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Jean-Noël Monette, Pierre Schaus, Stéphane Zampelli, Yves Deville and Pierre Dupont
Department of Computing Sciences and Engineering
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Abstract

The Balanced Academic Curriculum Problem
(BACP) has received little attention in Con-
straint Programming. Only a few articles deals
with this problem with experimental results on
the three small instances publicly available in
CSPLIB. The present article describes an ap-
proach to efficiently solve this challenging prob-
lem. Optimal solutions are produced on a vari-
ety of randomly generated instances which gen-
eralize the CSPLIB test cases. This work de-
scribes four contributions to the resolution of
this problem: a new branching heuristic, the
use of dominance relations, experiments on sev-
eral balance criteria and several search strate-
gies among which an hybridization of Con-
straint Programming and Local Search.

1 Introduction
The Balanced Academic Curriculum Problem (BACP)
is recurrent in Universities. The goal is to schedule the
courses that a student must follow in order to respect
the prerequisite constraints between courses and to bal-
ance as much as possible the workload of each period.
This problem has been introduced first in [Castro and
Manzano, 2001] and tackled also in [Hnich et al., 2002].
It has also been studied in [Hnich et al., 2004] with an
hybrid CP/ILP approach. More recently, [Lambert et
al., 2006] proposed another hybrid approach of Con-
straint Programming and Genetic Algorithms. Those
works deal with the three small instances available on
CSPLIB (http://www.csplib.org).

This work presents four contributions to address the
BACP with Constraint Programming. First, we present
a new value ordering heuristic guiding the search toward
a balanced solution. Then, we propose to use dominance
relations in order to reduce the search tree. Next, other
balance criteria such as the minimization of the sum of
deviations and square deviations are applied. Fourthly,
different search schemes are compared, including an iter-
ative increase of the objective value and the use of Local
Search to find quickly a tight upper bound for Branch-
and-Bound. Moreover, we present an instance generator

that allows one to run experiments on larger instances
with a structure similar to some original ones.

This paper is structured as follows. The next sec-
tion presents the problem formally and describes the CP
model. It describes also a new branching heuristic and
the balance criteria that will be compared. Section 3
presents the dominance rules and their application. Sec-
tion 4 presents the different search strategies used and
Section 5 explains the instances generator. Finally, Sec-
tion 6 presents the experiments and their results before
concluding.

2 The BAC Problem

The goal of the BACP is to schedule courses in different
periods. Each course has a workload which is expressed
in number of credits and a (possibly empty) set of prereq-
uisite courses. A solution is an assignment of courses to
periods that satisfies the prerequisite constraints while
balancing the workload of periods. The workload of a
period is the sum of the credits of the courses taught
during this period. Additional constraints limiting the
minimum and maximum number of courses and credits
for each period were originally introduced in [Castro and
Manzano, 2001]. These additional constraints are how-
ever not considered here since balanced solutions of the
instances in CSPLIB always respect them. Indeed, the
limits on the number of credits by period are naturally
respected by balanced solutions, unless the problem is
unfeasible. The limits on the number of courses by pe-
riod are respected because the number of credits for each
courses does not vary much and these limits are quite
large in the instances of CSPLIB. Precisely, a BACP in-
stance is characterized by:
• n the number of courses;
• m the number of periods;
• wi the load of course i for 1 ≤ i ≤ n;
• prerequisites = {(i, j) | i 6= j, 1 ≤ i, j ≤ n} a set of

couples of courses stating that course i is a prereq-
uisite of course j.

