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Abstract

Local Search (LS) and Evolutionary Algorithms

(EA) are probabilistic search algorithms, widely

used in global optimization, where selection is im-

portant as it drives the search. In this paper, we

introduce acceptance, a metric measuring the se-

lective pressure in LS and EA, that is the trade-

off between exploration and exploitation. Infor-

mally, acceptance is the proportion of accepted

non-improving transitions in a selection.

We propose a new LS algorithm, SAad, based on

acceptance schedule (a schedule for the selective

pressure). In EA, two new selection rules based

on the Metropolis criterion are introduced. They

allow two new EA (2MT and RT) based on accep-

tance schedule. They demonstrate a possible way

of merging LS and EA technologies. Benchmarks

show that the developed algorithms are more per-

formant than standard SA and EA algorithms,

and that SAad is as efficient as the best SA al-

gorithms while 2MT and RT are complementary

to Evolution Strategies.

1 Introduction

Local Search (LS) and Evolutionary Algorithms (EA)
are probabilistic search algorithms widely used in
global optimization. Such problems can be formal-
ized as a set of solutions (called search space) and a
function evaluating the solutions (called score, energy
or fitness). The aim of global optimization is to find
a solution such that no other solution is better. LS is
based on the concept of neighborhood; its principle is
to improve iteratively a current solution by generating
and selecting neighbor solutions. The principle of EA
is to model the evolution of a population of individuals
through recombination, mutation and selection.

∗This research is partially supported by the actions de
recherche concertées ARC/95/00-187.

Selection is an important part of both LS and EA: it
drives the search toward promising zones of the search
space. Selection is subject to an important trade-off: it
either favors the exploration of the search space or the
exploitation of the neighborhood (or population). This
trade-off is usually expressed using the informal term
of selective pressure: high pressure implying exploita-
tion and low pressure exploration. Measuring selective
pressure is an important trend in EA. Takeover time,
for example, is the metric used in (Bäck, 1994).

A contribution of this paper is to provide a metric
measuring the selective pressure appropriate for both
LS and EA. We will therefore introduce the notion of
acceptance, the proportion of accepted non-improving
transitions in a selection.

The best-known EA are: Genetic Algorithms (GA,
Holland, 1975), Evolution Strategies (ES, Bäck, 1996)
and Evolutionary Programming (EP, Fogel, 1992).

In the vast majority of EA, selection does not vary
during the search. However, a varying selection pa-
rameter is used in an example in (Davis, 1991), and a
Boltzmann Tournament Selection aiming at a niching
mechanism is described in (Goldberg, 1990).

Simulated Annealing (SA, Kirkpatrick et al., 1983) is
a LS algorithm originating from a simulation of the
thermodynamics of gas. In SA, selection is performed
using the Metropolis criterion (Metropolis et al., 1955)
which has a parameter called temperature. The princi-
ple of SA is to enforce a temperature schedule reducing
temperature progressively during optimization. This
reduction of temperature permits to achieve a conver-
gence to the global optimum. The temperature sched-
ule is critical to the success of SA.

The best-known temperature schedule SAgeo is the
geometric one (Kirkpatrick et al., 1983). Another im-
portant one is SApoly (van Laarhoven, 1988) where
temperature reduction is performed using a feedback
mechanism based on the concept of quasi-equilibrium.



It has a polynomial time complexity. In addition to
an analog feedback, SAef innovates by introducing a
variable chain length based on an approximate mea-
sure of equilibrium. It is considered as one of the best
SA known of to date (Aarts and Lenstra, 1997).

In SA, temperature has a direct impact on the selec-
tive pressure which initially is low and increases with
time. The progressive increase of selective pressure
is the core of of SA. In LS and in EA, although selec-
tion may vary during the search, the resulting selective
pressures can only de deduced during the execution. In
existing algorithms, selection is not adapted according
to a given schedule for the selective pressure.

A contribution of this paper is the definition of accep-
tance schedule (a schedule for the selective pressure)
and an associated algorithm (estimate parameter)
computing the successive values of a selection param-
eter (temperature) in order to achieve an acceptance
schedule. Since acceptance is appropriate for both LS
and EA, it makes possible the merging of SA and EA

technologies.

