should ideally be automated. And the execution results should be sent
back to the TestGenerator component. Therefore, a test input not traversing
the node will be rejected, and other test inputs will be generated for the node
until obtaining a test input actually executing the node (a test case for the
node).

Finally, the TestGenerator component reports all test inputs found, as well
as the predicted statement coverage for all the nodes of the ICFG. The pre-
dicted coverage means the coverage, calculated without connection with the C
language.

FindSolution function (Speci�cation 1) In our implementation, given an
epsilon interval-solution, we simply select its middle point to check if it satis�es
the path constraint. If so, it is actually a �oat solution (in Java), and it is
returned as a predicted test case for the path. Experiments will show that this

29

simple and e�cient implementation turns out to be su�cient. Of course, a
general labeling strategy, such as described in [25], can also be applied to the
epsilon interval solution. The labeling is based on a uniform exploration of the
domain. It is parameterised by the number of levels of exploration (labeling
level, for short). Figure 6 illustrates this enumeration process on one variable.
The numbers correspond to the levels. Using this labeling strategy, on our test

2 2
3 3

4 4 4 4

1

Figure 6: Labeling level

cases, we only observed little change (in time) to �nd a test case, compared with
the default labeling level (one) where only a middle point is chosen.

Conservation of �oat solutions Function calls to built-in functions such as
exp (Euler number e raised to the power of a number), log (the natural loga-
rithm of a number), sin, etc, are treated as basic operators, i.e. these function
calls are not developed in the ICFG. The interval extensions of these functions
were already available in [18] or constructed in our Java implementation. It
is not clear whether the Java implementation in [18] of transcendental func-
tions satis�es the property for conserving �oat solutions as stated in Subsection
5.2. We however checked this property experimentally. Note that to make our
approach work, interval extensions for built-in functions, relations, and opera-
tors of the C programming language have been implemented in Java. There is
thus a possibility that a �oat solution found by the constraint solving system
is discarded as a solution by the Execution part of the system (executing the
instrumented C program).

Parameters A parameter of the COTTAGE system is the size of epsilon. The
smaller the epsilon is, the more time is required to �nd an interval solution, but
the resulting epsilon interval is more precise, and the FindSolution function
has more chances to �nd a solution. Another parameter is a time limit (timeout)
for solving a path constraint. This allows the system to escape complex (and
usually unsound) path constraints. Finally, the labeling-level as discussed above
is also a parameter of the system.

The subset of C The COTTAGE system is able to generate test data for
programs written in a subset of C. The following features are not yet supported
by our system: (1) non-numeric types such as string, enum, struct, union, gen-
eral pointers, : : : ; (2) type-quali�ers: const and volatile; (3) storage-class-
speci�ers: auto, register, static, extern (since we handle only a single source
�le), typedef; (4) labeled-statements such as case, default, and switch; (5)
jump-statement goto (note that continue and break statements are both han-
dled); (6) operators: %, <<, >>, &, ^, j, ?, sizeof; (7) control-lines, except
#define for numeric constants and #include that are both handled.

Type analysis Type analysis is important in our system to ensure the preci-
sion of interval evaluations. Let us take an example to illustrate this. Suppose

30

an expression (x + y) � 2:0, where x and y are integer variables. Then the type
of the whole expression is �oat, while sub-expression x + y is of type integer.
Suppose also that x is associated with the interval [2; 4], and y with [5; 6]. Since
we work with an interval library where the bounds of an interval are �oats, [2; 4]
and [5; 6] are in fact represented respectively by [2:0; 4:0] and [5:0; 6:0], and the
bounds of their intervals are always rounded to integer values.

Soundness and Completeness of COTTAGE Since the system veri�es
that the generated test inputs actually traverse the corresponding paths on
execution of the C program under test, soundness of COTTAGE is ensured.
However, three incompleteness cases may arise. (1) The constraint solver pro-
vides solution boxes covering all mathematical solutions and �oat Java solutions
of a path constraint. But a �oat C solution could not be covered by the provided
boxes. (2) An (e�cient) implementation of FindSolution could fail to �nd a
�oat C solution in an interval. (3) The system could fail to �nd a solution for
a path constraint because of the time limit for solving a path constraint.

Case (1) is a limitation of our approach as we perform the search for a so-
lution in a programming language independent from the program under test.
This however provides more �exibility, and allows our system to handle testing
with di�erent programming languages. In practice, as illustrated by our experi-
ments, the resulting theoretical limitation has little e�ect on the system. First,
most solvable path constraints have many possible test cases. The objective is
to �nd one test case per node (or branch), not to �nd all of them. Second, the
implementation of the constraint solver is designed to limit this problem. For
instance, the basic interval operations preserve the �oat solutions in Java.