Three instances were originally proposed for this
problem in CSPLIB with followings characteristics:



Instance m n |prerequisites| Values for wi

1 8 46 38 [1, 5]
2 10 42 34 [1, 5]
3 12 66 65 [1, 5]

The BACP is interesting because it is at the boundary
of several classes of problems: bin-packing, scheduling
and balancing. The bin-packing is a class of problems
where a set of objects of different sizes must hold in the
smallest set of bags of finite capacity. BACP is a kind of
bin-packing problem where the size of the bags is mini-
mized rather than the number of bags. The prerequisite
constraints make BACP look also like a scheduling prob-
lem. Each course is a unit-time activity whose credit is
the consumption of resource and prerequisites are tem-
poral constraints. The periods are time units and the
goal is to balance the utilization of the unique resource
(the student). Finally, BACP is also an excellent exam-
ple of balancing problems. The need and the interest for
balanced solutions increases in Constraint Programming.
Maximization of the satisfaction of a set of customers,
minimization of the violations in over-constrained prob-
lems, schedule of physicians, share of a scarce resource
are some examples where balanced solutions are gener-
ally preferred.

BACP is also a hard problem. The satisfaction ver-
sion of BACP (“Does it exist a solution under a given
balance value?”) is a NP-complete problem. This can
be shown by reduction from the satisfaction version of
the bin-packing problem (“Does it exist a solution with
at most a given number of bags?”) that is known to be
NP-complete. Objects become courses, credits are sizes
and bins are periods. There is no prerequisite. Looking
for a solution for BACP solves the corresponding bin-
packing problem. As shown in Section 5, the problem
becomes easier with the addition of prerequisites. In-
deed the number of available periods for each course is
reduced.

2.1 CP Model
The CP model has initially been proposed in [Hnich et
al., 2002]. Each course is identified by an integer in the
interval [1, n]. There are three sets of variables:
• ∀i ∈ [1, n], Pi represents the period of course i.
• ∀i ∈ [1, m], Li is the load of the period.
• ∀(i, j) ∈ [1, n] × [1, m], Bij makes the link between

the two other sets of variables. In particular Bij = 1
if and only if course i is given in period j.

The prerequisites constraints are easily stated with the
first set of variables using “less than” constraints. The
load variables are linked to the binary variables with
weighted sums while channeling constraints link the pe-
riod of the courses and the binary variables.

∀(i, j) ∈ prerequisites : Pi < Pj .

∀1 ≤ j ≤ m : Lj =
n∑

i=1

Bij .wi.

∀1 ≤ i ≤ n, 1 ≤ j ≤ m : (Pi = j)⇔ (Bij = 1).

2.2 The Balance Criteria
In previous works [Castro and Manzano, 2001; Hnich et
al., 2002], the only balance criterion used for this prob-
lem is the minimization of the maximum load that will
be denoted by Cmax. Mathematically, it is defined as

Cmax = max
1≤i≤m

Li.

The objective of the BACP is to minimize Cmax.
As shown in [Schaus et al., 2007], other criteria can

be used. The balance can be defined in a generic way by
the criterion

C(p) =
m∑

i=1

|m.Li − w|p.

where w =
∑m

i=1 Li =
∑n

i=1 wi is the total workload.
The objective is now to minimize C(p), i.e. to minimize
the sum of the measures of the distance between the
load of each period and the average load. In particular,
instantiating the parameter p to 1, 2 and ∞ gives the
following interpretations:
• C(1) =

∑m
i=1 |m.Li − w| is the sum of deviations

from the mean.
• C(2) =

∑m
i=1(m.Li − w)2 is the sum of square de-

viations from the mean.
• C(∞) = max1≤i≤m |m.Li − w| is the maximum de-

viation from the mean.
It as been shown in [Schaus et al., 2007] that neither

criterion subsumes the others and there is no a priori
reason to prefer one of them. Section 6.1 evaluates how
well each criterion approximates the others.

2.3 Variable and Value Ordering
Heuristics

The previous work [Hnich et al., 2002] on BACP
branches on the variables Pi and uses a classical first-fail
heuristic that chooses the unassigned variable with the
smallest domain. The value heuristic picks the smallest
value of its domain.

As the goal is to obtain the most balanced solution,
choosing as value the period which is the less heavily
loaded ensures that the first solution found will be al-
ready quite balanced. Formally, to post the constraint
Pi = v, v is chosen such that

v = argmin
v′∈dom(Pi)

Lv′

where dom(Pi) denotes the domain of the variable Pi

and Lv is the minimum value in dom(Lv).