The other contributions of this paper are now de-
scribed. We designed and implemented a new local

search algorithm, SAad, based on acceptance sched-
ule. Its temporal complexity can be a priori computed
and is O(v log v) (where v is the average size of a neigh-
borhood). Benchmarks have shown that SAad is more
performant than standard SA techniques, and is as ef-
ficient as the best SA algorithms. We defined two se-

lection rules, a relaxed 2-Tournament and a relaxed
truncation, applicable in EA. These rules introduce
the Metropolis criterion on populations and allow for
adaptable acceptance. They respect the design guide-
lines expressed in (Bäck, 1994). We designed and im-

plemented new evolutionary algorithms, 2MT and RT,
based on acceptance schedule and implementing the
two selection rules. Benchmarks have shown they are
more performant than standard EA, and are comple-
mentary to ES.

The paper is structured as follows. In Section 2, ac-
ceptance driven SA is presented; acceptance and ac-
ceptance schedule are defined and algorithm SAad is
described. Section 3 presents acceptance driven EA;
two selection rules are proposed and algorithms EAad
is described. Experimental results are analyzed in Sec-
tion 4.

2 Acceptance Driven SA

2.1 Definition of Acceptance

A transition occur when the current solution is re-
placed by one of its neighbors. Transitions that im-
prove the current solutions are natural since they con-

tribute to both the exploration of the search space and
the exploitation of the neighborhood. Non improving
transitions go in the direction of exploration but to the
detriment of exploitation. Selective pressure is related
to the probability that these transitions occur.

We propose a new metric of selection pressure, called
acceptance. Intuitively, it is the proportion of non-
improving transitions that are accepted. Moreover, it
is a global measure of the solution space and is not
relative to a specific current solution.

Definition: Given a local search algorithm ls using a
selection rule select, a neighbor function neighbor
and an energy function energy,

acceptance = P(select(S, S ′, t) = S′ |
energy(S′) > energy(S) & S′ = neighbor(S))

where S and S′ are solutions and t a parameter of the
selection. The upper bound 1 of acceptance implies
that non improving transitions are always accepted;
and the lower bound 0 that they are never accepted.
Acceptance is relative to a selection rule select and
its parameter t. As t may vary during the search, such
as in SA, acceptance may also vary.

2.2 Local Search Driven by Acceptance

1 S := initial solution
2 s := 0
3 while continue do
4 χ := target acceptance(s)
5 t := estimate parameter(χ)
6 repeat L times
7 S′ := neighbor (S)
8 S := select (S,S′,t)

end
9 s := s+ 1

end
10 return S

Algorithm 1: Acceptance driven EA : SAad

Temperature reduction is the core of SA. In Algorithm
1, we propose a new LS algorithm, called Simulated
Annealing Driven by Acceptance (SAad), based on SA
with an acceptance schedule. To this end, a parameter
χ and an index s are used.

Selection is performed in SA using the Metropolis cri-
terion (Algorithm 2). Its parameter t controls the se-
lective pressure. Hence

Select(S, S′, t)⇔Metropolis(S, S′, t)

The relationship between acceptance and the selection
parameter (temperature in SA) is performed by the es-
timate parameter function specified hereafter. The
successive iterations where the parameter is kept con-
stant is called a chain.
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function S′′ = Metropolis(S,S′,t)
begin

∆ := energy(S′)− energy(S)
p := min(1, exp(−∆/t))
if random(0, 1) < p then S′′ := S′ else S′′ := S

end

Algorithm 2: Metropolis criterion

function t = estimate parameter (χ)
Pre: χ ∈ [0, 1]
Post: t ≥ 0 such that the expected acceptance is

equal to χ for a chain using t as the value of
the parameter of select .

An acceptance schedule is a method to determine, for
each moment of the search, an acceptance we would
like to enforce (called target acceptance). This is the
role of target acceptance.

function χ = target acceptance(s)
Pre: s ≥ 0 is the index of a chain
Post: χ ∈ [0, 1] is the target acceptance for the chain

of index s

2.3 Acceptance Schedule

The initial value χ0 of acceptance, χ0 = 1, is its upper
bound. It leads to a complete coverage of the search
space.