Cases (2) and (3) are necessary limitations to ensure the e�ciency of our
system. However, as shown by the experiments, the choice of the epsilon value
reduce this problem while increasing the overall e�ciency of the system.

8 Experiments

We performed our experiments on a 900MHz UltraSparcIII+ machine, with the
following programs. NthRootBisect [32] calculates the n-th root of a num-
ber using the Newton-Raphson method. This program uses integer and �oat
variables, but no arrays nor procedures. Sample is the �sample� program with
arrays, described in [10]. Tritype is a classical program, testing the type of
a triangle [28]. It only contains integer variables, but has nested conditional
instructions and infeasible paths. Proc is the program program-1 in Figure
1, with nested procedure calls. BSearch [10, 13] is a binary search program
involving arrays. The CMichel program is a small example from [25] with the
instruction if (16.0+x==16 && x>0) return 1; else return 0;. Although
the test is always mathematically false, there exist �oat values satisfying this
test in C. The other examples are real scienti�c programs taken from [29], and
involving math library functions (e.g. log, exp, pow, sqrt). The gaujac program
calculates the Gauss-Jacobi integration formula. This program involves complex
(nonlinear) expressions, 3 nested loops, arrays, and procedure calls. The expint
program [29], which has also been experimented in [16], calculates exponential
integrals, and involves nonlinear expressions and nested loops. The gamdev pro-
gram [29] (also experimented in [16]) generates random numbers, and involves
nonlinear expressions, nested loops, arrays, and procedure calls. The bessi
program [29] calculates the modi�ed Bessel functions, and involves procedure

31

Table 3: Programs and Experimentation results
Programs Int.FloatArrayProc.TimeoutEpsilonNodesAverage Max Total PredictedActual

(sec.) (sec.) (sec.) (sec.) Cover. Cover.
NthRootBisectyes yes no no 15 1e-16 10 0.04 0.2 0.4 100% 100%

Sample yes no yes no 15 1e-16 15 0.02 0.2 0.3 100% 100%
Tritype yes no no no 15 1e-16 24 0.01 0.1 0.3 100% 100%
Proc yes yes yes yes 15 1e-16 27 0.03 0.6 0.7 100% 100%

BSearch yes yes yes no 15 1e-16 10 0.02 0.1 0.2 100% 100%
CMichel no yes no no 15 1e-16 4 0.02 0.08 0.09 100% 100%
gaujac yes yes yes yes 15 1e-16 40 3.4 135.9 136.2 100% 100%
expint yes yes no no 15 1e-16 35 0.47 15.1 16.6 100% 100%
gamdev yes yes yes yes 15 1e-16 46 0.01 0.3 0.5 100% 100%
bessi yes yes no yes 15 1e-16 27 0.06 1.6 1.62 100% 100%
ei yes yes no no 15 1e-16 22 0.14 1.3 3 95% 95%
ei yes yes no no 15 1e-32 22 0.13 1.3 2.8 100% 100%

ei-dead yes yes no no 15 1e-32 27 0.14 1.9 3.8 92% 92%

calls. The ei program [29] also calculates exponential integrals, and involves a
very small constant (1e-30). Finally, ei-dead is the ei program extended with
two unreachable statements, in and after the main loop. The C code of these
programs is given in the appendix. Table 3 summarizes these programs and the
experimental results. Note that the value of the parameter labeling-level, used
in these experiments, is one by default.

Our test generation procedure consists in trying to generate a test case for
each node of the ICFG, and then reporting the predicted statement coverage
(the percentage of nodes for which the constraint solving algorithm found a
�oat Java solution) and the actual coverage (the percentage of nodes for which
the �oat Java solution is a test case of the C program). Note that when a test
data is generated for a node, we also obtain a path traversing the node. All
other nodes involved in the path are then marked as covered by the same test
data. For each program, Table 3 lists the values of the parameters epsilon (size
of the interval solutions) and timeout (timeout for solving a path constraint),
the number of nodes of the corresponding ICFG (Nodes), the average time in
seconds spent on a node (Average), the maximum time in seconds spent on a
node (Max), the total time in seconds to generate test cases for all the nodes
(Total), the predicted statement coverage (Predicted Coverage), and the actual
statement coverage (Actual Coverage).