3 Dominance Rules
The BACP instances contain many symmetrical solu-
tions. For instances, consider two courses that have the
same workload and that are prerequisites of the same
courses and have the same courses as prerequisites. In a
solution, these two courses can be exchanged giving an-
other solution with the same balance (independently of



the balance criterion used). Situations of this kind may
be discovered by the use of dominance rules.

Dominance relations have been shown to be powerful
for solving hard problems [Prestwich and Beck, 2004].
The concept of dominance can be seen as a symmetry
that is unidirectional. A state si of the search tree is
said to dominate another state sj if the best solution
that can be found from sj is no better than the best
solution that can be found from si. It is useless to explore
the subtree rooted in sj once si is explored. In other
terms, suppose a property P such that for every optimal
solution with P there exists an optimal solution with ¬P.
The solutions where ¬P holds dominate the solutions
where P holds. In this case, posting the constraint ¬P
preserves optimality. We refer to [Prestwich and Beck,
2004] for a formal definition of dominance.

3.1 Detecting Dominance Relations
In the context of the BACP, the dominance rules take the
form of “less or equal” constraints between the periods
of two courses. The conditions to post such a constraint
are presented in the following theorem.
Theorem 3.1 Posting a constraint Pi ≤ Pj preserves
at least one optimally balanced solution to BACP if the
following conditions hold :
• wi = wj

• predi ⊆ predj

• succi ⊇ succj

where predi = {k|(k, i) ∈ prerequisites} and succi =
{k|(i, k) ∈ prerequisites} denote respectively the set of
prerequisite courses (predecessors) of i and the set of
courses for which i is a prerequisite (successors of i).

Proof The first condition ensures that if there exists an
assignment for which Pi = a and Pj = b, then swapping
the periods of i and j gives an equally good assignment.
Indeed, whatever the objective, it is based on the work-
load of the periods that is not changed by swapping two
courses with the same credit.

Let us denote Ppi the period of the latest predeces-
sor of i and Psi the period of the earliest successor of i.
If predi ⊆ predj , the latest predecessor of j (whose as-
signed period is denoted Ppj

) cannot be earlier than the
latest predecessor of i (whose period is denoted Ppi

). Ei-
ther it is the same course or it is another one that is thus
necessarily later. Conversely, succi ⊇ succj means that
the earliest successor of i (Psi

) cannot be later than the
earliest successor of j (Psi). The following inequalities
hold in any solution :
• Ppi

< Pi < Psi

• Ppj
< Pj < Psj

• Ppi ≤ Ppj

• Psi
≤ Psj

In an optimal solution, either Pi ≤ Pj or Pi > Pj .
To preserve at least one optimal solution when adding
the constraint Pi ≤ Pj , for any solution where Pi > Pj

C C

D D

A A

B B

E E

F F
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Figure 1: Example of dominance application.

holds, there must exist another optimal solution where
Pi ≤ Pj holds.

Let us suppose an optimal solution with Pi = a, Pj = b
and b < a. Swapping the values of Pi and Pj (leading
to Pi = b and Pj = a) keeps the assignment optimal
and enforces Pi ≤ Pj . It remains to show that this
assignment is still a solution and verifies the prerequi-
site constraints. Let us show that a is a valid value
for Pj , that is that Ppj

< a < Psj
. The relations

Ppi
< a < Psi

, Ppj
< b < Psj

, b < a and Psi
≤ Psj

hold. Using the transitivity of < and ≤, it results in
Ppj

< b < a < Psi
≤ Psj

⇒ Ppj
< a < Psj

. The same
reasoning can be done to show that b is a valid value
for Pi. Thus enforcing Pi ≤ Pj preserves at least one
optimally balanced solution.

