
Constraint-based local search for solving
non-simple paths problems on graphs:

Application to the Routing for Network Covering Problem

Quang-Dung PHAM
Université catholique de

Louvain
B-1348 Louvain-la-Neuve,

Belgium
quang.pham@uclouvain.be

Phan-Thuan DO
School of Information and

Communication Technology
Hanoi University of

Technology
Hanoi, Vietnam

thuandp@it-hut.edu.vn
Yves DEVILLE

Université catholique de
Louvain

B-1348 Louvain-la-Neuve,
Belgium

yves.deville@uclouvain.be

Tuong-Vinh HO
Institut de la Francophonie

pour l’Informatique (IFI)
Hanoi,Vietnam

ho.tuong.vinh@auf.org

ABSTRACT
Routing problems have been considered as central prob-
lems in the fields of transportation, distribution and logis-
tics. LS(Graph) is a generic framework allowing to model
and solve constrained optimum paths problems on graphs
by local search where paths are known to be elementary
(i.e., edges, vertices cannot be repeated on paths). In many
real-world situations, the paths to be determined are not
known to be neither simple nor elementary. In this pa-
per, we extend the LS(Graph) framework by designing and
implementing abstractions that allow to model and solve
constrained paths problem where edges, vertices can be re-
peated on paths (call non-simple paths). We also propose
an instance of such problem class: the routing for network
covering (RNC) problem which arises in the context of res-
cue after a natural disaster in which we have to route a
fleet of identical vehicles with limited capacity on a trans-
portation network in order to collect the informations of the
disaster. Given an undirected weighted graph G = (V, E)
representing a transportation network and a vertex v0 ∈ V
representing the depot, the RNC problem consists of routing
a fleet of unlimited number of identical vehicles with limited
capacity that cannot perform a path of length > L such that
each vehicle starts from and teminates at the depot and all
the edges of a given set S (S ⊆ E) must be visited. The
objective of the routing plan is to minimize the number of
vehicles used. This paper discusses the challenge around
this problem and applies the constructed framework to the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SoICT ’10, August 27-28, 2010, Hanoi, Vietnam.
Copyright 2010 ACM 978-1-4503-0105-3/10/08 ...$10.00.

resolution of this problem. The proposed model is generic;
it allows to solve some variants of the problem where side
constraints are required to be added.

General Terms
Applications

Keywords
Combinatorial Optimization, Constraint Optimization, Graph,
Local Search

1. INTRODUCTION
The AROUND project [11] being carried out at the MSI/IFI

laboratory aims at designing and implementing a real-time
decision support system for the rescue after natural disasters
in urban areas. A team of autonomous robots that are capa-
ble of auto-organization explores the urban area in order to
capture informations from the disaster. Rescue teams such
as ambulances or firefighters are distributed to take care of
victims, to extinguish fires, etc.

Historically, we have seen huge efforts for solving routing
problems on networks in which the vehicle routing problem
(VRP) [4] appears as a central problem in the fields of trans-
portation, distribution and logistics. In the VRP problem,
we have to route a fleet of identical vehicles from one or sev-
eral depots in order to deliver goods for a set of n customers.
Each customer has a demand qi of goods (i = 1, 2, ..., n).
Each vehicle has a capacity to deliver at most Q quantity
of goods for each tour, so it has to periodically return to
the depot for reloading. The objective of the VRP problem
is to determine a set of tours of minimum total travel time
where each tour starts from and terminates at the depot,
each customer must be visited exactly once, and the quan-
tity of goods delivered on each tour must not exceed the
vehicle capacity Q.

In this paper, we inspire from the AROUND project and

propose a problem relating to the VRP problem, called rout-
ing for network covering (RNC) problem, which consists of
routing a fleet of identical vehicles with limited capacity (e.g.
the capacity of energy) from one or several depots on a trans-
portation network in order to visit a set of specified edges of
the network. This problem arises when distributing a fleet
of vehicles for carrying out some works along streets. For
instance, in the context of rescue after the natural disaster,
we have to route a fleet of vehicles on an urban network in
order to observe the situation of the disaster along all the
streets of the urban area or to distribute resources for de-
stroyed areas; cleaning service need to distribute a fleet of
vehicles from a depot in order to clean streets of a district.