The next step is to determine the decrease of accep-
tance. A well-known heuristic used in simulated an-
nealing states that “the number of (accepted) tran-
sitions must be constant for each chain”. This im-
plies that chains of lower temperature (and thus lower
acceptance) must be longer. We have modified this
heuristic to fit our framework: “the number of (ac-
cepted) transitions per unit of acceptance is constant”,
that is χ(s).L/(χ(s+1)−χ(s)) (where s is the chain in-
dex) is constant. This implies that more time must be
spent for lower acceptance. This leads to a differential
equation whose solutions are: χ(s) = α · exp(−β · s).
We have also α = χ(0) = 1. As χ(s) forms a geometric
sequence, it can be expressed in term of half-life (de-
noted s1/2): the number of chains such that the ac-
ceptance is divided by two (i.e. χ(s + s1/2) = χ(s)/2,
where s1/2 is an input parameter of the algorithm).
We obtain finally:

target acceptance(s) = χ := (0.5)
s/s1/2 (1)

Since we want acceptance to decrease with time, we
have s1/2 > 0. A higher value of s1/2 corresponds to a
slower decrease of χ.

The stopping condition is traditionally seen as being
part of a schedule. The criterion usually used in lo-
cal search is to stop when no further improvement of
the current solution is to be expected. In our imple-
mentation, we have chosen to stop when the expected

number of non improving transitions during stop (an
input parameter of the algorithm) consecutive chains
is below 1/2:

continue⇔ stop · L · χ ≥ 1/2 (2)

In practice, L is set to 3 times the size of the neighbor-
hood, stop between 5 and 10 and s1/2 is set according
to the time available for optimization.

2.4 Estimation of the Selection Parameter

At the beginning of each chain, the parameter t has to
be estimated such that the expected acceptance over
this chain is equal to the target acceptance χ. This es-
timation uses a feedback mechanism. Given a transi-
tion S → S′ and the value of t, the probability that this
transition is accepted can be computed from the se-
lect function. Likewise, the acceptance over a chain
can be computed a posteriori knowing the transitions
proposed by neighbor.

Let acc(H, t) be a measure of the acceptance, called
acceptance function, over a chain where H is the set
of the (proposed) transitions. We have:

acc(H, t) = P(select(S, S′, t) = S′ |
energy(S′) > energy(S) & (S → S′) ∈ H)

Estimating ti for the chain of index i is therefore equiv-
alent to find ti such that acc(Hi, ti) = χi.

Unfortunately, Hi is not known a priori; especially
since Hi results from a stochastic process involving
the value of ti. A way to solve this problem is to
suppose that acc(Hi, ti) ' acc(Hi−1, ti) because Hi−1

will be known when ti will have to be computed. This
hypothesis is realistic when ti and ti−1 are not too
distant and when Hi−1 is large enough to be a good
representative of the transitions that could have been
proposed during this chain. From a statistical point of
view, it is the case when L is of the same order as the
size of the neighborhood.

Estimating ti is thus equivalent to solving acc(Hi−1, ti)
= χi, where Hi−1 and χi are known.

Given that selection is based on the Metropolis crite-
rion, the acceptance function can easily be computed
from a set H of non improving transitions.

acc(H, t) = (1/n) ·
∑n−1

j=0
exp(−∆j/t) (3)

where ∆j > 0 is the energy difference of the jth tran-
sition of H and n the size of H.

In order to implement the estimate parameter
function, the acceptance function must be inverted;
this is possible as acc(H, t) is monotonous relatively to
t. To this end, a Newton-Raphson (N-R) method can
be used. For numerical stability reasons, we preferred
to use a variation of N-R, working on the logarithm
of the parameter. The principle is to find a root of a
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function by forming a sequence of better and better
estimates of the root. Suppose that we want to find
the root of the equation f(x) = 0 and that we have an
initial estimate x0 of a solution, the (variant of) N-R
sequence is:

xk+1 = xk · exp

(

−f(xk)

f ′(xk)/xk

)

(4)

where f ′ is the derivative of f . If the sequence con-
verges, its limit is a solution of the equation.