E�ciency Even with the complex scienti�c programs, gaujac, expint, gamdev,
bessi and ei, the time performance indicates that our method is practical. It
is di�cult to provide a time complexity analysis as the general problem of solv-
ing a set of constraints is NP-hard. E�ciency should therefore be measured on
speci�c classes of problems. Moreover, choosing a �good� path reaching a node,
where one quickly gets a test case, is another problem. Indeed, at a decision
node, where its two successors have the same priority to be chosen during the
path construction, the choice of the next successor has a great in�uence on the
time complexity. Taking the gaujac program as an example, its related results
reported in Table 3 correspond to the default behavior of our test data gen-
erator. However, when we change the branch taken by default at a node, the
time needed to cover all the nodes is only 3.6 seconds! The speed-up here is
thus around 38.7. Note that our implementation allows us to observe all paths
reaching a node during the path construction, as well as to specify at speci�c
node, the strategy for the path generation.

Coverage and completeness For programs without dead code, the COT-
TAGE system is able to achieve 100% coverage on all the experimented pro-
grams, even the complex scienti�c ones. On all our experiments, the actual

32

coverage is also the predicted coverage. This illustrates that the completeness
issue raised in the previous section is, in practice, not really problematic. The
CMichel example illustrates that the constraint solver is also able to �nd non
mathematical solutions (here it found the value x=1.3322...E-15 for the test).
The coverage of the ei-dead example is only 92% because 2 nodes are unreach-
able; they have been detected by the system.

The achieved coverage justi�es our approach to use an implemention lan-
guage (Java) di�erent from the language of the tested programs (C). This generic
approach allows us to use the COTTAGE system for testing programs in other
programming languages.

Procedures Our interprocedural control dependence analysis, as described in
[33], enables the system to handle procedures with greater precision than the
classical intraprocedural analysis. In the proc example, the halt statement in a
nested procedure is handled without any problem.

 0.5

 15

 30

90 %

100 %

 1e-16 1e-15 1e-14 1e-13 1e-12 1e-11 1e-10

To
ta
l

ti
me

 (
se
c.
)

Co
ve
ra
ge
 (
%)

Size of epsilon-box

Benchmark nThRootBisect

Time
Coverage

Figure 7: Experiments with nThRootBisect

Choosing the parameters For some programs, the default value of the pa-
rameters (epsilon and timeout) has to be adapted to achieve completeness. The
epsilon value may in�uence not only the coverage, but also the execution time,
as illustrated in Figure 7 on the nThRootBisect example. With small ep-
silon values, our implementation of FindSolutionwith the default labeling-level
(choosing the middle point) has more chance to �nd a �oat Java solution. With
larger epsilon values, the system could generate many interval solutions before
FindSolution �nds a �oat Java solution, increasing thus the execution time,
or reducing the coverage. More sophisticated implementation of FindSolution
could be designed, but this is not a central point given the e�ciency of the
constraint solver for small epsilon values.

The ei program, involving a 1e-30 constant illustrates the necessity to choose
the epsilon value according the constants used in the program. The default 1e-
16 epsilon value achieves only 95% coverage while a 1e-32 value achieves 100%
coverage. The execution time is even better (pruning is slightly more e�cient).

For some programs such as expint, increasing the timeout parameter can
a�ect the execution time. A too small timeout could also reduce the coverage.

Complex paths The expint and ei programs raise an error if no solution
is found after MAXIT iterations. Our system is of course not able to �nd a test
case achieving this error statement with the original value of MAXIT (100) as

33

Table 4: A summary of test data generators

Methods Ref. Int. Float Arrays Proc. Path Statement
Coverage Coverage

Consistency this yes yes yes yes yes yes

Testgen [23] yes yes yes yes yes yes
Relaxation [16] yes yes yes yes yes yes

InKa [13] yes no yes yes no yes
Genetic [28] yes yes yes no no yes
Symbolic [5] yes yes yes1 yes yes no
1Array references depending on input variables are not handled

the number and the complexity of the path constraints is too high. In the
experiments reported in Table 3, the value of MAXIT is 10 for expint, and 17
for ei.

Initial domain values The choice of the initial domains of the input variables
may in�uence the coverage and the e�ciency of the system. A too small initial
domain could not covered some of the nodes. A large domain may increase the
computation time. In our experiments, we choose large initial domains to favor
coverage. In the expint program for instance, the initial domains are n = [1; 30]
and x = [�1000; 1000]. For ei, we set x = [�1; 10000] because x < 0 is an error
case.