Three important constraints are taken into account:

1. Each vehicle starts from and terminates at the depot,

2. Each vehicle cannot travel a path whose length is greater
than a given value (its capacity),

3. A given set of streets of the urban area must be visited.

Both VRP and RNC problems have a common mission
that is to route a fleet of vehicles with limited capacity on
a transportation network to carry out some works. But the
main differences between these problems are:

• In the RNC problem, vertices and edges can be re-
peated on each path while this is not allowed in the
VRP problem.

• In the VRP problem, constraints are defined over ver-
tices of the graphs while in the RNC problem, con-
straints are specified over edges of the graphs.

The RNC problem is also closely related to the chinese
postman problem [6] where we have to find a cycle in a mixed
graph (i.e., a graph includes both directed and undirected
edges) whose length does not exceed a given value and which
visits each edge of the given graph at least once.

Several objective functions can be considered. In case
where each vehicle has a given cost, we prefer to minimize
the number of paths in order to minimize the total budget
used. On the other hand, in urgent situations, the process
of collecting information need to be performed as fast as
possible. In such case, all paths of vehicles are carried out
in parallel and we need to minimize the length of the longest
path.

There may exist different side constraints in the real-world
situation but we consider in this paper the most basic ver-
sion of RNC problems which is stated in Section 2. To our
best knowledge, the RNC problem has not been considered
before and there are thus no previous works for solving this
problem.

The LS(Graph) framework [12, 13] provides high-level ab-
stractions for modeling and solving constrained optimum
paths problems on graphs by local search where paths are
known to be elementary. In real-life situations, many paths
finding problems arise where edges and vertices can be re-
peated on the paths. Local search [10] algorithms start with
an initial solution that is constructed by some heuristic al-
gorithm and searches through the solution space by continu-
ally moving from a candidate solution to one of its neighbors
until some criteria are reached. The key problem of a local
search algorithm is the definition of a neighborhood and its
exploration for selecting the next candidate solution.

The main contribution of this paper is to propose a generic
framework by extending the LS(Graph) framework for solv-
ing constrained optimum paths problems where paths are
not known to be simple. We also propose a novel routing
problem on networks (RNC) which is proved to be NP-hard
and we apply the framework for solving this problem. In
critical situations, it is required to solve problems taking
into account additional constraints. Here, we focus on the
design and implementation of a framework allowing to eas-
ily model and solve the RNC problems with different side
constraints by local search. Our first experimental results
demonstrate the feasibility of the approach as well as the
interest of our model.

The paper is organized as follows. Section 2 gives the
definition of the RNC problem and discusses its complexity.
A modeling approach is presented in Section 3. Section 4
presents local search model for solving the RNC problem.
Section 5 gives some experimental results of the model on
some random grid instances. Section 6 concludes the paper
and states research directions for future work.

2. PROBLEM DEFINITION AND COMPLEX-
ITY

2.1 Definitions and Notations
Given an undirected weighted graph G = (V, E) repre-

senting a transportation network and a vertex v0 ∈ V rep-
resenting the depot. c is a length function defined on edges:
for each edge e = (u, v) ∈ E, c(e) (or c(u, v)) is the length
of e. A path on G is a sequence of vertices v1, v2, ..., vk in
which (vi, vi+1) ∈ E,∀i = 1, 2, ..., k − 1.

The length of a path I (denoted by c(I)) is defined to be
the sum of lengths of all edges of that path:

c(I) =
X

e∈E(I)

c(e)

Given an undirected weighted graph G = (V, E), a ver-
tex v0 ∈ V representing the depot, a set S0 of edges of
G (S0 ⊆ E) and a value L, the RNC problems consists of
finding a minimal cardinality set of paths starting from and
terminating at v0 whose length are less than or equal to L
that covers all edges of S0.