In our case, the equation acc(H, t) − χ = 0 must be
solved. We therefore have:

tk+1 = tk · exp

(

n · χ−
∑n−1

j=0
exp(−∆j/tk)

∑n−1

j=0
(∆j/tk) · exp(−∆j/tk)

)

(5)

It is evidenced by experiments that if the temperature
of the previous chain is used as initial estimate of the
one of the next chain, a single step of N-R leads to an
appropriate precision.

Without initial estimate, t can be approximated as

t ≈ −∆/ ln(χ) (6)

where ∆ is the average of the various ∆j . This esti-
mation is only accurate when χ > 0.9.

The proposed algorithm must now be accommodated
to maintain a set of transitions:

1.1 H := ∅
5.1 t := estimate parameter(H,χ)
5.2 H := ∅
8.1 if energy(S′) > energy(S)
8.2 then H := H ∪ {S → S′}
8.3 S := select (S,S′,t)

In practice, each time a non improving transition is
proposed, the contribution of the corresponding ∆ to
the sums of Eqs. 5 and 6 are accumulated. Therefore,
H is not stored as an explicit set of transitions but as
quadruplet (H0, H1, H2, H3) where:

H0 = n (number of transitions, see Eqs. 5 and 6)
H1 = sum of exp(−∆j/t) (see Eq. 5)
H2 = sum of (∆j/t) ∗ exp(−∆j/t) (see Eq. 5)
H3 = sum of ∆j/t (see Eq. 6)

These variables can be updated by simple instructions
replacing Instruction 8.2. as the transitions them-
selves are now useless. An implementation of the es-
timate parameter function is given in Algorithm 3.

2.5 Complexity

Let ep be the complexity of estimate parameter,
ng of neighbor, sel of select, en of energy and
smax the total number of chains. The complexity of
the algorithm SAad is:

O(smax · ep+ smax · L · (ng + sel))

function t = estimate parameter(H,χ,told)
begin

1 if H0 = 0 then t :=∞
2 else if χ > 0.9 then t := −H3/(H0 · ln(χ))
3 else t := told · exp((H0 · χ−H1)/H2)

end

Algorithm 3: Estimate Parameter

The value of smax can be derived from the acceptance
schedule (Eq. 1) and the stopping condition (Eq. 2):

smax = s1/2 · (1 + log2(L · stop))

Moreover ep = O(1). The stop parameter is prob-
lem independent and can thus be seen as a constant
(fixed between 5 and 10 in our implementation). Using
Metropolis, we have sel = O(en). For most problems
ng = O(1) (generation and choice of a neighbor), and
en = O(1) as the energy can be computed incremen-
tally within the neighbor function. As already justi-
fied, we fixed L to O(v), where v is the average size of
a neighborhood. The complexity of Algorithm SAad
becomes finally

O(s1/2 · v · log(v)) (7)

The space complexity of SAad is O(L · size(S)) but is
reduced to O(1) using the proposed implementation of
the acceptance function.

It is noteworthy that the temporal complexity of
SAad, which also is the total number of generated
neighbors (L ·smax), can be computed a priori. This is
usually not the case for classical SA algorithms, where
a temporal complexity in often difficult to derive. In
(van Laarhoven and Aarts, 1987), it is shown that for
specific decrement rules and stop criteria, the total
number of generated neighbors is O(v log(q)), where q
is the size of the set of configurations (usually expo-
nential).

3 Acceptance Driven EA

In LS, the current state is the so-called current solu-
tion; in EA, it is a population. The evolution of this
current population is performed by generating a sec-
ond population (called offspring of the first) through
the mutate and recombine functions, and, selecting
individuals within these populations.

Our acceptance driven EA, called EAad, is given in
Algorithm 4. It is obtained by adapting SAad (Alg.
1) to fit in a standard EA scheme, where P denotes the
current population and contains n individuals, and P ′

a population offspring from P and contains m individ-
uals. The role of select is reflected in the following
specification:
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1 P := array: [1..n]→ Individual
2 for each i ∈ [1..n]: P [i] := random individual
3 s := 0
4 while continue do
5 χ := target acceptance(s)
6 t := estimate parameter(χ)
7 repeat L/m times
8 P ′ := mutate(recombine(P ))
9 P := select (P , P ′, t)
10 s := s+ 1
11 return best of (P )

Algorithm 4: Acceptance driven EA (EAad)

function P ′′ = select (P , P ′, t)
Post: P ′′ ⊆ P ∪ P ′ and #P ′′ = #P
Note: t has an impact on the selective pressure

In EAad, the length of the chains is L/m, where m is
the size of population P ′. Hence, in terms of number
of individuals to be evaluated, the length of the chains
is L, as in SAad.

