
Noname manuscript No.
(will be inserted by the editor)

Solving Subgraph Isomorphism Problems with
Constraint Programming

Stéphane Zampelli · Yves Deville ·
Christine Solnon

Received: date / Accepted: date

Abstract The subgraph isomorphism problem consists in deciding if there exists a

copy of a pattern graph in a target graph. We introduce in this paper a global con-

straint and an associated filtering algorithm to solve this problem within the context

of constraint programming. The main idea of the filtering algorithm is to label every

node with respect to its relationships with other nodes of the graph, and to define

a partial order on these labels in order to express compatibility of labels for sub-

graph isomorphism. This partial order over labels is used to filter domains. Labelings

can also be strengthened by adding information from the labels of neighbors. Such a

strengthening can be applied iteratively until a fixpoint is reached. Practical experi-

ments illustrate that our new filtering approach is more effective on difficult instances

of scale free graphs than state-of-the-art algorithms and other constraint programming

approaches.

Keywords Subgraph isomorphism · Global constraint · Filtering algorithm

1 Introduction

Graphs are widely used in real-life applications to represent structured objects, e.g.,

molecules, images, or biological networks. In many of these applications, one looks for

a copy of a pattern graph into a target graph [3]. This problem, known as subgraph

isomorphism, is NP-complete [13] in the general case.

There exist dedicated algorithms for solving subgraph isomorphism problems, such

as [25,5]. However, such dedicated algorithms can hardly be used to solve more general

problems, with additional constraints, or approximate subgraph isomorphism problems,

such as the one introduced in [28].

An attractive alternative to these dedicated algorithms is Constraint Programming

(CP), which provides a generic framework for solving constraint satisfaction prob-

lems (CSP). Indeed, subgraph isomorphism problems may be formulated as CSPs in a

Ecole des Mines de Nantes, 4, rue Alfred Kastler. B.P. 20722, 44307 Nantes Cedex 3 (France), E-
mail: stephane.zampelli@emn.fr · University of Louvain, Department of Computing Science and
Engineering, Place Sainte-Barbe 2, 1348 Louvain-la-Neuve E-mail: yves.deville@uclouvain.be ·
Université de Lyon, Université Lyon 1, LIRIS, CNRS UMR5205, Nautibus, 43 Bd du 11 novem-
bre, 69622 Villeurbanne cedex, France, E-mail: christine.solnon@liris.cnrs.fr

2

straightforward way [19,21]. To make CP competitive with dedicated approaches for

these problems, [17] has introduced a filtering algorithm. [28] has extended this work

to approximate subgraph isomorphism, and has shown that CP is competitive with

dedicated approaches.

Contribution and outline of the paper

In this paper, we introduce a new global constraint and an associated filtering algo-

rithm for the subgraph isomorphism problem. The filtering exploits the global structure

of graphs to achieve a stronger partial consistency than when propagating edge con-

straints separately. This work takes inspiration from the partition refinement procedure

used in [18,12,8] for finding graph automorphisms: the idea is to label every node by

some invariant property, such as node degrees, and to iteratively extend labels by con-

sidering labels of adjacent nodes. Similar labelings are used in [22,24] to define filtering

algorithms for the graph isomorphism problem: the idea is to remove from the domain

of a variable associated with a node v every node the label of which is different from

the label of v. The extension of such a label-based filtering to subgraph isomorphism

problems mainly requires to define a partial order on labels in order to express com-

patibility of labels for subgraph isomorphism: this partial order is used to remove from

the domain of a variable associated with a node v every node the label of which is not

compatible with the label of v.

This paper extends preliminary results presented in [29,27].

In Section 2, we introduce the subgraph isomorphism problem and we give an

overview of existing approaches for solving this problem. The basic idea of a labeling-

based filtering is described in Section 3: we first introduce the concept of labeling,

and show how labelings can be used for filtering; then we show that labelings may be

iteratively strengthened by adding information from labels of neighbors. The global

constraint and a first filtering algorithm are described in Section 4. We introduce in

Section 5 another filtering algorithm which ensures a lower consistency at a lower cost.

Experimental results are described in Section 6.

2 Subgraph Isomorphism

2.1 Definitions and notations

A graph G = (N,E) consists of a node set N and an edge set E ⊆ N × N , where

an edge (u, v) is a couple of nodes. In this paper, we implicitly consider undirected

graphs, such that (u, v) ∈ E ⇒ (v, u) ∈ E. The extension of our work to directed

graphs, which is straightforward, is discussed in 3.4.

A subgraph isomorphism problem (SIP) between a pattern graph Gp = (Np, Ep)

and a target graphGt = (Nt, Et) consists in deciding whetherGp is isomorphic to some

subgraph of Gt. More precisely, one should find an injective function f : Np → Nt
that associates a different node of the target graph with every node of the pattern

graph and that matches edges of the pattern graph, i.e., ∀(u, v) ∈ Np × Np, (u, v) ∈
Ep ⇒ (f(u), f(v)) ∈ Et. Note that the subgraph is not necessarily induced so that two

pattern nodes that are not linked by an edge may be matched to target nodes which

are linked by an edge. The problem is also called subgraph monomorphism problem or

3

subgraph matching in the literature. The function f is called a subgraph isomorphism
function.

In the following, we assume Gp = (Np, Ep) and Gt = (Nt, Et) to be the underlying

instance of subgraph isomorphism problem and we assume thatNp∩Nt = ∅. We denote

#S the cardinality of a set S. We also define Node = Np ∪ Nt, Edge = Ep ∪ Et,
np = #Np, nt = #Nt, n = #Node, e = #Edge, dp and dt the maximal degrees

of the graphs Gp and Gt, and d = max(dp, dt). The set of neighbors of a node i is

denoted adj(i) and is defined by adj(i) = {j | (i, j) ∈ Edge}.

2.2 Dedicated approaches

The subgraph isomorphism problem is NP-complete. Ullmann’s algorithm [25] is one of

the first algorithm dedicated to the graph and subgraph isomorphism problem itself. It

includes a preprocessing step based on node degrees and basically performs a depth-first

search algorithm. The search space is pruned by maintaining arc consistency on edge

constraints. Ullmann’s algorithm has been the baseline for more advanced algorithms

and it is still cited in recent applications (see for example [14]).

Another well known algorithm is vflib [6], which is considered as the state-of-the-

art for subgraph isomorphism. The key points of vflib are the incremental building of

connected graphs with cheap pruning rules and a clever choice of data structures leading

to a lower memory footprint. vflib builds incrementally the assignment through a

backtracking procedure, stopping whenever its extension is impossible. Assignments

are extended by growing two connected graphs inside the pattern and the target graph

respectively, and by checking conditions in the neighborhood of the current subgraphs.

[26] also solves subgraph isomorphism with this approach. The popularity of vflib is

due to several papers [6,4,5] demonstrating the superiority of vflib against Ullman’s

algorithm, the public availability of its source code, and the systematic experiments

over a synthetic database for graph matching problems [11].

2.3 CP Models for Subgraph Isomorphism

A subgraph isomorphism problem may be formulated as a CSP in a straightforward

way [19,21,17]. A variable xu is associated with every node u of the pattern graph, and

its domain D(xu) is the set of target nodes. A global AllDiff constraint [20] ensures

that the matching function is injective. Edge matching is ensured by a set of #Ep
binary constraints denoted by c2 and defined as follows:

∀ (u, v) ∈ Ep, c2(xu, xv) ≡ ((xu, xv) ∈ Et) .

Example 1 Let us consider the subgraph isomorphism problem displayed in Fig. 1.

The corresponding CSP is

X = {x1, x2, x3}
D(xi) = {a, b, c, d}, ∀xi ∈ X

C = (x1, x2) ∈ {(a, b), (b, a), (a, d), (d, a), (d, c), (c, d), (b, c), c, b)} ∧
(x2, x3) ∈ {(a, b), (b, a), (a, d), (d, a), (d, c), (c, d), (b, c), c, b)} ∧
(x3, x1) ∈ {(a, b), (b, a), (a, d), (d, a), (d, c), (c, d), (b, c), c, b)} ∧
AllDiff ({x1, x2, x3})

4

1 2

3

a

b

c

d

Target graph GPattern graph G p t

Fig. 1 Instance of subgraph isomorphism problem.

Different levels of consistency may be considered for these constraints, i.e., forward

checking (FC) or arc consistency (AC). For AllDiff, FC is performed on the binary

decomposition of the constraint while AC is hyperarc consistency on the n-ary global

constraint.