Comparison with existing methods Table 4 summarizes the existing meth-
ods with functionalities close to our method (�rst line in the table). Two other
methods o�er the same functionalities, [23] and [16]. As in these methods, our
prototype is able to achieve 100% coverage on the examples, but our set of ex-
amples contains more complex programs. It is di�cult to compare the e�ciency
of the di�erent methods because e�ciency information is sometimes partial or
missing. When this information is available, the measures can be incompara-
ble (number of iterations versus execution time versus theoretical complexity).
When it is comparable, one should consider the di�erences in the underlying
hardware.

In [16], an execution time of 98 and 42 seconds (Windows NT, 400MHz
Pentium II) is reported to �nd test data for two branches of the benchmark
expint, and an execution time of 117.4 seconds to �nd test data for one branch
of the benchmark gamdev. For the expint program, our system generates 10
path constraints to achieve a full coverage in 16.6 seconds; and for the gamdev

program, our system generates 6 path constraints to achieve a full coverage in
0.5 seconds.

The experimented scienti�c programs taken from [29] are so far the most
complex (in terms of the complexity of expressions) of our examples. In the
literature, we rarely �nd such complex examples used by other methods. More
importantly, our system strengthens the possibility of applying constraint pro-
gramming for test data generation as stated in [13].

9 Conclusion

In this paper, we �rst presented our consistency approach for test data gen-
eration of imperative programs with �oat, integer and boolean variables, as
well as procedure calls and arrays. Test programs (with procedure calls) are

34

represented by an interprocedural control �ow graph (ICFG). The testing cri-
teria (path, statement, and branch coverage) are then de�ned in terms of the
ICFG. Our purpose was thus to generate test data that will cause the program
to traverse a speci�ed path, node, or branch of the ICFG. For path coverage,
the search for test data is reduced to the solving of path constraints. Such
a solving is based on consistency techniques, aiming at reducing the domains
of the variables. The main originality of our method is a constraint solver,
dealing with �oat, integer, and boolean variables for test data generation. For
statement coverage, suitable paths reaching the speci�ed node are dynamically
constructed. The search is guided by the interprocedural control dependence
graph, as well as pruned by our e-box consistency �lter. When such a path is
found, our algorithm for path coverage is then applied.

We then presented our COTTAGE system, a 13,000 Java lines software, im-
plementing our method, for test data generation of C programs. Various exper-
iments, including complex programs (in terms of nonlinear expressions) taken
from the numerical computing book [29], have been reported. These experi-
ments showed the coverage of our system, as well as its versatility and �exibility
to di�erent classes of problems (integer and/or �oat variables; arrays, proce-
dures, path coverage, statement coverage). They demonstrate the feasibility of
the method, its e�ciency and its potential to handle complex programs.

Our constraint solver could be combined with existing approaches based on
dynamic methods (e.g. [16, 28]), especially when searching a test data exercising
a speci�ed statement of the program. Future work includes the development of
di�erent strategies for the FindSolution function such as using local search

in epsilon interval solutions. Extension of the considered subset of C, such as
pointers, will be investigated. The possibility of error detection will also be
considered, by adding new kinds of constraints modeling error conditions such
as in [30].

References

[1] Alfred Aho, Ravi Sethi, and Je�rey Ullman. Compilers Principles, Tech-
niques and Tools. Addison-Wesley Publishing Company, 1986.

[2] F. Benhamou, W.J. Older, and A. Vellino. Constraint logic programming
on boolean, integer and real intervals. Journal of Symbolic Computation,
1995.

[3] F. Benhamou and Tourvaïne. Prolog iv: language and algorithmes. In
IVème Journées Francophones de Programmation en Logique, pages 51�
65, 1995.

[4] Marc M. Brandis and Hanspeter Mössenböck. Single-pass generation of
static single-assignment form for structured languages. ACM Transactions
on Programming Languages and Systems, 16(6):1684�1698, November 1994.

[5] L. Clarke. A system to generate test data and symbolically execute pro-
grams. IEEE Transactions on Software Engineering, 2(3):215�222, 1976.

[6] Alberto Coen-Porisini and Flavio De Paoli. Array representation in sym-
bolic execution. Computer Languages, 18(3):197�216, 1993.

35

[7] François Delobel. Résolution de systèmes de contraintes réelles non
linéaires. PhD thesis, Université de Nice-Sophia Antipolis(UNSA), Jan-
uary 2000.

[8] John Doppke and Artur Klauser. Pl concepts: Parameter passing. Available
at http://www.cs.colorado.edu/~humphrie/pl/param.html.

[9] J.W. Duran and S. Ntafos. An Evaluation of Random Testing. IEEE
Transactions on Software Engineering, 10(4):438�444, July 1984.

[10] R. Ferguson and B. Korel. The chaning approach for software test data gen-
eration. ACM Transactions on Software Engineering Methodology, 5(1):63�
86, 1996.