The continue and target acceptance functions
can be implemented as in SAad. To complete the
EAad algorithm, the estimate parameter and the
select functions have to be implemented.

3.1 Acceptance within Populations

As selections are performed on populations, the defini-
tion of acceptance given in Section 2 must be general-
ized. It is convenient to introduce a reference selection
rule (select ref) stating which transitions should be
accepted and which ones should be rejected using an
exploitation oriented view. It thus has no third pa-
rameter.

Let P ′′ = select(P, P ′, t) (or P ′′ =
select ref(P, P ′)), and let S → S′ be a tran-
sition with (S, S′) ∈ P × P ′. This transition is
accepted if S /∈ P ′′ (S was in P but no longer in P ′′),
and S′ ∈ P ′′ (S′ is selected in P ′′ from P ′). This
transition is rejected if S ∈ P ′′ (S was in P and is
kept in P ′′) and S′ /∈ P ′′ (S′ was a potentially new
candidate from P ′, but is not selected in P ′′). The
other possible transitions are meaningless and are
thus neither accepted nor rejected.

If we take a 2-Tournament as select ref, a transition
S → S′ is rejected if it is non improving. In this case,
each transition is evaluated separately.

On the other hand, if Truncation is used as se-
lect ref, the transitions are evaluated globally. A
transition S → S′ is rejected if S is in the set of the n
best individuals of P ∪ P ′ and S′ is not in this set (n
is the size of P ).

Definition: Given an evolutionary algorithm EAad
and a function select ref, the acceptance of EAad is

the expected proportion of transitions generated using
recombine and mutate and rejected by select ref
that are accepted by select. Formally:

acceptance = P(S /∈ P ′′ & S′ ∈ P ′′ |
P ′ = mutate(recombine(P ))

& P ′′ = select(P, P ′, t) & P ′′′ = select ref(P, P ′)
& (S, S′) ∈ P × P ′ & S ∈ P ′′′ & S′ /∈ P ′′′ )

When P and P ′ are singletons, this definition is equiv-
alent to the acceptance defined for SAad.

In LSad, the selection parameter t was estimated by
inverting an acceptance function acc(H, t) measuring
the acceptance for a chain H. As H is now a set
of transitions on populations, the acceptance function
must also be generalized. Let acc′(H ′, t) be a measure
of the acceptance over a chain where H ′ is a set of
transitions between populations and t the parameter
of select. We call it acceptance function on popula-

tions, and it is defined as follows :

acc′(H ′, t) = P(S /∈ P ′′ & S′ ∈ P ′′ | (P → P ′) ∈ H ′

& P ′′ = select(P, P ′, t) & P ′′′ = select ref(P, P ′)
& (S, S′) ∈ P × P ′ & S ∈ P ′′′ & S′ /∈ P ′′′ )

Handling a set of transitions between populations
would be too complex. It is therefore convenient to
transform a set of transitions between populations into
a set containing the relevant transitions (between in-
dividuals), that is the transitions involved in the con-
ditional part of the acc′ function. Formally, given
H ′ = {P → P ′}, the set of relevant transitions (be-
tween individuals) is the set

H = {S → S′ | (P → P ′) ∈ H ′

& P ′′′ = select ref(P, P ′)
& (S, S′) ∈ P × P ′ & S ∈ P ′′′ & S′ /∈ P ′′′ )

In Algorithm EAad, the acceptance is varying from
one to (nearly) zero. An acceptance of one implies a
selection equivalent to select ref. An acceptance of
zero implies a random selection out of the union of
the populations. Therefore, select can be seen as a
variable relaxation of the reference selection rule.

We are now in position to present two particu-
lar select functions, and their associated esti-
mate parameter. In both selections, a relaxation
is introduced using the Metropolis criterion.