Larrosa and Valiente have proposed in [17] a filtering algorithm (called nRF+)

dedicated to the subgraph isomorphism problem. The idea is to check, for every pattern

node i and every target node a ∈ D(xi), that all variables associated with adjacent

nodes of i can be assigned to different target nodes that are all adjacent to a. More

precisely, they define the set

F(i, a) = ∅ if ∃j ∈ adj(i), D(xj) ∩ adj(a) = ∅
F(i, a) = ∪j∈adj(i)(D(xj) ∩ adj(a)) otherwise

and remove a from D(xi) whenever #F(i, a) < #adj(i). Larrosa and Valiente have

shown that this filtering algorithm combined with binary c2 constraints and a global

AllDiff constraint allows CP to efficiently solve difficult instances.

Example 2 Let us consider again the subgraph isomorphism problem displayed in Fig.

1, and let us suppose that the domains of x2 and x3 have been reduced to {a, b, c}. In

this case, we have

F(1, a) = (D(x2) ∩ adj(a)) ∪ (D(x3) ∩ adj(a)) = {b}

As #adj(1) = 2, a is removed from D(x1). For the same reason, c is removed from

D(x1). Then, b is removed from D(x2) and D(x3) as the neighbors of b no longer

belong to the domains of neighbors of 2 and 3.

3 Labeling for subgraph isomorphism

This section introduces a labeling process which is used in section 4 to define a filtering

algorithm for a global constraint dedicated to the SIP.

Basically, this labeling process aims at filtering, for every pattern node u, the set of

target nodes that may be matched with u by a subgraph isomorphism function. To do

that, the idea is to associate a label with every node and to define a partial order over

these labels. This partial order defines node compatibility, i.e., a target node u may be

matched to a pattern node v only if (u, v) belongs to the partial order. Of course, this

partial order must be consistent with respect to subgraph isomorphism, i.e., two nodes

that may be matched by a subgraph isomorphism function must be compatible.

5

1

2 3 4

5

6

Pattern graph Gp

A

CB D E

F

G

Target graph Gt

Fig. 2 Instance of subgraph isomorphism problem.

We define such subgraph isomorphism consistent labelings in 3.1. We then show in

3.2 how a labeling may be strengthened by adding information from labels of neigh-

bors. We show in 3.3 that this strengthening step may be iterated until some fixpoint

is reached, thus defining a sequence of labelings the strength of which increases at

each iteration. In sections 3.1 to 3.3, we always consider undirected graphs, such that

(u, v) ∈ E ⇒ (v, u) ∈ E. The extension of our approach to directed graphs, which is

straightforward, is discussed in 3.4.

3.1 Subgraph Isomorphism Consistent Labelings

Definition 1 A labeling l is defined by a triple (L,�, α) such that

– L is a set of labels that may be associated with nodes;

– �⊆ L× L is a partial order on L;

– α : Node→ L is a total function assigning a label α(v) to every node v.

A labeling induces a compatibility relation between nodes of the pattern graph and

the target graph.

Definition 2 The set of compatible couples of nodes induced by a labeling l = (L,�
, α) is defined by CCl = {(u, v) ∈ Np ×Nt | α(u) � α(v)}

This compatibility relation may be used to filter the domain of a variable xu associated

with a node u of the pattern graph by removing from it every node v of the target

graph such that (u, v) 6∈ CCl.

Example 3 Let us consider the subgraph isomorphism problem displayed in Fig. 2.

Note that this instance has no solution as Gp cannot be mapped into a subgraph of

Gt. Let us define the labeling ldeg = (N,≤, deg) such that deg is the function which

returns node degree, i.e., ∀u ∈ Nodes, deg(u) = #adj(u). This labeling assigns the

following labels to nodes.

deg(A) = deg(B) = deg(D) = deg(2) = deg(4) = 4

deg(C) = deg(E) = deg(F) = deg(G) = deg(1) = deg(3) = 3

deg(5) = deg(6) = 2

6

Hence, the set of compatible couples induced by this labeling is

CCldeg = {(u, v) | u ∈ {2, 4}, v ∈ {A,B,D}}
∪ {(u, v) | u ∈ {1, 3, 5, 6}, v ∈ {A,B,C,D,E, F,G}}

This set of compatible couples allows one to remove values C, E, F and G from the

domains of the variables associated with nodes 2 and 4.

The goal of this work is to find a labeling that filters domains as strongly as possible

without removing solutions to the subgraph isomorphism problem, i.e., if a node u
of the pattern graph may be matched to a node v of the target graph by a subgraph

isomorphism function, then the label of u must be compatible with the label of v. This

property is called subgraph isomorphism consistency.

Definition 3 A labeling l is subgraph isomorphism consistent (SIC) iff for any sub-

graph isomorphism function f , we have ∀v ∈ Np, (v, f(v)) ∈ CCl.

In the context of graph isomorphism, such as in [18], as opposed to subgraph isomor-

phism studied here, an SIC labeling is often called an invariant. In this case, the partial

ordering is replaced by an equality condition: two nodes are compatible if they have

the same label.

Many graph properties, that are “invariant” to subgraph isomorphism, may be used

to define SIC labelings such as, e.g., the three following SIC labelings:

– ldeg = (N,≤, deg) where deg is the function that returns node degree;

– ldistancek
= (N,≤, distancek) where distancek is the function that returns the

number of nodes that are reachable by a path of length smaller than k;

– lcliquek
= (N,≤, cliquek) where cliquek is the function that returns the number of

cliques of size k that contains the node.

3.2 Strengthening a Labeling

We propose to start from an elementary SIC labeling which is easy to compute such

as the ldeg labeling defined in Ex. 3, and to iteratively strengthen this labeling. The

strength of labelings is defined with respect to the induced compatible couples as

follows.

Definition 4 Let l and l′ be two labelings. l′ is strictly stronger than l iff CCl′ ⊂
CCl. l

′ is equivalent to l iff CCl′ = CCl.

A stronger labeling yields a better filtering, as it contains fewer compatible couples.

To strengthen a labeling, the idea is to extend the label of a node by adding

information from the label of its neighbors. This information is a multiset (as several

neighbors may have the same label). We shall use the following notations for multisets.

Definition 5 Given an underlying set A, a multiset is a function m : A → N, such

thatm(a) is the multiplicity (i.e., the number of occurrences) of a inm. The multisetm
can also be represented by the bag {{a0, . . . , a0, a1, . . .}} where elements are repeated

according to their multiplicity.

Example 4 The multiset m which contains exactly 2 occurrences of a, 3 occurrences

of b, and 1 occurrence of c is defined by m(a)=2, m(b)=3, m(c)=1, and ∀x 6∈ {a, b, c},
m(x)=0. This multiset may also be represented by {{a, a, b, b, b, c}}.

7

Given a partial order on a set A, we extend it to a partial order on multisets over

A as follows.

Definition 6 Given two multisets m and m′ over a set A, and a partial order �⊆
A × A, we define m � m′ iff there exists a total injective mapping t : m → m′ such

that ∀ai ∈ m,ai � t(ai).

In other words, m � m′ iff for every element of m there exists a different element

of m′ which is greater or equal.

Example 5 If we consider the classical ordering on N, we have {{3, 3, 4}} � {{2, 3, 5, 5}},
but {{3, 3, 4}} is not comparable with {{2, 5, 6}}.

Note that comparing two multisets is not trivial if the order relation on the under-

lying set A is not total. This point will be handled in the next section.

We now define the labeling extension procedure.

Definition 7 Given a labeling l = (L,�, α), the neighborhood extension of l is the

labeling l′ = (L′,�′, α′) such that:

– every label of L′ is composed of a label of L and a multiset of labels of L, i.e.,

L′ = L · (L→ N);

– the labeling function α′ extends every label α(v) by the multiset of the labels of

the neighbors of v, i.e., α′(v) = α(v) ·m where ∀li ∈ L,

m(li) = #{u | (u, v) ∈ Edge ∧ α(u) = li};
– the partial order on the extended labels of L′ is defined by l1 ·m1 �′ l2 ·m2 iff

l1 � l2 and m1 � m2.

Example 6 Let us consider again the subgraph isomorphism problem displayed in Fig.

2, and the labeling ldeg = (N,≤, deg) defined in Ex. 3. The neighborhood extension of

ldeg is the labeling l′ = (L′,�′, α′) such that

– labels of L′ are composed of numbers from N followed by multisets over N;

– the labeling function α′ is defined as follows

α′(A) = 4 · {{3, 3, 4, 4}} renamed m1

α′(B) = α′(D) = 4 · {{3, 3, 3, 4}} renamed m2

α′(2) = α′(4) = 4 · {{2, 2, 3, 3}} renamed m3

α′(C) = 3 · {{4, 4, 4}} renamed m4

α′(E) = α′(F) = α′(1) = α′(3) = 3 · {{3, 4, 4}} renamed m5

α′(G) = 3 · {{3, 3, 4}} renamed m6

α′(5) = α′(6) = 2 · {{4, 4}} renamed m7

– the partial order �′ is such that

m3 �′ m1 m5 �′ m1 m7 �′ m1

m3 �′ m2 m5 �′ m4 m7 �′ m4

m5 �′ m5 m7 �′ m5

Note that we only display compatibility relationships mi � mj such that mi is

the label of a node of the pattern graph and mj is the label of a node of the target

graph as other relations are useless for filtering purposes.