[11] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program
dependence graph and its uses in optimization. ACMTransactions on Pro-
gramming Languages and Systems, 9(3):319�349, July 1987.

[12] Arnaud Gotlieb. Génération de cas de test structurel avec la programmation
logique par contraintes. PhD thesis, Université de Nice-Sophia Antipolis,
January 2000.

[13] Arnaud Gotlieb, Bernard Botella, and Michel Rueher. A CLP framework
for computing structural test data. In Computational Logic, pages 399�413,
2000.

[14] Neelam Gupta, Aditya P. Mathur, and Mary Lou So�a. Automated
test data generation using an iterative relaxation method. In ACM
SIGSOFT Sixth International Symposium on Foundations of Software
Engineering(FSE-6), pages 231�244, Orlando, Florida, November 1998.

[15] Neelam Gupta, Aditya P. Mathur, and Mary Lou So�a. UNA based iter-
ative test data generation and its evaluation. In 14th IEEE International
Conference on Automated Software Engineering(ASE'99), pages 224�232,
Cocoa Beach, Florida, October 1999.

[16] Neelam Gupta, Aditya P. Mathur, and Mary Lou So�a. Generating test
data for branch coverage. In 15th IEEE International Conference on Au-
tomated Software Engineering(ASE00), September 2000.

[17] Pascal Van Hentenryck, Laurent Michel, and Yves Deville. Numerica. A
modeling language for global optimization. The MIT Press, Cambridge,
Massachusetts, London, England, 1997.

[18] T. Hickey. An interval arithmetic library, 2000. Available at
http://interval.sourceforge.net/interval/index.html.

[19] Timothy J. Hickey, Qun Ju, and Maarten H. van Emden. Interval
arithmetic: From principles to implementation. Journal of the ACM,
48(5):1038�1068, 2001.

[20] J.C. King. Symbolic Execution and Program Testing. Communications of
the ACM, 19(7):385�394, July 1976.

[21] O. Koné and R. Castanet. Test generation for interworking systems. Com-
puter Communications, 23:642�652, 2000.

36

[22] Bogdan Korel. Automated software test data generation. IEEE Trans.
Software Eng., 16(8):870�879, 1990.

[23] Bogdan Korel. Automated test data generation for programs with proce-
dures. In Steven J. Ziel, editor, Proceedings of the 1996 International Sym-
posium on Software Testing and Analysis (ISSTA), pages 209�215, 1996.

[24] David Melski and Thomas W. Reps. Interprocedural path pro�ling. In
Computational Complexity, pages 47�62, 1999.

[25] C. Michel, M. Rueher, and Y. Lebbah. Solving constraint over �oating-
point numbers. In Seventh International Conference on Principles and
Practice of Constraint. Springer Verlag, LNCS, 2001.

[26] R.E. Moore. Interval Analysis. Prentice-Hall, Englewood Cli�s, NJ, 1966.

[27] A. Je�erson O�utt, Zhenyi Jin, and Jie Pan. The Dynamic Domain Reduc-
tion Procedure for Test Data Generation. Software Practice and Experience,
29(2):167�193, January 1997.

[28] Roy P. Pargas, Mary Jean Harrold, and Robert Peck. Test-data generation
using genetic algorithms. Software Testing, Veri�cation and Reliability,
9(4):263�282, 1999.

[29] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes in C. The Art of Scienti�c Computing. Second
Edition. Cambridge University Press, 1992.

[30] Debra J. Richardson and Margaret C. Thompson. An analysis of test
data selection criteria using the RELAY model of fault detection. IEEE
Transactions on Software Engineering, 19(6):533�553, June 1993.

[31] Saurabh Sinha, Mary Jean Harrold, and Gregg Rothermel. Interprocedural
control dependence. Software Engineering and Methodology, 10(2):209�254,
2001.

[32] Nguyen Tran Sy and Yves Deville. Automatic test data generation for
programs with integer and �oat variables. In 16th IEEE International
Conference on Automated Software Engineering(ASE01), November 2001.

[33] Nguyen Tran Sy and Yves Deville. Consistency techniques for interpro-
cedural test data generation. In Proceedings of the ESEC/FSE'03, pages
108�117, 2003.

[34] Nigel Tracey, John Clark, Keith Mander, and John A. McDermid. An
automated framework for structural test-data generation. In ASE'98, pages
285�288, 1998.

[35] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press,
1994(?).

[36] Elaine J. Weyuker. Translatability and decidability questions for restricted
classes of program schemas. SIAM J. Comput., 8(4):587�598, 1979.