3.2 2-Metropolis-Tournament

In a 2-tournament, pairs of individuals are formed and
for each pair, the best individual of the two is selected.
We have developed a relaxed 2-tournament using the
Metropolis criterion. The idea is use the Metropolis
criterion on each pair to elect the selected individuals.
When the winner is elected using a non-deterministic
criterion, fairness imposes that each individual enters
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in a constant number of trials. Therefore, we have de-
cided to make pairs without replacement. Moreover,
since the Metropolis criterion is asymmetrical (favors
new solutions), we have chosen to make asymmetrical
pairs: the first individual always comes from the cur-
rent population and the second from its offspring. In
this case, unless a lazy approach is used, it is useful to
impose that the populations P and P ′ have the same
size n.

function P ′′ = select (P , P ′, t)
Pre: #P = #P ′

begin
1 n := size of (P )
2 P ′′ := array: [1..n]→ Individual
3 P ′ := permute (P ′)
4 for each i ∈ [1..n] :
5 P ′′[i] := metropolis (P [i], P ′[i], t)

end

Algorithm 5: 2-Metropolis-tournament

A 2-Metropolis-tournament is implemented in Alg. 5.
In line 3, P ′ is rearranged in a random order so that
(P [i], P ′[i]) form random asymmetrical pairs without
replacement. In line 5, the Metropolis criterion (see
Alg. 2) is used on each pair to elect a winner which is
added to P ′′.

This selection rule could be used in any EA extended
with temperature or acceptance schedule.

3.3 2MT: EAad with 2-M.-tournament

One could show that in 2-Metropolis-tournament,
acc′(H ′, t) = acc(H, t), where H is the set of relevant
transitions from H ′ (acc is the acceptance function de-
fined in Section 2). Intuitively, individuals of P ′ are
selected independently of each other (this is also true
for P ). Therefore, the transitions between individuals
are also accepted independently.

In the context of 2MT, the set of relevant tran-
sitions becomes H = {S → S′ | P → P ′ ∈
H ′ & (S, S′) ∈ P × P ′& energy(S′) > energy(S′)}.
Therefore, the parameter t can be estimated using es-
timate parameter as implemented in SAad.

In practice, a sample (of size L) of H can be used in
place of H (of size L ·n). Such a sample can be formed
easily by random non-improving transitions from P to
P ′. This function is denoted sample transitions.

The proposed EAad algorithm must now be accom-
modated to maintain this set of transitions.

3b H = ∅
6.1 t := estimate parameter(H, χ, t)
6.2 H = ∅
9.1 H = H ∪ sample transitions(P, P ′)
9.2 P := select (P , P ′, t)

One could easily show that 2MT has the same tempo-
ral complexity than SAad, that is O(s1/2 · v · log(v)),
where v is the average size of a neighborhood.

3.4 Relaxed Truncation

In this section, we design a new selection rule based
on a relaxed truncation using the Metropolis crite-
rion. What is needed is a relaxed sorting algorithm;
the quality of sorting being subject to a parameter
t. Different schemes could be used: in a first one,
the standard key comparator is replaced by a stochas-
tic one; in another one, the keys receive a stochastic
amount of perturbation. With the first scheme, the
acceptance function depends on the chosen sorting al-
gorithm. Therefore, the second scheme is preferred.

The Metropolis criterion can be viewed as a way to
sort two solutions. Imagine the situation where S and
S′ are solutions, x and x′ their respective energy, and
that S is better than S′ (i.e. ∆ = x′ − x > 0). In
the Metropolis algorithm (Alg. 2), we see that S ′ wins
(becomes first) when

r < exp(−∆/t) ⇔ x′ < x− t · ln(r)

where r is a random value with a uniform distribution
over [0..1]. When t = 0, a non improving transition
can never be accepted. When t increases, an increas-
ing value is added to x and therefore the probability
that S′ wins increases. The Metropolis criterion is
asymmetrical: a penalty is added to x only.