8

The set of compatible couples induced by this extended labeling is

CCl′ = {(u, v) | u ∈ {2, 4}, v ∈ {A,B,D}}
∪ {(u, v) | u ∈ {1, 3, 5, 6}, v ∈ {A,C,E, F}}

As compared to the initial labeling ldeg, this set of compatible couples allows one to

further remove values B, D and G from the domains of the variables associated with

nodes 1, 3, 5 and 6.

The next theorem states that the neighborhood extension of a SIC labeling is a

stronger (or equivalent) SIC labeling.

Theorem 1 Let l = (L,�, α) be a labeling, and l′ = (L′,�′, α′) be its neighborhood
extension. If l is an SIC labeling, then (i) l′ is also SIC, and (ii) l′ is stronger
than or equivalent to l.

Proof (i): Let f be a subgraph isomorphism function and v ∈ Np. We show that

α′(v) �′ α′(f(v)), that is α(v) � α(f(v)) and m � m′, where m (resp. m′) is the

multiset of the labels of the neighbors of v in Gp (resp. of f(v) in Gt). Indeed,

– α(v) � α(f(v)) because l is SIC;

– m � m′ because f induces an injection from m to m′ that respects α.

(ii) : This is a direct consequence of the partial order on the extended labels in L′
(Definition 7) : α(u) � α(v) is one of the conditions to have α′(u) � α′(v). �

3.3 Iterative Labeling Strengthening

The strengthening of a labeling described in the previous subsection can be repeated

by relabeling nodes iteratively, starting from a given SIC labeling l.

Definition 8 Let l = (L,�, α) be an initial SIC labeling. We define the sequence of

SIC labelings li = (Li,�i, αi) such that l0 = l and li+1 = neighborhood extension of

li (i ≥ 0).

A theoretical filter can be built on this sequence. Starting from an initial SIC

labeling function l = l0, we iteratively compute li+1 from li and filter domains with

respect to the set of compatible couples induced by li+1 until either a domain becomes

empty (thus indicating that the problem has no solution) or reaching some termination

condition.

A termination condition is to stop iterating when the sequence reaches a fixpoint,

i.e., a step where any further relabeling cannot change the strength of the labeling.

Theorem 2 shows that a fixpoint is reached when both the set of compatible couples

and the number of different labels are not changed between two consecutive steps.

Definition 9 Given a labeling l = (L,�, α), we note labels(l) the set of labels asso-

ciated with nodes, i.e., labels(l) = image(α).

Theorem 2 Let l = (L,�, α) be a SIC labeling. The following properties hold:

9

1. each iteration can only remove compatible couples and increase the number of
different labels, i.e.,

∀k ≥ 0, CClk+1 ⊆ CClk and #labels(lk+1
) ≥ #labels(lk)

2. if at a given iteration k the set of compatible couples and the number of labels
are not changed, then they will not change at any further iteration, i.e.,

∀k ≥ 0, if CClk+1 = CClk and #labels(lk+1) = #labels(lk),

then ∀j > k,CClj = CClk and #labels(lj) = #labels(lk)

3. the fixpoint is reached in at most np + nt + np.nt steps, i.e.,

∃k ≤ np + nt + np.nt, CClk+1 = CClk and #labels(lk+1
) = #labels(lk)

Proof (1) The inclusion is a direct consequence of property (ii) in Theorem 1. For the

cardinality of the labels, by Definition 7, we have αk+1(v) = αk(v).m, with m some

multiset. Hence αk+1(u) = αk+1(v) only if αk(u) = αk(v).

(2) The set of labels at step k defines a partition Pk of Np ∪ Nt (such that two

nodes belong to a same part if they have the same label). The relation between a set

S1 of Pk and a set S2 of Pk+1 must be either S1 ∩ S2 = ∅ or S2 ⊆ S1. This follows

from Definition 7: αk+1(v) = αk(v).m implies that a node v must be in a partition

αk+1(v) finer than the partition αk(v). Hence, when #labels(lk) = #labels(lk+1), the

underlying partitions are the same for all subsequent steps. In particular the number

of labels will never change. It remains to show that

∀ (u, v) ∈ Np ×Nt
if (αk(u) �k αk(v))⇔ (αk+1(u) �k+1 αk+1(v))

and (αk(u) = αk(v))⇔ (αk+1(u) = αk+1(v))

then (αk+1(u) �k+1 αk+1(v))⇔ (αk+2(u) �k+2 αk+2(v)).

We know that the underlying partitions and the set of compatible couples are the same

for step k and step k + 1. This means that there exists an isomorphism preserving �
between labels(lk) and labels(lk+1).

(3) is a consequence of property (1) of Theorem 2; the fixpoint is reached in at

most #labels(l) + #CCl steps, that is (np + nt) + np.nt steps. �

Example 7 Let us consider again the subgraph isomorphism problem displayed in Fig.

2, and let us suppose that the sequence of SIC labelings is started from l0 = ldeg =

(N,≤, deg) as defined in Ex. 3. After the first iteration, the neighborhood extension

l1 of l0 is the labeling displayed in Ex. 6. From labeling l1, we compute the following

extended labels and partial order:

α2(A) = m1 · {{m2,m2,m4,m5}} renamed n1

α2(B) = m2 · {{m1,m4,m5,m6}} renamed n2

α2(C) = m4 · {{m1,m2,m2}} renamed n3

α2(D) = m2 · {{m1,m4,m5,m5}} renamed n4

α2(E) = m5 · {{m1,m2,m6}} renamed n5

α2(F) = m5 · {{m2,m2,m6}} renamed n6

α2(G) = m6 · {{m2,m5,m5}} renamed n7

α2(1) = α2(3) = m5 · {{m3,m3,m5}} renamed n8 �2 {n1, n3}
α2(2) = α2(4) = m3 · {{m5,m5,m7,m7}} renamed n9 �2 {n4}
α2(5) = α2(6) = m7 · {{m3,m3}} renamed n10 �2 {n1, n3, n5, n6}

10

The set of compatible couples induced by this labeling is

CCl2 = {(1, A), (1, C), (2, D), (3, A), (3, C), (4, D)}
∪ {(u, v) | u ∈ {5, 6}, v ∈ {A,C,E, F}}

From labeling l2, the following extended labels and partial order are computed:

α3(A) = n1 · {{n2, n3, n4, n5}} renamed o1
α3(B) = n2 · {{n1, n3, n6, n7}} renamed o2
α3(C) = n3 · {{n1, n2, n4}} renamed o3
α3(D) = n4 · {{n1, n3, n5, n6}} renamed o4
α3(E) = n5 · {{n1, n4, n7}} renamed o5
α3(F) = n6 · {{n2, n4, n7}} renamed o6
α3(G) = n7 · {{n2, n5, n6}} renamed o7

α3(1) = α3(3) = n8 · {{n8, n9, n9}} renamed o8 �3 ∅
α3(2) = α3(4) = n9 · {{n8, n8, n10, n10}} renamed o9 �3 {o4}
α3(5) = α3(6) = n10 · {{n9, n9}} renamed o10 �3 ∅

The set of compatible couples induced by this labeling is

CCl3 = {(2, D), (4, D)}

As no node is compatible with nodes 1, 3, 5 and 6, the domains of the associated

variables become empty and an inconsistency is detected.

3.4 Extension to directed graphs

In directed graphs, the set of neighbors of a node u is partitioned into successors

and predecessors. The iterative labeling strengthening procedure may be extended to

directed graphs in a very straightforward way, by computing two different multisets that

respectively contain the labels of successors and predecessors, instead of one multiset

that contains the labels of neighbors. More precisely, in the case of directed graphs, we

define the neighborhood extension of a labeling as follows.

Definition 10 Given a labeling l = (L,�, α), the neighborhood extension of l is the

labeling l′ = (L′,�′, α′) such that:

– every label of L′ is composed of a label of L and two multisets of labels of L, i.e.,

L′ = L · (L→ N) · (L→ N);

– the labeling function α′ extends every label α(v) by the two multisets of the labels

of the predecessors and successors of v respectively, i.e., α′(v) = α(v)·mpred ·msucc

where ∀li ∈ L,

mpred(li) = #{u | (u, v) ∈ Edge ∧ α(u) = li}, and

msucc(li) = #{u | (v, u) ∈ Edge ∧ α(u) = li};
– the partial order on the extended labels of L′ is defined by l1 ·mpred1 ·msucc1 �′
l2 ·mpred2 ·msucc2 iff l1 � l2, mpred1 � mpred2 , and msucc1 � msucc2 .