Figure 1 presents two situations that induce domi-
nance rules. Squares represent courses with unit credit.
Arrows represent the prerequisites between courses. Ver-
tical bins are the periods. The two situations are parts
of some solutions to a BACP instance. In the first situa-
tion, course C is after course D but they can be swapped
without changing the value of the solution. In the second
situation, course C is before course D but they cannot be
swapped because it would not be a solution anymore (C
would not be taught before course E). So the constraint
PC ≤ PD can be posted.

As noted in [Prestwich and Beck, 2004], one has to
carefully check that the use of several interacting domi-
nance rules does not suppress all of the optimal solutions.
Problems may arise only when two or more courses of
equal credit have exactly the same prerequisites and are
prerequisite of exactly the same courses. In such a case,
there are real symmetric states and the “less or equal”
constraint can be posted in either way but only one can
be posted. When more than two courses have the same
characteristics, the constraints must be posted without
creating cycles. For instance, a lexicographic ordering
can be used and the constraint Pi ≤ Pj is posted only if
the additional condition i < j holds.

The detection of dominance relations is performed
once per instance at the root of the search tree with
a temporal complexity in O(n2p), where p is the max-
imum number of predecessors or successors of a course
(p� n). Indeed, every pair of courses is considered and
for each, if they have the same workload, it is necessary
to compare the sets of predecessors and successors of the
courses, which is linear in the size of these sets.



The number of dominance relations found may be
rather important. For the three original instances in
CSPLIB, there are respectively 134, 65 and 183 relations
for the instance with respectively 8, 10 and 12 periods.

3.2 Applying Dominance Rules
Dominance rules can be used to improve the search.
They can simply be posted at the root node of the
search tree. However, this method has the drawback
(observed also in symmetry breaking) that the first so-
lution found might become inconsistent with the addi-
tional constraints. This would possibly force the search
process to explore a large part of the search tree not
explored otherwise.

Several techniques have been developed to avoid this
undesirable phenomenon when dealing with symmetry
breaking (see [Gent et al., 2006] for an overview). We
choose to reuse the idea of SBDS (Symmetry Breaking
During Search) [Gent and Smith, 2003], applying the
technique to dominance rules. Basically, SBDS posts
constraints after backtracking to avoid to explore search
states symmetrical to ones already explored. SBDS has
been chosen instead of other dynamic techniques because
it seemed the most adapted to our purpose and was easy
to implement.

The SBDS technique cannot be applied as such how-
ever for dominance rules that are unidirectional. In the
context of the dominance rules considered here, a dom-
inance constraint is posted in the right branch of the
binary search tree if this constraint is verified in the left
branch. Suppose there exists the possible dominance
rule Pi ≤ Pj and the decision constraint Pi = a is posted
during the search. After backtracking, when the oppo-
site constraint (Pi 6= a) is posted, the dominance rule
Pi ≤ Pj is added to the current state if a < P j holds.
This dynamic technique removes states dominated by
other states already explored but not by states that could
be explored later during the search.

4 Search Strategies

4.1 Branch-and-Bound
This section presents the different search strategies that
can be used to solve the BACP. The first and most known
technique is Branch-and-Bound. It consists in solving
the optimization problem to minimize C (where C is
the variable representing the criterion to optimize) as
a satisfaction problem where the constraint C < v is
added. The value v is initially set to some upper bound
(e.g. +∞) and is changed to the value of C whenever a
new solution is found. In this way, successive solutions
improve the value of the criterion and when no more
solution can be found, the last solution is proved to be
an optimal one.

4.2 Including Local Search in
Branch-and-Bound

Local Search (LS) can find rapidly a tight upper bound
on the value of the objective to start Branch-and-Bound.

We refer to [Hoos and Stützle, 2004] for extensive expla-
nations about LS. The LS algorithm provides a feasible
solution that is not necessarily optimal but that should
be as close as possible to the optimum. A constraint-
based LS approach [Hentenryck and Michel, 2005] is used
to model the problem. The LS model is the same as the
CP model.