This scheme is extended to populations in Alg. 6.
Every individual of P receives a penalty of the form
−t ln(r) (with a different r for each individual). Indi-
viduals of P ′ have no penalty. The mapping v contains
the energy plus penalty of every individual. The indi-
viduals of P ∪P ′ are sorted according to this mapping.
The set P ′′ is composed of the first individuals of the
sorted union such that P ′′ and P have the same size.

function P ′′ = select (P , P ′, t)
begin

1 v := map: Individual → real
2 for each p ∈ P :
3 v[p] := energy(p)− t ln(random(0, 1))
4 for each p ∈ P ′ : v[p] := energy(p)
5 P ′′ := P ∪ P ′

6 sort (P ′′, v)
7 truncate(P ′′, size of(P ))

end

Algorithm 6: Relaxed truncation

The relaxed truncation selection rule can be used
in any EA extended with temperature or acceptance
schedule.
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3.5 RT: EAad with Relaxed Truncation

Relaxed truncation accepts individuals using a global
approach. Therefore, transitions between individuals
are not accepted independently. Hence the relation
acc′ = acc does not hold here. However, strong exper-
imental evidences show that

acc′(H ′, t) =
n

n+m
· acc(H, t)k (8)

where k is a constant and H is the set of relevant
transitions from H ′ (with select ref implemented
by Truncation). The term n/(n + m) is the upper
bound of acceptance for select (when t = ∞). The
constant k appeared to be independent of the statis-
tical distribution of the transitions and can be easily
computed by simulation. In practice, k = 0.5 when the
population is large ((n,m) = (7, 50)) and decreasing
slowly toward 1 for smaller populations.

To complete the algorithm, a sample of the set of rel-
evant transitions (e.g. select(P,P’,0) in place of se-
lect ref) should also be computed here. This sam-
pling can be achieved as in 2MT. The resulting com-
plexity of select and small sample transitions
is O((n + m) · log(n + m)). Moreover, since esti-

mate parameter inverts acc(H, t) and not acc′(H ′, t),
its argument must also be adapted using Eq. 8.

6.1.1 χ′ = (χ/(n/n+m)) ∗ ∗(1/k)
6.1.2 t := estimate parameter(H, χ′, t)

As the ratio n/m is a constant (generally fixed to 1/7),
one could easily show that the temporal complexity of
RT is O(s1/2 · v · log(v) · log(n)).

4 Experimental Results

The aim of this section is to compare experimentally
the proposed algorithms to relevant EA and SA algo-
rithms. For space reasons, only the most relevant ex-
periments are reported. Our analysis is however based
on the whole set of experiments.

SAad is first experimentally compared to classical SA
algorithms (SAgeo, SApoly and SAef). For each
of these algorithms every parameter is set according
to their respective authors recommendations. When
a range is proposed, the best values in that range are
used. Benchmarks are performed on three TSP in-
stances from the TSPLIB (Reinelt, 1991) (berlin52,
ch130 and a280) and on F6. F6 (Davis, 1991) is a
moderately multimodal function of low dimensionality
(k = 3). Table 1 summarizes these experiments. s is
the total number of iterations, ε is the relative error
of the energy of the final solution (compared to the
known optimal energy), s1/2 is the number of itera-
tions giving a success rate equivalent to 50%. Each
line is the result of at least 100 runs.

Problem Algorithm Parameters Results
F6 SAef n1/2 = 565 296
F6 SAad n1/2 = 429 286
berlin52 SAgeo n1/2 = 368 211
berlin52 SApoly n1/2 = 223 949
berlin52 SAef n1/2 = 150 156
berlin52 SAad n1/2 = 163 838
ch130 SAef s = 900 000 ε = 2.83%
ch130 SAad s = 900 000 ε = 2.78%
a280 SAef s = 5 250 000 ε = 3.42%
a280 SAad s = 5 250 000 ε = 3.20%

Table 1: Comparaison of SA algorithms

F6 F9
Algorithms p Err. ē Std e Err.
SAad 18% ±2.4% 265 79 ±31
2MT (20,20) 90% ±5.9% 58 13 ±5
RT (7,50) 98% ±2.7% 97 22 ±9
SHC 6% ±4.7% 260 34 ±13
2T (20,20) 26% ±8.6% 71 13 ±5
T (7,50) 15% ±7.0% 88 17 ±7
ES (7,50) 23% ±8.2% 32 11 ±4
ES (30,200) 50% ±9.8% 183 76 ±30

Table 2: Results for F6 (k = 3) and F9 (k = 30)

This study concludes that SAad and SAef outper-
form SAgeo and SApoly. SAad and SAef ex-
hibit similar performances on the TSP instances with
a slight advantage for SAef on the largest instance.
SAad shows better performances on F6.