This neighborhood extension procedure may be iterated until a fixpoint is reached

exactly the same way as for undirected graphs.

11

4 ILF filtering algorithm

The labeling process introduced in the previous section can be used to define a fil-

tering algorithm for a global constraint dedicated to subgraph isomorphism. Hence,

we introduce in 4.1 a global constraint for the subgraph isomorphism problem. Then,

we describe in 4.2 an associated filtering algorithm called ILF. We compare in 4.3

the achieved level of consistency with the ones obtained by forward checking and arc

consistency on the standard CP model based on AllDiff and c2 constraints and the

filtering procedure nRF+ described in 2.3.

4.1 Definition of the SIP global constraint

The SIP global constraint is defined by the relation sip(Gp, Gt, Lvar) where Gp =

(Np, Ep) and Gt = (Nt, Et) are two graphs and Lvar is a set of couples which asso-

ciates a different variable of the CSP with each different node of Np, i.e., Lvar is a

set of #Np couples of the form (xu, u) where xu is a variable of the CSP and u is a

node of Np.

Semantically, the global constraint sip(Gp, Gt, Lvar) is satisfied by an assignment

of the variables of Lvar if there exists a subgraph isomorphism function f : Np → Nt
such that, ∀(xu, u) ∈ Lvar, xu = f(u).

This global constraint is not semantically global according to [2] as it may be

represented by a semantically equivalent set of AllDiff and c2 constraints as described

in 2.3. However, the sip global constraint allows us to exploit the global semantic of

SIPs to filter variable domains more efficiently.

4.2 Description of the ILF filtering procedure

The filtering procedure associated with the global sip constraint is called Iterative
Labeling Filtering (ILF) and is described in Algorithm 1. This algorithm takes in

input a global SIP constraint and initial variable domains; it is also parameterized by

an initial labeling l0 and the number k of labeling extension iterations. The different

steps of this algorithm are described in sections 4.2.1 to 4.2.4. Its correctness and

complexity are discussed in 4.2.5 and 4.2.6.

4.2.1 Filtering of D w.r.t. a labeling li (line 3)

The successively computed labelings li are used to filter domains by removing nodes

which have incompatible labels. More precisely, for every couple (xu, u) ∈ Lvar we

remove from D(xu) every value v such that αi(u) 6�i αi(v).

This step is done in O(np · nt).

4.2.2 Reduction of the target graph w.r.t. domains (line 5)

If a target node u does not belong to any domain, then this node and its incident

edges are discarded from the target graph as no pattern node may be matched with u.

More precisely, we define Nt ↓ D = Nt ∩ (∪(xu,u)∈LvarD(xu)). Each time domains

12

Algorithm 1: ILF(sip(Gp, Gt, Lvar), D, l
0, k)

Input:
a global SIP constraint sip(Gp, Gt, Lvar)
the initial domain D(xu) of every variable xu such that (xu, u) ∈ Lvar
an initial SIC labeling l0 = (L0,�0, α0)
a limit k on the number of iterations

Output: filtered domains
i← 01

loop2

filter D w.r.t. li3

exit when ∃(xu, u) ∈ Lvar,D(xu) = ∅ or i = k or fixpoint reached4

reduce Gt w.r.t. D5

strengthen li w.r.t. singleton domains6

/* Computation of the neighborhood extension li+1 of li */
for every node u ∈ Np ∪Nt do7

mu ← {{αi(v) | (u, v) ∈ Ep ∪ Et}}8

αi+1(u)← αi(u) ·mu9

Li+1 ← {αi+1(u)|u ∈ Np ∪Nt}10

rename labels in Li+1 and αi+111

�i+1← {(αi+1(u), αi+1(v)) | (xu, u) ∈ Lvar ∧ v ∈ D(xu) ∧ test(mu,mv ,�i)}12

i← i+ 113

return D14

have been reduced, the target graph Gt is reduced to the subgraph of Gt induced by

Nt ↓ D.

Note that nodes and edges that are discarded during filtering must be restored

when some backtracking occurs.

This step is done in O(nt · d) where d is the maximal node degree.

4.2.3 Strengthening of a labeling li w.r.t. singleton domains (line 6)

If a domain D(xv) is reduced to a singleton {u}, then nodes u and v are labeled

with a new label luv which is not compatible with any other label, except itself, thus

preventing other pattern nodes from being matched with u. More precisely, we add a

new label luv to Li, we assign αi(u) and αi(v) to luv, and we add (luv, luv) to �i.
This step is done in O(np).

4.2.4 Computation of the neighborhood extension li+1 of li (lines 7 to 12)

The neighborhood extension step is composed of the following steps:

– lines 7–9: αi+1 is computed from αi.
This step is done in O(e) as it basically involves collecting the labels of the neigh-

bours of every node.

– lines 10–11: Labels of Li+1 are collected and renamed in order to keep their size

in O(d).

This step is done in O(d · n) as there are at most n labels the length of which

is bounded by d. We use a hashtable to associate new names to labels: each time

a label is computed, if it already belongs to the hashtable then the label is re-

named consequently, otherwise a new name is created and the label is added to the

hashtable.

13

Let mu = {{a, a, b, c}} and mv = {{x, y, y, z, z}} be two multisets to be compared, and let the
partial order be �= {(a, x), (a, y), (b, x), (c, z)}. To decide if test(mu,mv ,�) is true or false,
we build the following bipartite graph

a

m u mv

a

b

c

x

y

y

z

z

and use Hopcroft algorithm to find a matching which covers mu. On this example,
{(a, y), (a, y), (b, x), (c, z)} is a matching that covers mu so that test(mu,mv ,�) returns true.

Fig. 3 Modeling the compatibility test problem as a matching problem.

– line 12: The partial order �i+1 is computed.

For every couple of nodes (u, v) ∈ Np × Nt such that v was compatible with u
at step i, we call the function test(mu,mv,�i) to determine if mu �i mv, i.e.,

if there exists, for each label occurrence in mu, a distinct label occurrence in mv

which is greater or equal according to �i. As different nodes may have the same

label, we call the test function only when encountering a couple (mu,mv) for the

first time, and we memorize the result in a table so that we can reuse it if the same

couple is encountered later.

To implement the test function, we have used the matching algorithm of Hopcroft

[16]. Indeed, mu �i mv iff there exists a matching that covers mu in the bipartite

graph G = ((mu,mv), E) such that E = {(x, y) ∈ mu × mv | x �i y}, i.e.,

a label occurrence x of mu is linked by an edge with a label occurrence y of

mv iff x �i y (see example in Fig. 3). The complexity of this algorithm is in

O(#mu ·#mv ·
√

#mu + #mv). As the sizes of mu and mv are bounded by the

maximal degree d, the test function can be executed in O(d5/2).

Hence, the computation of the partial order is done in O(np · nt · d5/2).

4.2.5 Correctness of the filtering procedure

Property 1 Let l0 be an SIC labeling and k ∈ N. The ILF(sip(Gp, Gt, Lvar), D, l
0, k)

procedure is correct, i.e., for every subgraph isomorphism function f from Np to Nt
such that ∀(xu, u) ∈ Lvar, f(u) ∈ D(xu), ILF does not remove f(u) from D(xu).

Proof. Indeed, we have shown in section 3 that the iterative labeling strengthening

procedure is correct, i.e., if it is started from an SIC labeling l0, then every successive

li labeling is also an SIC labeling that can be used to filter domains without removing

solutions. Our filtering procedure is based on this iterative labeling strengthening pro-

cedure, but it also integrates information brought by variable domains to filter more

values:

– the target graph Gt is reduced to the subgraph induced by variable domains;

– labelings are strengthened with respect to singleton domains.

It is clear that this extra filtering does not remove values that may belong to a solution.

14

4.2.6 Complexity of the filtering procedure

At each iteration, the most expensive step is the computation of the partial order

during the neighborhood extension procedure, which is done in O(np · nt · d5/2). The

procedure stops iterating either if the bound k on the number of iterations is reached,

or if a domain becomes empty, or if the fixpoint is reached. We have shown in 3.3 that

the fixpoint is reached in O(np.nt) iterations.

Property 2 The ILF procedure has an overall time complexity of

O(min(k, np · nt) · np · nt · d5/2
)

We propose in Section 5 an approximated filtering procedure which ensures a lower

partial consistency at a lower cost.