A tabu search heuristic is used. The satisfaction of
the prerequisites and the optimization of the balance are
combined in an objective function. In order to drive the
search toward feasible solutions, the constraint satisfac-
tion term has a much larger weight than the optimiza-
tion term. A local move consists in choosing the variable
Pi and the value allowing the best improvement of the
objective function and reassigning the variable to this
value. The search is stopped after a fixed number of it-
erations or when a feasible solution that is known to be
optimal is found (perfect balance).

4.3 Iterative Satisfaction Problem

An alternative to Branch-and-Bound is to solve succes-
sive satisfaction problems with the constraint C < v,
incrementing the value of v until a solution is found.
The first obtained solution is optimal as the CSPs with
smaller values are inconsistency. This technique has been
used successfully in Scheduling [Baptiste et al., 2001].

5 Instances Generator

Only three instances of BACP are available in CSPLIB.
Moreover they are easy to solve. Therefore a
parametrized instances generator has been created. Pa-
rameters are fixed to obtain additional instances with a
similar structure to the three existing ones as detailed
below.

5.1 The Generator

The generator creates instances parametrized by the
number of courses, the number of periods, the minimum
and maximum possible credits for a course and a prob-
ability to have a prerequisite between two courses. In-
stances are generated according to the following scheme:

1. For each course, a random credit is chosen between
the minimum and maximum values.

2. Each course is assigned to a random period.

3. For each pair of courses that are in two successive
periods, a prerequisite relation is created according
to the given probability.

The instance generation ensures that a solution always
exists. The choice of prerequisites only between courses
in successive periods excludes some configuration of pre-
requisite graphs but still offers a wide range of possibil-
ities. The generated solution is usually not optimal and
in an optimal solution, prerequisites will not necessary
be between courses of successive periods.



5.2 Generated Problem Sets
To obtain instances similar to the original ones in
CSPLIB, the ratio between the number of courses and
the number of periods is fixed to 5. This is the mean
ratio among the three original instances (see Section 2).

Preliminary experiments on instances with 20 periods
and 100 courses whose credits range from 3 to 5 en-
abled us to study how the probability of prerequisites
affects the difficulty of the problem. We generated 20
instances for each probability from 0% to 50% by step of
5%. The number of solved instances in less than 30 sec-
onds with Cmax and Branch-and-Bound search was con-
sidered. These preliminary runs showed that instances
are globally easier when they include more prerequisites.
Especially, the problems stay hard from 0% to 25% of
prerequisites (about 75% of unsolved cases). After this
25% limit, the difficulty of the problem drops rapidly.
At 50% of prerequisites all instances are solved.

Two sets of test instances have been generated. The
first set is composed of 100 small instances with 5 periods
and 25 courses. The probability for prerequisites is set
to 30% and the range of credits is [1, 5]. This simple
set has been generated to compare the different balance
criteria.

The second problem set includes instances with a num-
ber of courses varying from 30 to 200 with an increment
of 10. The probability to have a prerequisite is fixed to
20%. Instances with different ranges of credit are gener-
ated to study the influence of this parameter. There are
four classes:
• The range [1, 5] corresponds to the instances in

CSPLIB.
• A unit credit for every courses induces easier in-

stances.
• The range [1, 10] is an example of larger interval for

which instances are harder.
• The range [3, 5] forbids courses with small credits

that can be used to easily fill holes in period not
loaded enough.

Generating 10 instances for each configuration (4 classes
and 18 sizes), the second set includes a total of 720 in-
stances.

6 Experiments

The aim of this section is to answer the following ques-
tions:
• How well does each balance criterion approximate

the others?
• How much does the proposed branching heuristic

reduce the search space as compared to the one pro-
posed in [Hnich et al., 2002]?
• Which search strategy is more time efficient to solve

the BACP?
• How much dominance rules improve search effi-

ciency?