37

APPENDIX

A Benchmarks

A.1 NthRootBisect.c

#include <math.h>

double nThRootBisect(double a, int n, double e) {
double l, h, c;

l = 1; h = a;
while ((h - l)*(h - l) >= e) {

c = (l + h)/2;

if (pow(c, n) - a == 0) return c;
if ((pow(l, n) - a)*(pow(c, n) - a) < 0) h = c;

else l = c;

}
return h;

}

A.2 Sample.c

int sample(int a[10], int b[10], int target) {

int i, fa, fb;

i = 0;

fa = 0;
fb = 0;

while (i <= 9) {
if (a[i] == target) fa = 1;

++i;

}
if (fa == 1) {

i = 0;

fb = 1;
while (i <= 9) {

if (b[i] != target) fb = 0;

++i;
}

}
if (fb == 1) return 0;

else return 1;

}

A.3 Tritype.c

int tritype(int i, int j, int k) {

int trityp;

if ((i == 0) || (j == 0) || (k == 0)) trityp = 4;

38

else {

trityp = 0;

if (i == j) trityp = trityp+1;
if (i == k) trityp = trityp+2;

if (j == k) trityp = trityp+3;

if (trityp == 0) {
if ((i+j <= k)||(j+k <= i)||(i+k <= j)) trityp = 4;

else trityp = 1;
}

else if (trityp > 3) trityp = 3;

else if ((trityp == 1) && (i+j > k)) trityp = 2;
else if ((trityp == 2) && (i+k > j)) trityp = 2;

else if ((trityp == 3) && (j+k > i)) trityp = 2;

else trityp = 4;
}

return trityp;

}

A.4 Proc.c

#include <stdio.h>

void b(double a[10]);

void c(double *x, double *y);
int f(int i);

void proc(double a[10], int c) {
int i;

i = 1;

while (i <= c) {

b(a);
++i;

}

}

void b(double a[10]) {

int i, j, fi, fj;

printf("i j ? "); scanf("%d %d", &i, &j);
fi = f(i);

fj = f(j);

if (fi < fj) c(&a[i], &a[j]);
else c(&a[j], &a[i]);

}

void c(double *x, double *y) {

double t;

if (*x > *y) {

t = *x;

39

*x = *y;

*y = t;

}
}

int f(int i) {
if (i >= 0 && i <= 9) return i;

else exit(1);
}

A.5 BSearch.c

int bsearch(double a[10], double elem) {
int low = 0;

int high = 9;
int mid;

while (high >= low) {

mid = (low + high)/2;
if (elem == a[mid]) return 1;

if (elem > a[mid]) low = mid + 1;

else high = mid - 1;
}

return 0;

}

A.6 CMichel.c

int cMichel(double x) {
if (16.0+x == 16.0 && x > 0) return 1;

else return 0;

}

A.7 gaujac.c

#include <math.h>
#define EPS 3.0e-14

#define MAXIT 10

#define N 6

double gammln(double xx);

void gaujac(double x[N], double w[N], double alf, double bet) {

int i,its,j;

double alfbet,an,bn,r1,r2,r3;
double a,b,c,p1,p2,p3,pp,temp,z,z1,gl1,gl2,gl3,gl4;

for (i=1;i<=N;++i) {

if (i == 1) {

an=alf/N;
bn=bet/N;

r1=(1.0+alf)*(2.78/(4.0+N*N)+0.768*an/N);

40

r2=1.0+1.48*an+0.96*bn+0.452*an*an+0.83*an*bn;

z=1.0-r1/r2;

} else if (i == 2) {
r1=(4.1+alf)/((1.0+alf)*(1.0+0.156*alf));

r2=1.0+0.06*(N-8.0)*(1.0+0.12*alf)/N;

r3=1.0+0.012*bet*(1.0+0.25*fabs(alf))/N;
z -= (1.0-z)*r1*r2*r3;

} else if (i == 3) {
r1=(1.67+0.28*alf)/(1.0+0.37*alf);

r2=1.0+0.22*(N-8.0)/N;

r3=1.0+8.0*bet/((6.28+bet)*N*N);
z -= (x[0]-z)*r1*r2*r3;

} else if (i == N-1) {

r1=(1.0+0.235*bet)/(0.766+0.119*bet);
r2=1.0/(1.0+0.639*(N-4.0)/(1.0+0.71*(N-4.0)));

r3=1.0/(1.0+20.0*alf/((7.5+alf)*N*N));

z += (z-x[N-4])*r1*r2*r3;
} else if (i == N) {

r1=(1.0+0.37*bet)/(1.67+0.28*bet);
r2=1.0/(1.0+0.22*(N-8.0)/N);

r3=1.0/(1.0+8.0*alf/((6.28+alf)*N*N));

z += (z-x[N-3])*r1*r2*r3;
} else {

z=3.0*x[i-2]-3.0*x[i-3]+x[i-4];