A feasible path is defined to be a path starting from and
terminating at v0 whose length is less than or equal to L. A
feasible solution is a set of feasible paths that visit all edges
of S0. A feasible solution that has k feasible paths is called
k−feasible solution. RNC is the problem of determining a
feasible solution having the smallest cardinality. An RNC
problem instance is denoted by < G, c, v0, L, S0 >.

2.2 Complexity

Definition Given an undirected weighted graph G = (V, E),
a vertex v0 ∈ V , a set of edges S0 ⊆ E, an integral value k
and a value L, the problem of determining whether or not
there exists a k-feasible solution is called k−RNC.

Theorem 2.1. 1-RNC is NP-complete.

The theorem 2.1 is proved from the fact that the Hamilton
cycle problem which is NP-complete [6] can be reduced to
this problem.

Corollary 2.2. Given an undirected weighted graph G =
(V, E), two vertices u, v ∈ V , a value L and a set of edges
S0 ⊆ E, the problem of determining whether or not there
exists a path from u to v whose length is less than or equal
to L which passes all edges of S0 is NP-complete.

An equivalent reduced problem.
We can reduce an RNC problem instance < G, c, v0, L, S0 >

to an equivalent RNC problem instance < G′, c′, v0, L, S0 >
on smaller complete graph G′ = (V ′, E′) as follows.

• V ′ = {v ∈ V | ∃u ∈ V : (u, v) ∈ S0} ∪ {v0}

• ∀u, v ∈ V ′ : c′(u, v) = c(u, v) if (u, v) ∈ S0. Otherwise,
c′(u, v) = length of shortest path from u to v on G.

This reduction has a huge advantage for the programming
complexity when the number of vertices having edges in S0

is small. In this case, in order to solve the problem in a big
graph G, we will solve it in the smaller one G′.

Theorem 2.1 shows that the RNC problem is NP-hard in
general. Hence, exact methods for solving this problem in-
duce an exponential computation time. There exists other
related routing problems, for instance, Constrained Short-
est Path Problems [5], [3], [1], Multiobjective Shortest Path
Problems [14], [7], [9], etc. An integer programming formu-
lation has been proposed to model these problems, for in-
stance, [5], [3], [1]. A lagrangian relaxation combined with
enumeration techniques are then applied to solve these prob-
lems. These techniques are specific and depend on particu-
lar constraints appearing in the problems. Applying them
to the RNC problem where solutions are set of paths whose
vertices, edges can be repeated seems to be sophisticated
and is difficult to extend.

In this paper, we extend the LS(Graph) framework [12, 13]
by constructing abstractions for easily modeling and solving
the different constrained optimum non-simple paths prob-
lems and apply it to the resolution of the RNC problem.

3. MODELING APPROACH

3.1 Modeling by using a sequence of spanning
trees

The LS(Graph) framework [12] provides an abstraction de-
noted by RST(g, s, t) representing a dynamic spanning tree
of a given graph g rooted at t which induces an elementary
path from a given vertex s to t on g (s, t ∈ V (g)). An
update over the spanning tree creates a new spanning tree
which may induce a new path from s to t (see [12] for more
details).

We give an example in Figure 1. Figure 1a is an undirected
connected graph g and Figure 1b is a rooted spanning tree
tr of g rooted at t in which that path induced by tr is <
s, 3, 4, 6, 7, 11, 12, t >.

The main advantage of using rooted spanning tree for
modeling paths instead of using explicit paths representation
(i.e. a sequence of vertices) is the simplification of neighbor-
hood computation. The tree structure contains rich infor-
mation that induces directly path structure from a vertex s
to the root. A simple update over that tree (i.e. an edge
replacement) will induce a new path from s to the root.