4.3 Level of consistency of ILF

The level of consistency achieved by the ILF filtering procedure described in the pre-

vious section depends on the initial labeling l0 which is a parameter of this procedure.

We first introduce and compare in 4.3.1 different SIC initial labelings that may be

considered. We then compare the level of consistency ensured by ILF with forward

checking (FC) and arc consistency (AC) on the standard SIP model and the filtering

algorithm nRF+ introduced in section 2.3.

4.3.1 Initial SIC labeling l0

The iterated neighborhood extension process is started from an initial SIC labeling

l0 which is a parameter. Different initial labelings may be considered, that may have

different strength.

The weakest initial labeling that may be used is the labeling l∅ which associates

the same label ∅ to every node, i.e., l∅ = (L∅, α∅,�∅) such that

– L∅ = {∅},
– ∀u ∈ Nodes, α∅(u) = ∅, and

– �∅= {(∅, ∅)}.

A stronger initial labeling is the ldeg labeling defined in Ex. 3. Note however that,

when l0 = l∅, the labeling l1 computed after the first iteration of ILF exactly corre-

sponds to ldeg as the label α1(u) of every node u is ∅.mu with mu(∅) = deg(u). Hence,

ILF(sip,D, ldeg, k) achieves the same level of consistency as ILF(sip,D, l∅, k + 1).

One may define stronger initial labelings by integrating information brought by the

domains. Let us define for example the labeling ldom = (Ldom, αdom,�dom) such that

– Ldom = N,

– αdom assigns a different unique label to every node, and

– ∀(u, v) ∈ Np ×Nt, αdom(u) �dom αdom(v) iff v ∈ D(xu) and deg(u) ≤ deg(v).

When every variable domain contains all the target nodes, ldom is equivalent to ldeg.

However, if some target nodes have been removed from some variable domains, then

ldom is strictly stronger than ldeg so that ILF(sip,D, ldom, k) will achieve a stronger

consistency than ILF(sip,D, ldeg, k).

15

Note however that ldom introduces many different labels and that αdom is not

a total order so that the neighborhood extension procedure may become expensive

as most of the time is spent for comparing multisets and the complexity of this step

depends on the number of different labels (see 4.2.4).

A good compromise to limit the number of different initial labels while strength-

ening the initial labeling with respect to information brought by the domains may be

obtained with the labeling ldomCC = (LdomCC, αdomCC,�domCC) such that

– LdomCC = N.N,

– ∀u ∈ Nodes, αdomCC(u) = deg(u).id(u) where id(u) is defined as follows. Let

G = ((Np, Nt), E) be the bipartite graph such that E = {(u, v) ∈ Np ×Nt | v ∈
D(xu)}. We compute the different connected components of G, and we associate

a different id with every different connected component of G. We note id(u) the id

of the connected component which contains u.

– �domCC is the set of couples (deg1.id1, deg2.id2) such that deg1 ≤ deg2 and

id1 = id2.

ldomCC is weaker than ldom, but it introduces fewer labels. When the bipartite graph

defined by domains is connected, ldomCC is equivalent to ldeg. However, if it is not

connected, then ldomCC is strictly stronger than ldeg so that ILF(sip,D, ldomCC, k)

will achieve a stronger consistency than ILF(sip,D, ldeg, k).

4.3.2 Comparison with forward checking on c2 and AllDiff

Our filtering procedure ILF achieves a level of consistency at least as strong as forward

checking (FC) on the standard SIP model which combines a global AllDiff constraint

with c2 constraints, provided that the number of strengthening iterations (defined by

the parameter k) is greater or equal to 1, and whatever the initial labeling l0 is. In

this case, our filtering procedure can be used as a unique filter for SIP, thus offering a

global constraint for SIP.

Property 3 ILF(, , ,1) is as strong as FC(AllDiff + c2).

Proof Each time a variable xu associated with a pattern node u is assigned to a target

node a, FC filters the domain of every variable xv with respect to c2 and AllDiff
constraints as follows:

– For every pattern node v ∈ adj(u), FC of c2(xu, xv) removes any value b ∈ D(xv)

such that (a, b) is not an edge.

ILF(, , ,1) also removes these values. Indeed, during the first iteration, the same

unique label lua is assigned to nodes u and a (line 6) before computing the extended

labeling l1. Hence, after the first iteration, we have α1(v) 6�1 α1(b) for every node

b such that (a, b) is not an edge. Indeed, α1(v) = α0(v).mv with lua ∈ mv (as

u ∈ adj(v)) whereas α1(b) = α0(b).mb with lua 6∈ mb (as a 6∈ adj(b)) so that

mv 6�0 mb and therefore α1(v) 6�1 α1(b).
– FC of AllDiff removes a from the domains of every variable associated with a

pattern node v 6= u.

ILF(, , ,1) also removes these values. Indeed, because of the unique label lua as-

signed to nodes u and a, the label of every pattern node v 6= u is not compatible

with the label of a so that a is removed fromD(xv) by ILF during the first iteration.

�

16

4.3.3 Comparison with arc consistency on c2 and AllDiff

Our filtering procedure ILF is not comparable with arc consistency (AC) on the stan-

dard SIP model which combines a global AllDiff constraint with c2 constraints.

Indeed, ILF is able to prove the inconsistency of the SIP instance of Figure 2, as

shown in Ex. 7. This is still true even if the initial labeling is l∅. As a comparison,

AC(AllDiff + c2) is not able to prove the inconsistency and does not reduce any

domain.

However, AC(AllDiff +c2) may be stronger than ILF in some cases. Let us consider

for example the case where both the pattern and the target graphs are regular graphs

such that every pattern (resp. target) node has the same degree dp (resp. dt), with

dp ≤ dt. If the initial labeling is ldeg, all pattern (resp. target) nodes have the same

label dp (resp. dt) and the fixpoint is reached at the first iteration without reducing

any domain as dp ≤ dt. However, AC may be able to reduce some domains in some

cases as shown in Ex. 8 for AC(c2) and Ex. 9 for AC(AllDiff).

Example 8 Let us consider two pattern nodes u and v that are linked by an edge, and

let us consider the case where the domains of the two variables xu and xv respectively

associated with u and v is such that none of the target nodes of D(xu) and D(xv)

are linked by an edge, i.e., (D(xu) ×D(xv)) ∩ Et = ∅. In this case, the propagation

of AC(c2) removes all values from D(xu) and D(xv) since each value of D(xu) (resp.

D(xv)) has no support in D(xv) (resp. D(xu)).

Note that ILF may also be able to reduce the domains of xu and xv to empty sets

if the initial labeling l0 takes into account information brought by domains. This is

the case, e.g., if the initial labeling is the ldom labeling introduced in 4.3.1. Indeed, in

this case, a different label lu is associated with every different node u, and we have

lu �0 la iff a ∈ D(xu). Hence, in our example, lu will be compatible only with the set

of labels {la | a ∈ D(xu)} whereas lv will be compatible only with the set of labels

{lb | b ∈ D(xv)}. After the first labeling extension, we will have

– α1(u) = lu.mu such that lv ∈ mu as v ∈ adj(u), and

– for every target node a ∈ D(xu), α1(a) = la.ma such that ∀b ∈ D(xv), lb 6∈ ma

as b 6∈ adj(a).

Hence, ∀a ∈ D(xu),mu 6�0 ma as ma only contains labels which are not compatible

with the label lv which belongs to mu. Therefore, ∀a ∈ D(xu), α1(u) 6�1 α1(a), so

that the domain of xu will be reduced to the empty set after one iteration of ILF.

Example 9 Let us consider the case where a subset of n variables associated with

pattern nodes all have the same domain D such that #D < n. In this case, the

instance has no solution as the subgraph isomorphism function must be injective. This

will be detected by AC(AllDiff) as it trivially detects inconsistency when the number

of values is lower than the number of variables.

Note that this kind of inconsistency cannot be detected by ILF, whatever the initial

labeling is.

4.3.4 Comparison with nRF+

When the initial labeling is ldeg, our filtering procedure ILF is not comparable with

the filtering procedure nRF+ proposed by Larrosa and Valiente in [17]. Indeed, ILF is

17

able to prove the inconsistency of the SIP instance of Fig. 2, as shown in Ex. 7, whereas

nRF+ combined with AC(AllDiff + c2) is not able to prove the inconsistency: it is

only able to reduce the domains of the variables associated with nodes 2 and 4 to

{A,B,D} whereas the domains of the other variables are not reduced. However, ILF

is not able to reduce any domain for the SIP instance of Fig. 1 whereas nRF+ is able

to reduce some domains as shown in Example 1.

