
Consistency Techniques

for Interprocedural Test Data Generation

Nguyen Tran Sy Yves Deville

Universit�e catholique de Louvain
Place Saint-Barbe 2

B-1348 Louvain-la-Neuve, Belgium
ftsn,ydeg@info.ucl.ac.be

Abstract

This paper1 presents a novel approach for automated test data generation
of imperative programs containing integer, boolean and/or 
oat variables. It
extends our previous work [1] to programs with procedure calls and arrays.
A test program (with procedure calls) is represented by an Interprocedu-
ral Control Flow Graph (ICFG). The classical testing criteria (statement,
branch, and path coverage), widely used in unit testing, are extended to the
ICFG. For path coverage, the speci�ed path is transformed into a path con-

straint. Our previous consistency techniques, the core idea behind the solving
of path constraints, have been extended to handle procedural calls and op-
erations with arrays. For statement (and branch) coverage, paths reaching
the speci�ed node or branch are dynamically constructed. The search for
suitable paths is guided by the interprocedural control dependences of the
program. The search is also pruned by a new specialized consistency �lter.
Finally, test data are generated by the application of the proposed path cov-
erage algorithm. A prototype has been implemented. Experiments show the
feasibility of the approach.

Keywords software testing, test data generation, procedures, arrays,
constraint satisfaction, consistency

Introduction Structural testing techniques are usually concerned with the use
of the control-
ow a program to guide the generation of test data. The control-

ow, in turn, is represented by a Control Flow Graph (CFG). To adequately test
the program at the structural level, we must consider structural elements (nodes,
branches, or paths) of the CFG for coverage. For example, statement coverage
requires developing test cases to execute certain nodes of the CFG. Similarly,
branch coverage requires test cases to traverse certain branches, and path coverage
requires test cases to execute certain paths. Structural testing thus includes (1)
choice of a criterion (statement, branch or path), (2) identi�cation of a set of
nodes, branches or paths, and (3) generation of test data for each element of this
set. The automation of the last phase is a vital challenge in software testing.

1This paper has been published in the Proceedings of the Joint 9th European Software En-
gineering Conference and 11th ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE'03), Helsinki , Finland, 2003



Existing approaches Classical testing approaches can be classi�ed into the
following categories. Random test data generation consists in trying test data
generated randomly until an element is executed. Symbolic evaluation consists in
replacing input variables by symbolic values, and then symbolically evaluates the
statements along a path. It is however limited in handling arrays and procedure
calls. Program execution based (or dynamic) approaches start by executing the
program with an arbitrary test input. This input is then iteratively re�ned, by
execution of the program, to obtain a �nal input, executing a path, a branch,
or a statement. Although dynamic approaches are powerful in handling arrays
and dynamic data structures, it may require a great number of executions of the
program. Other approaches, based on genetic algorithms or Constraint Logic
Programming, have also been proposed.

In the following problem statement, an Interprocedural Control Flow Graph
(ICFG) is a classical representation of programs.

Problem statement Given a node n, a branch b or a path p of the ICFG
associated with a test procedure P (possibly with procedure calls), generate a test
input i such that P when executed on i will cause n, b or p to be traversed.

We propose a novel consistency-based approach for interprocedural test data
generation. Statement, branch and path coverage criteria are all handled. Path
coverage is the core of our approach. It includes the following steps. (1) A path
constraint is derived from a speci�ed path of the ICFG. Such a constraint can
involve operations with arrays. (2) The path constraint is solved by a new spe-
cialized interval-arithmetic-based constraint solver extended to handle constraints
invol ving arrays. (3) A test case is extracted from the interval solutions.

For statement (and branch) coverage, paths reaching the speci�ed node or
branch are dynamically constructed. Our algorithm for path coverage is then
applied on these paths to generate test data.

Contribution The main contribution of the paper is a novel approach (based
on consistency techniques), which is an extension of our previous paper [1] to
generate test data for numeric programs (programs with integer, boolean and

oat variables) with procedure calls and arrays. This approach handles branch,
statement and path coverage criteria. Speci�c technical contributions of the paper
include the following. (1) A new method to obtain a path constraint directly from
a path's traversal. (2) Two mechanisms for passing parameters (pass-by-value
and pass-by-reference) in procedure calls are handled. (3) An improvement on our
previous consistency techniques to tackle speci�c constraints involving arrays. (4)
The proposed interval constraints solver integrates integers, reals, and booleans,
as well as the logical operators AND, OR, NOT . (5) For statement and branch
coverage, interprocedural control dependences are used during the search process,
when the test procedure contains procedure calls.

References

[1] Nguyen Tran Sy and Yves Deville. Automatic test data generation for programs
with integer and 
oat variables. In 16th IEEE International Conference on
Automated Software Engineering(ASE01), November 2001.