But for the RNC problem and many other real-life ap-
plications, paths have not necessary to be elementary. For

s

1 2

3

45

6

7

8 9

1011

12

t

a. undirected graph g

s

1 2

3

45

6

7

8 9

1011

12

t

b. a spanning tree tr rooted at t of g

Figure 1: Example of rooted spanning tree

example, a vehicle can depart from a depot, traverse some
roads and return to the depot and it is allowed to pass vis-
ited roads. So it is required to model a path where ver-
tices, edges can be repeated. Henceforth, we use the word
“itinerary” to express paths where vertices, edges can be re-
peated which differs from “path” where vertices and edges
can not be repeated. The basic idea here is to use a sequence
of spanning trees: <RST(g, s = x0, x1), RST(g, x1, x2), ...,
RST(g, xk−1, xk = t)> to model a dynamic itinerary Var-
Itinerary(s, t, g) from s to t on the graph g. Each instance
it of VarItinerary(g, s, t) is a sequence < tr0, tr2, ..., trk−1 >
where tri is an instance of RST(g, xi, xi+1),∀i = 0, 1, 2, ..., k−
1. A constraint over the sequence which must implicitly hold
at any moment is that the destination of tri and the source
of tri+1 is the same ∀i = 0, 1, ..., k − 2.

Figure 2 shows an example where V arItinerary(g, s, t)=
<RST(g, s, 5), RST(g, 5, t) >. Figure 2a is an instance tr1 of
RST(g, s, 5) which induces the path p1 =< s, 3, 4, 8, 7, 6, 5 >
and Figure 2b is an instance tr2 of RST(g, 5, t) which induces
the path p2 =< 5, 4, 8, 10, 12, t >. Hence, the itinerary in-
duced by V arItinerary(g, s, t) is p1 +p2 =< s, 3, 4, 8, 7, 6, 5,
4, 8, 10, 12, t >.

Property Each instance of it = < tr0, tr1, ..., trk−1 > of
V arItinerary(s, t, g) is an itinerary where vertices and edges
are repeated at most k times.

3.2 Neighborhood
Given an instance it = < tr0, tr1, ..., trk−1 > of V arItin-

erary(s, t, g) = <RST(g, s = x0, x1), RST(g, x1, x2),..., RST-
(g, xk−1, xk = t) > where tri is an instance of RST(g, xi, xi+1),
∀i = 0, 1, ..., k − 1, the neighborhood of it is the set of
itineraries generated by taking a modification (local move)
over it. In [12], we consider an edge replacement as a ba-
sic local move for RST(g, s, t). Given an instance tr of
RST(g, s, t), we define the basic neighborhood of tr (see [12]
for more details):

N(tr) = {tr′ = rep(tr, e′, e) | e ∈ S1, e
′ ∈ S2}

where rep(tr, e′, e) is an action that replaces the edge e′ of
the tree tr by the edge e conserving the tree property. The
resulting tree tr′ must also induce a different path from the

s

1 2

3

45

6

7

8 9

1011

12

t

a. tr1

s

1 2

3

45

6

7

8 9

1011

12

t

b. tr2

Figure 2: Example of itinerary

path induced by tr. S1, S2 are respectively the set of poten-
tial edges to be added and to be removed in the replacement.

We thus consider the first basic neighborhood of it:

N1(it =< tr0, tr1, ..., trk−1 >) =

{< tr0, tr1, .., tr
′
i, .., trk−1 >| tr′i ∈ N(tri), 0 ≤ i ≤ k − 1}

In the first neighborhood, we do not change the root (the
destination) of each spanning tree when taking local moves.
This leads to the fact that some vertices (roots of span-
ning trees) will always be in the itinerary and these vertices
might not be in the desired solution. The search space is
thus limited. So we extend the RST(g, s, t) of [12] by con-
sidering another modification over this abstraction. Given
an instance tr of RST(g, s, t). We define the actions cs(tr, s′)
and cr(tr, t′) which respectively change the source s and the
destination (or the root) t of tr by a new vertex s′ and t′

resulting new rooted spanning trees tr′ and tr′′ which in-
duce new paths (s′, t′ ∈ V (g)). We denote tr′ = cs(tr, s′),
tr′′ = cr(tr, t′).