Cmax C(1) C(2) C(∞) Average
Cmax 0.00 10.62 16.53 0.06 9.07
C(1) 2.63 0.00 6.27 0.12 3.00
C(2) 0.28 0.00 0.00 0.00 0.09
C(∞) 10.37 18.07 23.66 0.00 17.36
Average 4.43 9.56 15.48 0.06

Table 1: Comparison of four balance criteria. Each row
corresponds to an optimized criterion. Each column cor-
responds to an evaluated criterion.

All experiments are performed on an Intelr Celeronr

2.8 GHz with 1GB of memory. Our implementation
uses the Gecode (http://www.gecode.org) constraints li-
brary and the Local Search is written in the Comet
(http://www.comet-online.org) programming language.

6.1 Balance Criteria

The goal of this experiment is to compare the four con-
sidered criteria (Cmax, C(1), C(2) and C(∞)). The focus
is on the quality of the solution in terms of balancing and
thus time is not considered.

The 100 instances of the first problem set are succes-
sively solved with the four criteria and the best solutions
found are evaluated with respect to the four criteria. The
search is performed using Branch-and-Bound with the
new branching heuristic.

There exists a global constraint for C(1) running in
O(m) introduced in [Schaus et al., 2007] and a less ef-
ficient one (O(m2)) for C(2) presented in [Pesant and
Régin, 2005; Schaus et al., 2006]. Cmax and C(∞) use
classical constraints whose temporal complexity isO(m).
The total runs took less than 2 seconds for each criterion
except for C(2) for which it took 14 seconds.

The result is presented in Table 1 covering four possi-
ble optimizations and evaluations. Each row represents
an optimized criterion and each column an evaluated cri-
terion. Each table entry reports the average relative dif-
ference in percent between the evaluated criterion and
the optimum value for that criterion over the 100 in-
stances. Naturally, the values on the diagonal are zero
as the instances are solved to the optimum. For exam-
ple, the value 2.63 at the intersection of row C(1) and
column Cmax means that the best solution found while
optimizing C(1) presents on average a Cmax value 2.63%
larger than the optimal value for Cmax.

On these instances, Table 1 shows that C(2) is the cri-
terion that approximates best the other criteria, as a so-
lution found when C(2) is optimized is also often optimal
with respect to the other criteria. The criterion C(∞)
appears to be the worse criterion to approximate the
three others. Conversely, C(2) is hardly approximated
by the others criteria while C∞ is quite well approxi-
mated by others. Criteria C(1) and Cmax lie between
these two extremes with C(1) being a better approxima-
tion.



Instance Nb Leaf Nodes Nb Int. Sol.
first-fail min-load first-fail min-load

8 1172 98 69 3
10 3191 722 58 13
12 30147 2975 87 12

Table 2: First-fail and proposed (“min-load”) heuristics
on the original instances with C(1)

nu
m

be
r 

of
 le

af
 n

od
es

0
20

0
40

0
60

0
80

0
10

00
0

20
0

40
0

60
0

80
0

10
00

first−fail
min−load

nu
m

be
r 

of
 in

te
rm

ed
ia

te
 s

ol
ut

io
ns

0
5

10
15

20
25

30
35

0
5

10
15

20
25

30
35 first−fail

min−load

Figure 2: Comparison of heuristics on 100 instances.
Left part : Number of leaves. Right part : Number
of intermediate solutions.

6.2 Efficiency of the Proposed Branching
Heuristic

To analyze the effect of the new value ordering heuristic,
it is compared with the first-fail heuristic from [Hnich
et al., 2002] using the Branch-and-Bound search and
with the minimization of C(1) (the minimization with
the other criteria gives similar results and are not re-
ported). First the evaluation is achieved on the original
instances used in [Hnich et al., 2002] and on the 100 in-
stances of the first generated problem set. The results
are presented in Table 2 and Figure 2. The comparison
is based on the number of leaf nodes and the number
of intermediate solutions found during the Branch-and-
Bound search. The left part of Figure 2 presents the
number of leaf nodes with both heuristics, sorted by the
values obtained with the basic heuristic. The right part
presents the results in a similar way for the number of
intermediate solutions.