}

alfbet=alf+bet;

for (its=1;its<=MAXIT;++its) {
temp=2.0+alfbet;

p1=(alf-bet+temp*z)/2.0;
p2=1.0;

for (j=2;j<=N;++j) {

p3=p2;
p2=p1;

temp=2*j+alfbet;

a=2*j*(j+alfbet)*(temp-2.0);
b=(temp-1.0)*(alf*alf-bet*bet+temp*(temp-2.0)*z);

c=2.0*(j-1+alf)*(j-1+bet)*temp;

p1=(b*p2-c*p3)/a;
}

pp=(N*(alf-bet-temp*z)*p1+2.0*(N+alf)*(N+bet)*p2)/(temp*(1.0-z*z));
z1=z;

z=z1-p1/pp;

if (fabs(z-z1) <= EPS) break;
}

if (its > MAXIT) {

printf("too many iterations in gaujac\n");
exit(1);

}

x[i-1]=z;
gl1 = gammln(alf+N);

41

gl2 = gammln(bet+N);

gl3 = gammln(N+1.0);

gl4 = gammln(N+alfbet+1.0);
w[i-1]=exp(gl1+gl2-gl3-gl4)*temp*pow(2.0,alfbet)/(pp*p2);

}

}

double gammln(double xx) {
double x,y,tmp,ser;

static double cof[6]={76.18009172947146,-86.50532032941677,

24.01409824083091,-1.231739572450155,
0.1208650973866179e-2,-0.5395239384953e-5};

int j;

y=x=xx;

tmp=x+5.5;

tmp -= (x+0.5)*log(tmp);
ser=1.000000000190015;

for (j=0;j<=5;++j) ser += cof[j]/++y;
return -tmp+log(2.5066282746310005*ser/x);

}

A.8 expint.c

#include <math.h>

#define MAXIT 10

#define EULER 0.5772156649
#define FPMIN 1.0e-30

#define EPS 1.0e-7

double expint(int n, double x) {

int i,ii,nm1;
double a,b,c,d,del,fact,h,psi,ans;

nm1=n-1;
if (n < 0 || x < 0.0 || (x==0.0 && (n==0 || n==1)))

exit(1);

else {
if (n == 0) ans=exp(-x)/x;

else {
if (x == 0.0) ans=1.0/nm1;

else {

if (x > 1.0) {
b=x+n;

c=1.0/FPMIN;

d=1.0/b;
h=d;

for (i=1;i<=MAXIT;++i) {

a = -i*(nm1+i);
b += 2.0;

d=1.0/(a*d+b);

42

c=b+a/c;

del=c*d;

h *= del;
if (fabs(del-1.0) < EPS) {

ans=h*exp(-x);

return ans;
}

}
exit(1);

} else {

if (nm1 != 0) ans = 1.0/nm1; else ans = -log(x)-EULER;
fact=1.0;

for (i=1;i<=MAXIT;++i) {

fact *= -x/i;
if (i != nm1) del = -fact/(i-nm1);

else {

psi = -EULER;
for (ii=1;ii<=nm1;++ii) psi += 1.0/ii;

del=fact*(-log(x)+psi);
}

ans += del;

if (fabs(del) < fabs(ans)*EPS) return ans;
}

exit(1);

}
}

}

}
return ans;

}

A.9 gamdev.c

#include <math.h>

#define IA 16807

#define IM 2147483647

#define AM 4.656612875245797e-10
#define IQ 127773

#define IR 2836
#define NTAB 32

#define NDIV 67108864

#define EPS 1.2e-7
#define RNMX 0.99999988

long iy=0;
long iv[NTAB];

double ran1(long *idum);

double gamdev(int ia, long *idum) {

int j;

43

double am,e,s,v1,v2,x,y;

double r1,r2,r3;

if (ia < 1) exit(1);

if (ia < 6) {

x=1.0;
for (j=1;j<=ia;++j) {

r1 = ran1(idum);
x *= r1;

}

x = -log(x);
} else {

do {

do {
do {

v1=ran1(idum);

r2 = ran1(idum);
v2=2.0*r2-1.0;

} while (v1*v1+v2*v2 > 1.0);
y=v2/v1;

am=ia-1;

s=sqrt(2.0*am+1.0);
x=s*y+am;