We define a second basic neighborhood of it: N2(it =<
tr0, ..., tri, tri+1, ..., trk−1 >) = {< tr0, ..., tr

′
i, tr

′
i+1, ..., trk−1 >|

tr′i = cr(tri, y), tr′i+1 = cs(tri+1, y), 0 ≤ i ≤ k−2, y ∈ V (g)}.
Intuitively, a neighbor is generated by taking two successive
spanning tree tri and tri+1 and changing the root (the des-
tination) of tri and the source of tri+1 by a new vertex y.

Even though the proposed modeling approach seems to
be complex, in practice, we can exploit partially the neigh-
borhood with dedicated heuristics. For instance, the first-
improvement heuristic1 allows to avoid the computation over-
head.

3.3 Overview of the abstractions
The implementation extends the LS(Graph) framework

to support modeling constrained optimum paths problems
where paths have not to be elementary (vertices and edges
of the paths could be repeated). The core of the imple-
mentation is the VarItinerary(s,t,g) abstraction repre-
senting an itinerary variable (the itinerary begins at s and

1The neighborhood is explored until a solution that is better
than the current solution is found.

terminates at t on a graph g). Over this abstraction, ba-
sic constraints and functions have been designed and im-
plemented. Fundamentally, constraints and objective func-
tions appear on paths (itineraries) problems are those who
relate to the total cost of the path (itineraries) and vertices,
edges visited by paths (itineraries). We design and imple-
ment in this paper crucial constraints and objective func-
tions for constrained itineraries problems which can be used
to state more complex ones. For instance, NBVisitedEdge-
sItinerary(I,S) (NBVisitedVerticesItinerary(I,S)) is
a graph objective representing the number of edges (ver-
tices) of S which are visited by the list of itineraries I.
ItineraryCost(I) represents the sum of weights of all the
edges of the itinerary I. We can combine these graph objec-
tives with arithmetic operators +, -, * and state constraints
with basic relation operators <=, >=, ==. For instance, if
we would like to state the constraint saying that the sum
of lengths of two itineraries I1 and I2 must be less than or
equal to L, we can easily do it in the following snippet2:

1. GraphConstraintSystem gcs(ls);

2. ItineraryCost c1(I1);

3. ItineraryCost c2(I2);

4. gcs.post(c1 + c2 <= L);

The following snippet state and post constraints over the
total length of itineraries and constraint of covering edges
which appear in the RNC problem:

1. GraphConstraintSystem gcs(ls);

2. forall(i in I.rng()){
3. ItineraryCost c(I[i]);

4. gcs.post(c <= L);

5. }
6. NBVisitedEdgesItinerary nb(I,S);

7. gcs.post(nb == S.getSize());

8. gcs.close();

We also design and implement generic search abstractions.
For instance, CSMaxTabuSearch(Model<Itinerary> m) is a
tabu search component specified over a model m for con-
strained maximum itineraries problems which finds a set of
itineraries under constraints maximizing a given objective
function. The tabu search features an aspiration criterion al-
lowing forbidden solutions which are better than the best so-
lution found so far. We now describe briefly this tabu search
component which will be applied to the RNC problem. The
tabu search schema given in Figure 3 is the same as that
described in [2] in which tbMin, tbMax, tinc, maxStable

are local search parameters. The tabu length tbl (line 7)
varies between [tbMin,tbMax] and is set to tbMin at the
beginning. tinc (line 7) is the change step of tbl and nic

(lines 6 and 13) counts the number of local moves that do
not improve the best solution found from each restart. The
tabu length tbl is updated (line 7) whenever the search
does not improve solution after maxStable local moves (line
6). If tbl is greater than its upper bound tbMax (line 8)
then we perform restart (method performRestart in line 9)
which generate randomly new solution, set tbl to its lower

2All code illustration presented in this paper is written in
COMET programming language [8]: a high-level modeling pro-
gramming language for constraint optimization.