It is clear that the new (“min-load”) branching heuris-
tic improves the search except for 7 out of 100 instances
(left part of Figure 2). As expected, the search is rapidly
guided toward balanced solutions. Indeed, it can be seen
on the right part of Figure 2 that the number of interme-
diate solutions is always smaller with the new branching
heuristic. The same conclusions hold on the original in-
stances in Table 2.

Cmax - D DDS
BB 76.4 45.8 83.3
HY 96.5 94.0 95.7
IT 85.8 56.5 85.9

C(1) - D DDS
BB 38.9 18.9 45.0
HY 76.5 70.4 76.9
IT 79.7 53.6 80.7

Table 3: Percentage of solved instances (on 720).

6.3 Comparing Search and Dominance
Breaking Strategies

This section analyzes both the search strategies and
the dominance breaking strategies. This study is per-
formed on the second problem set using the new branch-
ing heuristic and with two different criteria, Cmax and
C(1). We restrict our attention to those two because
the first is the most commonly used and the second is a
good and fast approximation to the others according to
the results of Section 6.1.

There are 3 search strategies (Section 4) referred to
as “BB” for Branch-and-Bound, “HY” for the hybrid
approach and “IT” for the iterative approach. There
are 3 dominance rules strategies (Section 3.2) that are
respectively not to apply them (“-”), to post them at the
beginning (“D” standing for Dominance), and to use the
adapted SBDS (“DDS” for Dominance During Search).
This leads to 9 possible combinations.

The percentage of solved instances (on the 720 in-
stances of the second test set) with each setting within
the time limit of 30 seconds is presented in Table 3.

The hybrid search outperforms the two other search
strategies with any dominance policy when minimizing
Cmax. More than 96% of the instances can be solved with
this technique. Among the two other techniques, the
iterative one is overall better than Branch-and-Bound.
On the other hand, when optimizing C(1), the largest
number of solved instances is obtained with the iterative
strategy, followed by the hybrid search.

Concerning the different uses of dominance rules, post-
ing them at the beginning of the search is a bad idea. It
is seen with both criteria that column “D” is worse than
the two others. On the contrary, the dynamic use of the
dominance rules improves the search.

It is interesting to characterize the instances that are
harder to solve. On the whole test set, only five instances
are not solved within 30 seconds by any combination of
the search and dominance strategies for the optimization
of Cmax. They are all in the [1, 10] class. 47 instances
stay unsolved when using the criterion C(1). Most of
them (40) have credits ranging in the interval [3, 5]. As
expected problems with credits in [3, 5] and [1, 10] are
harder to solve.

Regarding the search strategies, there are respectively
93, 8 and 58 unsolved instances respectively for “BB”,
“HY” and “IT” with any dominance strategy and with
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Figure 3: Percentage of solved instances in function of
the allocated time.

Cmax. These values becomes 385, 104 and 84 when opti-
mizing C(1). These values show that some instances are
only solved by one method. The effect of dominance
rules is quite unpredictable. Adding dominance con-
straints increases the number of solved instances within
the time constraint but it prevents the resolution of some
instances. We have no clear understanding about which
instances are easier to solve with and without the use of
dominance rules.

Using the hybrid technique, the upper-bound found
by LS is optimal in 93% of the solved instances with
the criterion Cmax and in 77% of the solved instances
for the minimization of C(1). LS performs well on this
problem with Cmax because there are many solutions in
the search space and Local Search can easily reach one of
them. The results are not as good with the criterion C(1)
because optimal solutions are sparser. The time spent
in LS never exceeded one second and was less than 500
milliseconds most of the time. For easy instances, most
of the work is done by LS to find an upper-bound while
for harder instances, only a fraction of the time is spent
in LS.