When the initial labeling is ldom, our filtering procedure ILF is at least as strong

as nRF+, provided that the number of iterations k is greater or equal to 1.

Property 4 ILF(, ,ldom,1) is as strong as nRF+.

Proof. nRF+ removes from the domain of a variable associated with a pattern node i
every target node a such that #F(i, a) < #adj(i). This value is also removed after the

first iteration of ILF. Indeed, let us consider the multisets mi and ma which contain

the labels of the neighbours of i and a. When the initial labeling is ldom, the label in

mi of a node j adjacent to i is compatible with the label in ma of a node b adjacent

to a only if b ∈ D(xj). Therefore, if #F(i, a) < #adj(i), mi will not be compatible

with ma and a will be removed from D(xi). �

5 Weaker filtering algorithm ILF*

At each iteration of ILF, the most expensive step is the computation of the partial order

�i+1 during the neighborhood extension procedure, which is done in O(np ·nt ·d5/2).

This comes from the fact that each call to the test function is in O(d5/2).

However, if�i is a total order (instead of a partial order), the function test(mu,mv,
�i) may be implemented much more efficiently, by sorting each multiset and matching

every label of mu with the smallest compatible label of mv. In this case, the complexity

of test is O(d · log d), and the complexity of the neighborhood extension becomes

O(np · nt · d) as the sorting of multisets may be done once.

When �i is not a total order, one may extend it into a total order ≤. This total

order may then be used in the test function to determine if mu ≤ mv. However, the

total order introduces new label compatibilities so that test(mu,mv,≤) may return

true while test(mu,mv,�i) returns false. As a consequence, using this approximated

order may induce a weaker filtering.

In this section, we first introduce in 5.1 the theoretical framework that defines a new

neighborhood labeling extension based on a total order and proves its validity; then we

show in 5.2 how to compute the total order; finally, we define in 5.3 the new filtering

algorithm called ILF∗ and we discuss its complexity and the level of consistency it

achieves.

5.1 Labeling strengthening based on total orders

We define a new neighborhood extension procedure where old labels are extended by

multisets of neighbor labels like in Definition 7, but where the partial order over the

new extended labels is defined with respect to a total order over the old labels, thus

reducing the complexity of its computation.

18

The next definition gives a simple condition on the total order to ensure its consis-

tency with respect to the partial order, i.e., to ensure that if test(mu,mv,�i) returns

true, then test(mu,mv,≤) also returns true.

Definition 11 Let l = (L,�, α) be a labeling. A consistent total order for l is a

total order ≤ on L such that ∀u ∈ Np,∀v ∈ Nt, α(u) � α(v)⇒ α(u) ≤ α(v)

We extend the order ≤ on multisets like for partial orders in Definition 6, i.e., m ≤ m′
iff there exists an injective function t : m→ m′ such that ∀ai ∈ m,ai ≤ t(ai). Hence,

m � m′ ⇒ m ≤ m′. Let us note however that this extension of ≤ to multisets only

induces a partial order on multisets as some multisets may not be comparable.

We can then define a new neighborhood extension procedure, based on a consistent

total order.

Definition 12 Let l = (L,�, α) be a labeling, and let ≤ be a consistent total order

for l. The neighborhood extension of l based on ≤ is the labeling l′ = (L′,�′, α′)
where L′ and α′ are defined like in Definition 7, and the order relation �′⊆ L′ ×L′ is

defined by

l1 ·m1 �′ l2 ·m2 iff l1 � l2 ∧m1 ≤ m2

The next theorem shows that a neighborhood extension based on a consistent total

order may be used in our iterative labeling process, and that it is stronger or equal

to the original labeling. However, it may be weaker than the neighborhood extension

based on the partial order. Indeed, the total order induces more compatible couples of

labels than the partial order.

Theorem 3 Let l = (L,�, α), l′ = (L′,�′, α′), and l′′ = (L′,�′′, α′), be three
labelings such that l′ is the neighborhood extension of l and l′′ is the neighborhood
extension of l based on a total consistent order.

If l is an SIC labeling, then (i) l′′ is SIC, (ii) l′′ is stronger than (or equal to)
l, and (iii) l′ is stronger than (or equal to) l′′.

Proof (ii) and (iii): For labeling l′, we have l1 ·m1 �′ l2 ·m2 iff l1 � l2 ∧m1 � m2.

As ≤ is an extension of �, we have m � m′ ⇒ m ≤ m′. Hence, CCl′ ⊆ CCl′′ ⊆ CCl.
(i) is a direct consequence of (iii), as l′ is SIC (Theorem 1). �

5.2 Computation of a total order

Given a partial order �⊆ L × L, one may easily compute a consistent total order by

performing a topological sort of the graph G = (L,�) [7]. Topological sorts are not

unique so that different consistent total orders may be derived from a given partial

order, and these different total orders may induce prunings of different strength: the

less new couples of compatible nodes are introduced by the total order, the better the

filtering. However, we conjecture that finding the best consistent total order is NP-hard

(see appendix A).

We propose a heuristic algorithm that aims at computing a total order that intro-

duces few new compatible couples without guarantee of optimality. This algorithm is

based on the following greedy principle: starting from an empty sequence, one itera-

tively adds some labels at the end of the sequence, until all labels have been sequenced.

19

Algorithm 2: Computation of a consistent total order

Input:
the set Lp of labels of pattern nodes
the set Lt of labels of target nodes
a partial order �⊆ Lp × Lt

Output: an increasing sequence S defining a consistent total order for l
for every label e ∈ Lp ∩ Lt do1

replace e by e′ in Lt (where e′ is a new label such that e′ 6∈ Lp ∪ Lt)2

for every label e′′ ∈ Lp such that e′′ � e do3

add (e′′, e′) to �4

S ←<>5

while Lt 6= ∅ do6

Cand← {et ∈ Lt | #{ep ∈ Lp, ep � et} is minimal}7

Cand′ ← {et ∈ Cand |
∑
ep∈Lp∧ep�et

#{e ∈ Lt, ep � e} is maximal}8

randomly choose et in Cand′9

for every label ep ∈ Lp such that ep � et do10

add ep at the end of S and remove ep from Lp11

add et at the end of S and remove et from Lt12

add the remaining elements of Lp at the end of S13

return S14

The total order is derived from the sequence by stating that a label is smaller than

every label occuring after it in the sequence.

This algorithm is described in algorithm 2. It first renames the labels of the target

graph that are also used in the pattern graph (lines 1–4). This does not modify the set

of compatible couples of nodes, induced by the labeling. This renaming step is done in

O(np · nt).
Then, at each iteration of our greedy algorithm, we choose a label et of the target

graph which has not yet been sequenced in S (lines 7–9) and then we introduce in the

sequence the selected label et, preceded by every label ep ∈ Lp such that ep � et
(lines 10–12) in order to preserve the compatibility relation.

Our goal is to sequence the labels of Lp as late as possible (in order to minimize

the number of target nodes which are compatible with pattern nodes). To this aim,

we first compute (line 7) the set of labels et ∈ Lt for which the number of labels

ep ∈ Lp, ep � et is minimal. To break ties, we then select (line 8) the labels which are

already compatible with the maximum number of labels in Lt.
The time complexity of this heuristic algorithm is in O(nt · lognt · dp · dt), which

for simplicity will be approximated by Õ(np · nt · d).

5.3 Complexity of ILF∗

We denote by ILF∗ the filtering procedure obtained when calling algorithm 2 before

computing the new partial ordering �i+1, i.e., before line 12 of algorithm 1, and

replacing the current partial order by the computed total order in the call to the test
function.

Property 5 The ILF∗ procedure has an overall time complexity of

Õ(min(k, np · nt) · np · nt · d)

20

Target graph Pattern graph directed feasible
Class #Nt dmin dmax pn pe graphs ? instances ?
A 200 5 8 90% 90% no yes
B 600 5 8 90% 90% no yes
C 1000 5 8 90% 90% no yes
D 600 5 8 90% 90% yes yes
E 300 20 300 90% 90% no yes
F 300 20 300 90% 90% + 10% no no

Table 1 Description of the considered classes of instances

6 Experimental Results

6.1 Considered instances

We evaluate our approach on scale-free networks and on graphs of the GraphBase

database used in [17].

Scale-free networks (classes A to F) Scale-free networks model a wide range of real

networks, such as social, Internet, or neural networks [1]. We have randomly generated

graphs using a power law distribution of degrees P (d = k) = k−λ. We have made

experiments with different values of λ, ranging between 1 and 5, and obtained similar

results. Hence, we only report experiments on graphs generated with the standard

value λ = 2.5.