1. void search(){
2. initSolution();

3. updateBest();

4. it = 1;

5. while(it < maxIt){
6. if(nic > maxStable){
7. tbl = tbl + tinc;

8. if(tbl > tbMax){
9. performRestart();

10. }else{
11. updateTabuLists();

12. }
13. nic = 1;

14. }
15. if(localmove()){
16. updateBest();

17. }else{
18. performRestart();

19. }
20. it++;

21. }
22.}

Figure 3: Generic reactive tabu search schema

1. bool localmove(){
2. MinNeighborSelector N();

3. exploreReplaceNeighborhood(N, true);

4. exploreChangeDestinationNeighborhood(N, true);

5. if(N.hasMove()){
6. call(N.getMove());

7. return true;

8. }
9. return false;

10.}

Figure 4: neighborhood exploration and move exe-
cution

bound tbMin, reset nic. If it is not the case, the tabu lists
are updated with new tabu length tbl (line 11). Line 15
perfrom a local move. If no move is taken (i.e., tabu con-
dition is reached), we perform restart (line 18). The core
of the search is the neighborhood exploration in order to
choose a desired neighboring solution and move execution
(see method localmove in Figure 4). MinNeighborSelector
N (line 2) is a COMET structure that maintains the best move
and its evaluation submitted so far (i.e., by the neighbor-
hood exploration methods in lines 3-4 which are detailed in
Figures 5, 6). Lines 5-6 perform the move (if any). Two
neighborhood structures described above are considered in
this tabu search.

Figure 5 explores the first neighborhood. Lines 5-6 scan
all VarPath vp3 components of the solution (i.e., the set of
VarItinerary). Line 8 retains a graph invariant rpl repre-
senting the set of preferred replacing edges of vp. All pre-
ferred replacing edges ei of vp are scanned (line 9) and line

3VarPath is an abstraction which encapsulates RST(g, s, t)
representing a dynamic path from s to t on g.

1. void exploreReplaceNeighborhood(Neighborhood N,

bool firstImprovement){
2. float eval = System.getMAXINT();

3. VarPath sel_vp = null;

4. Edge sel_ei = null;

5. forall(i in _varpaths.rng()){
6. VarPath vp = _varpaths[i];

7. GTabuEdge tbIn = _mapTabuEdgeIn{vp};
8. ReplacingEdgesMaintainPath rpl = _map{vp};
9. forall(ei in rpl.getSet()){
10. float d = F.getDeltaWhenUseReplacingEdge(vp,ei);

11. if(!tbIn.isTabu(ei,it) ||

d + F.getValue() < fgb){
12. if(eval > d){
13. sel_ei = ei;

14. sel_vp = vp;

15. eval = d;

16. }
17. if(firstImprovement && eval < 0)

18. break;

19. }
20. }
21. if(firstImprovement && eval < 0)

22. break;

23. }
24. if(sel_ei != null)

25. neighbor(eval,N){
26. select(eo in getPreferredReplacableEdges(vp,

sel_ei))

27. vp.replaceEdge(eo,ei);

28. GTabuEdge tbOut = _mapTabuEdgeOut{sel_vp};
29. GTabuEdge tbIn = _mapTabuEdgeIn{sel_vp};
30. tbOut.makeTabu(sel_ei);

31. tbIn.makeTabu(eo,it);

32. }
33.}

Figure 5: First Neighborhood exploration

10 evaluates the quality of the neighboring solution corre-
sponding with ei4 in term of the function to be minimized F.
In the CSMaxTabuSearch(Model<Itinerary> m), the func-
tion F to be minimized which control the search procedure
is set to alpha*c - beta*f where c, f are respectively the
constraint to be satisfied and the objective function to be
maximized, alpha, beta are search parameters. Line 11
checks whether or not ei belongs to the tabu list of edges to
be added tbIn corresponding to vp (see line 7) or this neigh-
bor improves the best value of F found so far fgb. Lines 12-
15 store new chosen solution. Lines 25-31 perform the move
including the edge replacement (line 27) and make tabu two
edges of the replacement (lines 28-31).