Figure 3 shows the percentage of solved instances
among the harder classes ([3, 5] and [1, 10]) in function
of the allocated time. It compares three strategies for
minimizing Cmax (left part) and C(1) (right part). The
three strategies use dynamic dominance rules and are
respectively “IT”, “HY” and “//”. This last strategy
supposes that “IT” and “HY” are run in parallel (on a
single processor) and that they are both stopped when
one of them finds the solution. Thus the time allocated
for each search is half the normal time.

When optimizing Cmax, the iterative technique solves
small problems faster than the hybrid one but the hybrid
technique outperforms the iterative search for more com-
plex problems. The method “HY” solves most problems
in less than 1.5 seconds and is unable to solve problems
after this limit. On the contrary, “IT” still increases
the number of solved instances when allocated time in-
creases. The parallel search technique slightly improves
the results in comparison to the hybrid technique. This
improvement is more important when minimizing C(1).
In this case, the parallelism permits to solve 10% more

instances when the allocated time is more than 1 sec-
ond. Optimizing C(1), “IT” is the technique that solves
the most instances in less than 1 second. When the al-
located time is more than 1 second, the parallel search
becomes better because some hard instances with “IT”
are solved with “HY”. The three techniques continue to
improve their result when the allocated time increases.

7 Conclusion

This article presents a CP approach to the Balanced Aca-
demic Curriculum Problem [Hnich et al., 2002]. It ex-
plores several directions to improve the resolution of this
problem and it introduces an instance generator and two
benchmarks of instances that allows us to validate the
proposed improvements.

The first proposition is to consider other balance crite-
ria than the minimization of the maximum load (Cmax)
used up to now. We propose to minimize the mean de-
viation (C(1)), the mean square deviation (C(2)) or the
maximum deviation (C(∞)) from the mean workload.
The first experiment shows that minimizing the mean
square deviation is a good approximation to the other
criteria. But existing propagators for C(2) have a higher
complexity than for the others criteria. For this reason,
we propose to use the criterion C(1) that is the second
best approximation to the other criteria. Cmax can also
be used because its minimization is far more efficient
than the one of C(1). A possible direction of future
research is to combine these criteria. For instance, one
could use Cmax to find a first well balanced solution then
improve the balance with another criterion like C(1) or
C(2).

Our second contribution consists in using an ad-hoc
branching heuristic that guides the search towards bal-
anced solutions. Experiments show that this new heuris-
tic outperforms the classical first-fail heuristic to reach
optimal solutions and to prove their optimality.

Next we propose the use of dominance relations to
reduce the search. Dominance relations can be thought
as one-way symmetries. Dominance relations for BACP
are presented. They can be found in O(n2.p) (where n
is the number of courses and p the maximum number of
prerequisites). These relations can be posted at the start
of the search or can be dynamically added during the
search, in a way similar to SBDS for symmetry breaking.
Experiments show that it is counterproductive to post
the dominance rules at the start. For the dynamic use
of the dominance rules, the effect is less clear. While
for some instances it reduces the search size, for other it
increases it. The understanding of this phenomenon is
a wide subject of research as it is the case in symmetry
breaking.

The last contribution presents two alternatives to the
simple Branch-and-Bound scheme to find optimal solu-
tions. The first one relies on Local Search to find a good
initial upper bound to start the Branch-and-Bound. We
illustrate experimentally that this hybrid technique is re-
ally efficient for the BACP because the Tabu search often



finds optimal values. The second alternative is to start
from below and iteratively increase the upper bound on
the optimized criterion until finding a solution. This
method performs well because it requires often few iter-
ations before finding a solution. Experiments point out
that the hybrid search is by far the best strategy when
minimizing Cmax, while the iterative technique is a little
better for the minimization of C(1).

Although no technique is the panacea, there are only
few instances that are not solved by at least one of the
studied strategies. Consequently, we think that a portfo-
lio of different search strategies could be the right choice
to efficiently solve the BACP. We propose to use the hy-
brid and iterative search techniques with and without
the dynamical use of dominance rules. The analysis of
portfolio search techniques [Huberman et al., 1997] for
BACP is an interesting direction for future research.
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