We have considered 6 classes of instances, each class containing 20 different in-

stances. These classes are described in Table 1. For each instance, we first generate

a connected target graph which node degrees are bounded between dmin and dmax.

Then, a connected pattern graph is extracted from the target graph by randomly select-

ing a percentage pn (resp. pe) of nodes (resp. edges). We have performed experiments

with different percentages pn and pe and noticed that when pn and pe are smaller than

0.7 the number of solutions increases so much that instances become much easier to

solve. Hence, we only report results obtained on harder instances with pn = 0.9.

All instances of classes A to D are sparse feasible instances such that node degrees

range between 5 and 8. Target graphs in classes A to C are undirected and their number

of nodes is increased from 200 to 1000 to study scale-up properties. Target graphs in

class D are directed, such that their edges have been randomly directed.

All instances of classes E and F are denser undirected instances that have been

generated with dmin = 20, dmax = 300. Instances of class E are feasible ones that

have been generated with pe = 90%. Instances of class F are non feasible ones: for these

instances, pattern graphs are extracted from target graphs by randomly selecting 90%

of nodes and 90% of edges, but after this extraction, 10% of new edges have been

randomly added.

For all experiments reported below, each run searches for all solutions of an in-

stance.

GraphBase database (classes G and H) This database contains graphs with different

properties, i.e., simple, acyclic, connected, biconnected, triconnected, bipartite and

planar (see [17]). It contains 113 undirected graphs and 59 directed graphs. We have

considered the first 30 directed graphs. This set contains graphs ranging from 10 nodes

to 462 nodes. Using these graphs, we have generated 406 directed instances (class

21

Solved instances (%) Average time Average failed nodes
ILF(k) ILF*(k) ILF(k) ILF*(k) ILF(k) ILF*(k)

k=0 k=1 k=2 k=2 k=4 k=8 k=0 k=1 k=2 k=2 k=4 k=8 k=0 k=1 k=2 k=2 k=4 k=8

A 100.0 100.0 100.0 100.0 100.0 100.0 0.9 0.4 57.7 0.3 0.4 0.5 19.4 2.0 0.0 0.5 0.1 0.0
B 100.0 100.0 100.0 100.0 100.0 100.0 19.6 3.5 420.4 3.5 4.2 5.6 54.4 0.6 0.0 0.1 0.1 0.0
C 100.0 100.0 5.0 100.0 100.0 100.0 91.8 11.2 562.2 11.2 13.3 18.2 97.0 0.6 1.0 0.1 0.1 0.1
D 100.0 100.0 95.0 100.0 100.0 100.0 1.6 1.6 209.4 1.6 1.6 1.6 0.0 0.0 0.0 0.0 0.0 0.0
E 100.0 100.0 0.0 100.0 100.0 100.0 22.9 14.8 - 16.7 18.6 29.5 144.3 42.0 - 29.1 19.9 17.6
F 95.0 95.0 15.0 95.0 95.0 95.0 38.8 11.8 3.0 7.9 6.9 8.1 147.4 17.7 1.0 6.3 3.6 2.7

G 83.3 83.3 76.1 82.9 81.7 81.2 2.6 4.4 23.3 4.9 3.9 2.3 470.1 378.9 21.5 275.4 151.6 149.6
H 58.0 64.8 55.9 64.3 63.9 63.9 18.4 6.4 14.4 6.2 7.5 7.3 35865.4 658.7 50.5 396.5 344.5 331.1

Table 2 Comparison of different variants of ILF(k) and ILF*(k) where k gives the maximum
number of iterations. Each line successively reports the percentage of instances that have been
solved within a CPU time limit of 600s on an Intel Xeon 3,06 Ghz with 2Gb of RAM; the
average run time for the solved instances; and the average number of failed nodes in the search
tree for the solved instances.

G) and 1276 undirected instances (class H) of the subgraph isomorphism problem by

considering all couples of graphs (Gp, Gt) such that Np < Nt.

6.2 Comparison of ILF(k) and ILF*(k)

Algorithm 1 has been implemented in Gecode (http://www.gecode.org), using CP(Graph)

and CP(Map) [10,9] which provide graph and function domain variables. These new

structured domains offer abstractions that simplified the implementation of the filter-

ing algorithms. In all experiments, the filtering algorithms ILF and ILF* have been

combined with AC(c2) and AC(AllDiff).

Table 2 compares ILF(k) and ILF*(k), respectively based on an exact partial order

or an approximated total order (as described in 4.2 and 5), for different limits k on the

number of iterations. In all variants, the initial labeling l0 is the labeling ldeg defined

in 2.3. Note that the order of ldeg is a total order so that in this case the exact and

approximated variants are equivalent for k = 1.

Let us first compare ILF and ILF*. The number of failed nodes with ILF*(2) is

greater than with ILF(2), but it is smaller than with ILF(1). This shows us that the

total order computed by our heuristic algorithm is a quite good approximation of

the partial order. When considering CPU-times, we note that ILF*(2) is significantly

quicker than ILF(2).

Table 2 also shows that the best performing variant differs when considering differ-

ent classes of instances. The directed instances of classes D and G are best solved when

k = 0, i.e., with the simple ldeg labeling. Instances of classes A, B, C, E, F and H are

undirected; they are best solved when k = 1 than when k = 0, i.e., after one iteration

of the labeling extension. Instances of class F, which have significantly higher node

degrees and are infeasible, are very difficult ones. For these instances, iterative labeling

extensions actually improve the solution process and the best results are obtained with

ILF ∗ (4).

As a conclusion, these experiments show us that (1) the approximated variant offers

a good compromise between filtering’s strength and time, and (2) the optimal limit k
on the number of iterations depends on the difficulty of instances. Good average results

are obtained with ILF*(2).

22

Solved instances (%) Average time Average failed nodes
vflib CP1 CP2 CP3 CP4 ILF*(2) vflib CP1 CP2 CP3 CP4 ILF*(2) CP1 CP2 CP3 CP4 ILF*(2)

A 65.0 100.0 100.0 100.0 100.0 100.0 79.6 0.2 0.9 2.7 1.3 0.3 440.1 19.4 99.9 13.9 0.5
B 0.0 100.0 100.0 100.0 100.0 100.0 - 6.7 21.1 113.6 16.2 3.5 1314.1 54.4 475.6 18.9 0.1
C 0.0 100.0 100.0 90.0 100.0 100.0 - 81.3 105.6 150.7 42.5 11.2 6207.1 97.0 218.3 13.6 0.1
D 100.0 100.0 100.0 100.0 100.0 100.0 0.2 0.1 1.8 2.2 3.8 1.6 2.1 0.0 0.0 0.0 0.0
E 0.0 84.2 100.0 63.2 100.0 100.0 - 53.4 7.7 88.6 12.0 16.7 19149.5 32.4 1518.2 31.5 29.1
F 0.0 40.0 90.0 35.0 90.0 95.0 - 48.1 39.2 35.1 43.2 7.9 9448.4 60.8 533.7 57.6 6.3

G 63.9 72.2 74.7 68.6 74.0 82.9 7.9 3.3 6.0 11.8 6.1 4.9 25773.6 680.7 3820.6 717.3 275.4
H 46.5 61.5 65.3 55.3 63.8 64.3 19.4 12.7 11.2 19.1 10.5 6.2 251208.9 2482.7 5704.4 1044.6 396.5

Table 3 Comparison of state-of-the-art approaches. Each line successively reports the per-
centage of instances that have been solved within a CPU time limit of 600s on an Intel Xeon
3,06 Ghz with 2Go of RAM; the average run time for the solved instances; and the average
number of failed nodes in the search tree for the solved instances.

6.3 Comparison with state-of-the-art approaches

We now compare results obtained with our filtering procedure ILF*(2), which offers

a good compromise between search space reduction and time, with other CP models.

We consider four different CP models which combine different kinds of constraints and

different levels of consistency as introduced in Section 2.3:

– CP1 performs forward checking on c2 and AllDiff constraints;

– CP2 maintains arc consistency on c2 and AllDiff constraints;

– CP3 combines forward checking on c2 and AllDiff constraints with the filtering

procedure nRF+ of [17];

– CP4 combines arc consistency on c2 and AllDiff constraints with the filtering pro-

cedure nRF+ of [17].

All CP models have been implemented in Gecode using CP(Graph) and CP(Map).

We compare these different CP models with a state-of-the-art algorithm coming

from a C++ library vflib.

Table 3 compares all these approaches and shows us that CP approaches clearly out-

perform vflib, except for directed instances of class D. When comparing the different

CP approaches, we note that the number of failed nodes is reduced when considering

higher consistencies, and ILF*(2) always explores much less nodes than other CP mod-

els. This allows ILF*(2) to solve more instances for all classes, except for instances of

class H which are best solved by CP2.