Figure 6 explores the second neighborhood. Similar to
the exploration of the first neighborhood, lines 6-9 scan all
VarPath vp which is not the last component of the Var-

Itinerary vi to which it belongs5. Lines 10-12 evaluate

4A neighboring solution of the first neighborhood depends
only on the preferred replacing edge to be used, not on the
preferred replacable edge (see [12] for more details).
5we do not change the destination of the last VarPath vp

1. void exploreChangeDestinationNeighborhood(

Neighborhood N, bool firstImprovement){
2. float eval = System.getMAXINT();

3. Vertex sel_des = null;

4. VarPath sel_vp = null;

5. VarItinerary sel_vi = null;

6. forall(i in _varpaths.rng()){
7. VarPath vp = varpaths[i];

8. VarItinerary vi = _mapI{vp};
9. if(!vi.lastVarPath(vp)){
10. Vertex des = vp.getDestination();

11. forall(newDes in vp.getLUB().getVertices():

newDes != des){
12. float d = F.getChangeDestinationDelta(vi,

vp,newDes);

13. GTabuVertex tbv = _mapTabuVertex{vp};
14. if(!tbv.isTabu(newDes,it) ||

d + F.getValue() < fgb){
15. if(eval > d){
16. sel_des = newDes;

17. sel_vp = vp;

18. sel_vi = vi;

19. eval = d;

20. }
21. }
22. if(firstImprovement && eval < 0)

23. break;

24. }
25. if(firstImprovement && eval < 0)

26. break;

27. }
28. }
29. if(sel_des != null)

30. neighbor(eval,N){
31. vi.changeDestination(sel_vp, sel_des);

32. GTabuVertex tbv = _mapTabuVertex{vp};
33. tbv.makeTabu(sel_des,it);

34. }
35.}

Figure 6: Second Neighborhood exploration

the quality of the neighboring solution generated by change
the destination of vp and the source of the next VarPath

of vp in vi in term of the function F. Line 14 checks tabu
condition and lines 15-20 store new best neighbor if it is dis-
covered. Lines 29-34 perform the move including changing
the destination of the selected VarPath sel_vp by a new se-
lected destination sel_des and making this new destination
tabu (lines 32-33).

4. LOCAL SEARCH-BASED MODELS FOR
SOLVING THE RNC PROBLEM

We propose in this section a model based on local search
for solving the RNC problem. In the presentation of the
model, g is the given graph, S0 is the set of edges that need
to be covered and L is the maximum value allowed of the

of a given VarItinerary vi because this destination is also
the destination of vi which is fixed.

1. void model(){
2. set{VarItinerary} sol();

3. set{Edge} S = S0;

4. while(S.getSize() > 0){
5. VarItinerary I = greedy(S);

6. sol.insert(I);

7. }
8. }

9. VarItinerary greedy(set{Edge} S){
10. LSGraphSolver ls();

11. VarItinerary I(ls,depot,depot,g,k);

12. ItineraryCost cost(I,g);

13. NBVisitedEdgesItinerary nbVisitedE(I,S,g);

14. Model<Itinerary> mod(I,cost <= L,nbVisitedE);

15. CSMaxTabuSearch<Itinerary> se(mod);

16. se.search(nbTrials);

17. forall(e in I.getEdges())

18. S.delete(e);

19. return I;

20.}

Figure 7: First local search model

cost of each itinerary in the solution.
The model is a greedy constructive search which is de-

picted in Figure 7. At each step, we find greedily a feasible
path that covers as many edges of the remaining uncovered
edges S (S is initialized by S0 (line 3) and is reduced after
each iteration) as possible (see method greedy at line 5 of
Figure 7) until S is empty. sol stores the solution which
is updated when a new itinerary is discovered (lines 5-6).
The method greedy is detailed in lines 9-20. Line 10 cre-
ates a LSGraphSolver ls which manages all graph variables,
graph invariants, graph constraints and graph objectives of
the model. Line 11 declares an object I representing Var-
Itinerary which is composed by a sequence of k VarPaths
starting and terminating at depot, rooted at random ver-
tices except the last one. Line 12 initializes a graph objec-
tive cost representing the cost of I and line 13 initializes
a graph objecitve nbVisitedE representing the number of
edges of S visited by I. Line 14 creates a model with a deci-
sion variable I, a constraint cost <= L to be satisfied and an
objective function nbVisitedE to be maximized. A search
object which applies to the model mod and maximizes nbVis-
itedE is initialized in line 15. Line 16 performs a tabu search
of nbTrials iterations. Lines 17-18 remove edges visited by
the itinerary I from S for next steps.