Since selection is independent from the problem and
from the mutation / recombination operators (Bäck,
1994), our algorithms (SAad, 2MT and RT) are com-
pared with other EA, identical in every aspects, but
using standard selection rules. These algorithms do
not use an acceptance schedule nor another form of
adaptative selection. They are denoted by SHC (clas-
sical Stochastic Hill Climbing), 2T (EA with select =
2-Tournament), T (EA with select = Truncation as in
ES-(n+m)). It is also interesting to compare the pro-
posed algorithms to Evolution Strategies (ES) since
they use a different (but complementary) approach.

These seven algorithms are compared on two function
optimization problems (F6 and F9). F9 is the well-
known problem due to Rastrigin generalized as in (Yao
and Liu, 1997). It has a high dimensionality (k = 30)
and is highly multimodal; it is considered difficult for
most optimization methods.

For ES, every parameter or choice is made in con-
formance with the recommendations found in (Bäck,
1996): k standard deviations are used; the solutions
are recombined either using a discrete or a panmictic
discrete operator (depending on what make most sense
for each problem); the standard deviations are recom-
bined using a panmictic intermediate operator; the
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selection is either ES-(n+m) or ES-(n,m) (whichever
gives the best results). For the other algorithms: a
log-uniform mutation is used (a value s · 10r is added
to each coordinate, where s is a random sign +1 or
-1 and r is a random uniformly distributed real value
over [1,-4]); the recombination of the solutions are the
same as for ES. For SAad, 2MT and RT, s1/2 = 10,
L = 1000 and stop = 10. This lead to a total of
144000 generated (and evaluated) individuals. In or-
der to have a fair comparison, all the algorithms are
terminated when this number of generated individuals
is reached.

All the compared algorithms have been implemented
in Java. Source code is available upon request to the
first author.

The optimal energies of F6 and F9 is 0. For F6, we
measure the proportion p of 100 (independent) runs of
the algorithms that lead to the optimal solution (i.e.
with a maximal error of 1e-4). For F9, the optimal
solution were never reached during the experiments,
therefore, we measure the mean energy ē of the best
individual of the final population on 25 runs. Confi-
dence intervals of 95% for p and ē are also computed.
The results are summarized in Table 2.

On F6, 2MT and RT are the best performers by far
with ES being in third place. On F9, ES is best and
2MT is second.

On these experiments, the population based algo-
rithms (2MT, RT, 2T, T and ES) show generally
better performance than the corresponding solution
based ones (SAad and SHC). The algorithms based
on an adaptative selection (SAad, 2MT and RT) or on
an adaptative mutation (ES) perform generally better
than their non adaptative counterparts (SHC, 2T and
T). The adaptative selections perform particularly well
on F6 and the adaptative mutations on F9. Both ap-
proaches are complementary and could be combined.

5 Conclusion

In this paper we designed and experimented three new
local search and evolutionary algorithms (SAad, 2MT
and RT). They are based on acceptance schedule, an
original a schedule for the selective pressure. The suc-
cessive values of a selection parameter are computed in
order to achieve an acceptance schedule. This was im-
possible with traditional LS and EA algorithms. We
thus demonstrate a possible way of merging SA and
EA technologies.

Our notion of acceptance is a measure of compromise
between exploitation and exploration. It takes into
account the selection and the generation of neighbors,
and is appropriate for both LS and EA.

Adaptable acceptance has been introduced in EA
through two new selection rules, introducing the
Metropolis criterion on population.

The temporal complexity of the algorithms has been
analyzed. They can be computed a priori, hence the
execution time can be predicted.

Experiments show that the developed algorithms are
more performant than standard SA and EA algo-
rithms, and that SAad is as efficient as the best SA
algorithm while 2MT and RT are complementary to
Evolution Strategies.

This research aims at developing adaptability in LS
and in EA. Acceptance driven algorithms should be
seen as a possible way to introduce adaptability.
Adaptative mutation, such as in (Bäck, 1996), is a
complementary approach. Further work includes the
combination of acceptance schedule with adaptative
mutation, and a characterization of classes of prob-
lems where acceptance schedule can be fruitful.
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