} while (x <= 0.0);

e=(1.0+y*y)*exp(am*log(x/am)-s*y);
r3 = ran1(idum);

} while (r3 > e);

}
return x;

}

double ran1(long *idum) {

int j;
long k;

double temp;

if (*idum <= 0 || iy == 0) {

if (-(*idum) < 1) *idum=1;

else *idum = -(*idum);
for (j=NTAB+7;j>=0;--j) {

k=(*idum)/IQ;
idum=IA(*idum-k*IQ)-IR*k;

if (*idum < 0) *idum += IM;

if (j < NTAB) iv[j] = *idum;
}

iy=iv[0];

}
k=(*idum)/IQ;

idum=IA(*idum-k*IQ)-IR*k;

if (*idum < 0) *idum += IM;
j=iy/NDIV;

44

iy=iv[j];

iv[j] = *idum;

temp=AM*iy;
if (temp > RNMX) return RNMX;

else return temp;

}

A.10 bessi.c

#include <math.h>
#define ACC 40.0

#define BIGNO 1.0e10

#define BIGNI 1.0e-10

double bessi0(double x);

double bessi(int n, double x) {

int j;
double bi,bim,bip,tox,ans,bsi0x;

if (n < 2) exit(1);
if (x == 0.0)

return 0.0;

else {
tox=2.0/fabs(x);

bip=ans=0.0;

bi=1.0;
for (j=2*(n+(int)sqrt(ACC*n));j>0;--j) {

bim=bip+j*tox*bi;
bip=bi;

bi=bim;

if (fabs(bi) > BIGNO) {
ans *= BIGNI;

bi *= BIGNI;

bip *= BIGNI;
}

if (j == n) ans=bip;

}
bsi0x = bessi0(x);

ans *= bsi0x/bi;
if (x < 0.0 && n != ((int)n/2)*2) return -ans;

else return ans;

}
}

double bessi0(double x) {
double ax,ans,y;

ax=fabs(x);
if (ax < 3.75) {

y=x/3.75;

45

y*=y;

ans=1.0+y*(3.5156229+y*(3.0899424+y*(1.2067492

+y*(0.2659732+y*(0.360768e-1+y*0.45813e-2)))));
} else {

y=3.75/ax;

ans=(exp(ax)/sqrt(ax))*(0.39894228+y*(0.1328592e-1
+y*(0.225319e-2+y*(-0.157565e-2

+y*(0.916281e-2+y*(-0.2057706e-1+y*(0.2635537e-1+y*(-0.1647633e-1
+y*0.392377e-2))))))));

}

return ans;
}

A.11 ei.c

#include <math.h>

#include <stdio.h>

#define EULER 0.57721566

#define MAXIT 17

#define FPMIN 1.0e-30
#define EPS 6.0e-8

double ei(double x) {
int k;

double fact,prev,sum,term;

if (x <= 0.0) exit(1);

if (x < FPMIN) return log(x)+EULER;
if (x <= -log(EPS)) {

sum=0.0;

fact=1.0;
for (k=1;k<=MAXIT;++k) {

fact *= x/k;

term=fact/k;
sum += term;

if (term < EPS*sum) break;

}
if (k > MAXIT) exit(1);

return sum+log(x)+EULER;
} else {

sum=0.0;

term=1.0;
for (k=1;k<=MAXIT;++k) {

prev=term;

term *= k/x;
if (term < EPS) break;

if (term < prev) sum += term;

else {
sum -= prev;

break;

46

}

}

return exp(x)*(1.0+sum)/x;
}

}

A.12 ei-dead.c

#include <math.h>

#include <stdio.h>
#define EULER 0.57721566

#define MAXIT 17

#define FPMIN 1.0e-30
#define EPS 6.0e-8

double eiDead(double x) {

int k;

double fact,prev,sum,term;

if (x <= 0.0) exit(1);

if (x < FPMIN) return log(x)+EULER;
if (x <= -log(EPS)) {

sum=0.0;

fact=1.0;
for (k=1;k<=MAXIT;++k) {

fact *= x/k;

if (k > MAXIT) return 0;
term=fact/k;

sum += term;
if (term < EPS*sum) break;

}

if (k > MAXIT) exit(1);
if (term >= EPS*sum) return 0;

return sum+log(x)+EULER;

} else {
sum=0.0;

term=1.0;

for (k=1;k<=MAXIT;++k) {
prev=term;

term *= k/x;
if (term < EPS) break;

if (term < prev) sum += term;

else {
sum -= prev;

break;

}
}

return exp(x)*(1.0+sum)/x;

}
}

47