7 Conclusion

We introduced a new filtering algorithm for the subgraph isomorphism problem that

exploits the global structure of the graph in order to achieve a stronger partial con-

sistency. This work extends a filtering algorithm for graph isomorphism [23] where a

total order defined on some graph property labeling is strengthened until a fixpoint is

reached. The extension to subgraph isomorphism has been theoretically funded. The

order is partial and can also be iterated until a fixpoint is reached. However, using

such a partial order is very time consuming. Instead, one can map this partial order

to a total order. Performing such a mapping is hard, and can be efficiently approxi-

23

mated through a heuristic algorithm. Experimental results show that our propagators

are efficient against state-of-the-art propagators and algorithms.

One of the advantages of our CP approach is to easily accomodate extra constraints.

Further work includes the comparisons of the different CP approaches, including our

ILF and ILF* algorithms on different classes of SI problems with side constraints. We

will also extend our filters to better take into account the domain of the variables.

Although Gecode has a copy strategy, it is worth introducing incrementality in our

filtering algorithms, reducing computation between different executions of the propa-

gator. Future work will also include the development of dynamic termination criteria

for the iterative labeling, the experimental study of other degree distributions, and the

analysis of alternative initial labelings.

Acknowledgments

The authors want to thank the anonymous reviewers for their helpful comments. Chris-

tine Solnon acknowledges an Anr grant Blanc 07-1 184534: this work was done in

the context of project Sattic. This research is also partially supported by the In-

teruniversity Attraction Poles Programme (Belgian State, Belgian Science Policy).

References

1. A.-L. Barabasi, Linked: How Everything Is Connected to Everything Else and What It
Means, Plume, 2003.

2. C. Bessière, P. Van Hentenryck, To be or not to be . . . a global constraint, in: Proceedings
of the 9th International Conference on Principles and Practice of Constraint Programming
(CP), vol. LNCS 2833, Springer-Verlag, 2003, pp. 789–794.

3. D. Conte, P. Foggia, C. Sansone, M. Vento, Thirty years of graph matching in pattern
recognition., IJPRAI 18 (3) (2004) 265–298.

4. L. Cordella, P. Foggia, C. Sansone, F.Tortella, M. Vento, Graph matching: A fast algorithm
and its evaluation, in: ICPR ’98: Proceedings of the 14th International Conference on
Pattern Recognition-Volume 2, IEEE Computer Society, Washington, DC, USA, 1998, p.
1582.

5. L. Cordella, P. Foggia, C. Sansone, M. Vento, An improved algorithm for matching large
graphs, in: 3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern Recog-
nition, Cuen, 2001, pp. 149–159.

6. L. P. Cordella, P. Foggia, C. Sansone, M. Vento, Performance evaluation of the vf graph
matching algorithm, in: ICIAP ’99: Proceedings of the 10th International Conference on
Image Analysis and Processing, IEEE Computer Society, Washington, DC, USA, 1999, p.
1172.

7. T. H. Cormen, C. Stein, R. L. Rivest, C. E. Leiserson, Introduction to Algorithms,
McGraw-Hill Higher Education, 2001.

8. P. T. Darga, M. H. Liffiton, K. A. Sakallah, I. L. Markov, Exploiting structure in symmetry
detection for cnf, in: Proc. Design Automation Conference (DAC), IEEE/ACM, 2004, pp.
530–534.

9. Y. Deville, G. Dooms, S. Zampelli, P. Dupont, Cp(graph+map) for approximate graph
matching, 1st International Workshop on Constraint Programming Beyond Finite Integer
Domains, CP2005 (2005) 33–48.

10. G. Dooms, Y. Deville, P. Dupont, Cp(graph): Introducing a graph computation domain
in constraint programming, in: Principles and Practice of Constraint Programming, vol.
3709 of Lecture Notes in Computer Science, 2005, pp. 211–225.

11. P. Foggia, C. Sansone, M. Vento, A database of graphs for isomorphism and sub-graph
isomorphism benchmarking, CoRR cs.PL/0105015.

12. G. Fowler, R. Haralick, F. G. Gray, C. Feustel, C. Grinstead, Efficient graph automorphism
by vertex partitioning, Artificial Intelligence 21 (1983) 245–269.

24

13. M. Garey, D. Johnson, Computers and Intractability, Freeman and Co., New York, 1979.
14. J. A. Grochow, M. Kellis, Network motif discovery using subgraph enumeration and

symmetry-breaking, in: T. P. Speed, H. Huang (eds.), RECOMB, vol. 4453 of Lecture
Notes in Computer Science, Springer, 2007, pp. 92–106.

15. J. Guo, F. Hueffner, H. Moser, Feedback arc set in bipartite tournaments is np-complete,
Information Processing Letters 102 (2-3) (2007) 62–65.

16. J. E. Hopcroft, R. M. Karp, An n5/2 algorithm for maximum matchings in bipartite
graphs., SIAM J. Comput. 2 (4) (1973) 225–231.

17. J. Larrosa, G. Valiente, Constraint satisfaction algorithms for graph pattern matching,
Mathematical. Structures in Comp. Sci. 12 (4) (2002) 403–422.

18. B. D. McKay, Practical graph isomorphism., Congressus Numerantium 30 (1981) 45–87.
19. J. Régin, Développement d’outils algorithmiques pour l’intelligence artificielle. application

à la chimie organique, Ph.D. thesis (1995).
20. J.-C. Regin, A filtering algorithm for constraints of difference in CSPs, in: Proc. 12th Conf.

American Assoc. Artificial Intelligence, vol. 1, Amer. Assoc. Artificial Intelligence, 1994,
pp. 362–367.

21. M. Rudolf, Utilizing constraint satisfaction techniques for efficient graph pattern match-
ing, in: Theory and Application of Graph Transformations, No. 1764 in Lecture Notes in
Computer Science, Springer, 1998, pp. 238–252.

22. S. Sorlin, C. Solnon, A global constraint for graph isomorphism problems, in: 6th Inter-
national Conference on Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems (CP-AI-OR 2004), vol. 3011 of LNCS, Springer-
Verlag, 2004, pp. 287–301.

23. S. Sorlin, C. Solnon, A new filtering algorithm for the graph isomorphism problem, 3rd
International Workshop on Constraint Propagation and Implementation, CP2006.

24. S. Sorlin, C. Solnon, A parametric filtering algorithm for the graph isomorphism problem,
Constraints 13(4).
URL http://liris.cnrs.fr/publis/?id=3364

25. J. R. Ullmann, An algorithm for subgraph isomorphism, J. ACM 23 (1) (1976) 31–42.
26. G. Valiente, Algorithms on Trees and Graphs, Springer-Verlag, Berlin, 2002.
27. S. Zampelli, A constraint programming approcah to subgraph isomorphism, Ph.D. thesis,

UCLouvain, Department of Computing Science & Engineering (June 2008).
28. S. Zampelli, Y. Deville, P. Dupont, Approximate constrained subgraph matching, in: Prin-

ciples and Practice of Constraint Programming, vol. 3709 of Lecture Notes in Computer
Science, 2005, pp. 832–836.

29. S. Zampelli, Y. Deville, C. Solnon, S. Sorlin, P. Dupont, Filtering for subgraph isomor-
phism, in: Proc. 13th Conf. of Principles and Practice of Constraint Programming, Lecture
Notes in Computer Science, Springer, 2007, pp. 728–742.

25

Appendix A: Complexity of the best total order problem

Given a partial order �⊆ Np ×Nt, our best total order problem involves finding the

consistent total order ≤ which introduces the smallest number of new compatibility

relationships from Np to Nt, i.e., such that #{(u, v) ∈ Np ×Nt, u ≤ v} is minimal.

Our problem may be formalized as follows. Let us define the directed bipartite graph

between Np and Nt which contains an arc from u ∈ Np to v ∈ Nt if α(u) � α(v),

and an arc from v ∈ Nt to u ∈ Np if ¬(α(u) � α(v)). The underlying undirected

bipartite graph is complete so that it corresponds a total relation. However, it may

not correspond to a total order as it may contain cycles (so that transitivity is not

verified). The best total order problem is equivalent to finding the smallest number of

arcs from Nt to Np that should be reversed so that the graph becomes acyclic.

We conjecture that this problem is NP-hard. Indeed, the feedback arc set problem,

which involves finding the smallest number of arcs that should be deleted to make a

directed graph acyclic has been shown to be NP-hard, even in the case of complete

bipartite graphs [15]. The only difference between the feedback arc set problem and

our best total order problem is that we must not reverse (or delete) arcs from Np to

Nt (otherwise the total order would not be consistent).