We can see that the model is compositional in the sense
that it is easy to state6 and post new constraints to the
GraphConstraintSystem gcs without changing the search.
On the other hand, one can easily perform different heuris-
tics and meta-heuristics on a given model thanks to built-in
graph invariants supporting neighborhood computation7.

5. EXPERIMENTS
6The LS(Graph) framework provides built-in fundamental
abstractions that enable to state some constraints and ob-

Figure 8: Grid 25x25: average objective value over
iterations

Figure 9: Grid 15x15: average objective value over
iterations

We experimented the above model on some grid graphs
of size 4x4, 5x5, 10x10, 15x15, 20x20, 25x25 and 30x30 ver-
tices. For each graph g, the depot is chosen randomly. The
weights of edges are generated randomly by a uniform dis-
tribution between 1 and 10. The set of edges to be covered
is generated randomly and its cardinality is r *]E(g) where
r ∈ {0.5, 1}. The value of L is 1.5*L0 where L0 is the cost
of the shortest path from the depot that visits the farthest
edge and returns the depot. This ensures that feasible solu-
tions to this problem always exist. We generate 2 instances
for each graph and each value of r. In total, there are 28
problem instances.

An exact branch-and-bound method has been implemented.
The objective here is to test whether or not the local search
model can find optimal solutions in small instances.

Parameters.
The parameters for the model are {k, alpha, beta, tb-

Min, tbMax, tinc, maxStable} where k is the number of
RST of each VarItinerary; alpha and beta are used as co-

jective functions on graphs.
7On the above models in Figure 7, we used a built-in search
component.

efficients for combining constraints and the objective func-
tion in the model; tbMin, tbMax, tinc, maxStable are pa-
rameters for the generic search procedure (see Figure 3).
Normally, the parameters depends on the size of the in-
put. If k is high, the model is heavy which influence the
performance. From our experiments, we choose the val-
ues for parameters as follows. The value of k is set to 3.
The value of alpha should be higher than beta in order
to prioritize the search towards feasible solutions. We thus
set beta = 1, alpha = 1000. For the remaining param-
eters, we set the values of tbMin = n/10, tbMax = n/3,

tinc = n/4, maxStable = n/5 where n is the size of the
given graph.

Each model is executed 20 times for each instance with a
specified number of iterations (the value maxIt in line 5 of
Figure 3 and nbTrials in line 16 of Figure 7). Due to the
huge complexity of the problem, each local search procedure
is performed with 20, 50, 100, 200, 500, 1000 iterations in
order to analyze the evolution of the best objective value
over iterations. In total, we have 33600 executions.

Results.
The results are shown in Table 10 with different number

of iterations. Columns 2 and 3 present the depot vertex and
the factor r used for instances generation described above.
Columns 4-15 present the min, max, average value of the
best objective value found and the average execution time
in the 20 runs of each instance with 20, 100, 200 iterations.
Column 16 presents the optimal objective value found by the
Branch-and-Bound method within 30 minutes for instances
on grid 4x4 and grid 5x5. The Tables show that the diver-
sity of the best objective values found in the 20 runs for each
problem instance increases when the size of the input graph
and the number of edges to be covered increase. The execu-
tion time increases when the number of edges to be covered
increases. Figures 9, 8 show the evolution of the average
best objective value over iterations. They show that the
best objective values found reduce substantially in first 200
iterations and are quite stable from 200 to 1000 iterations.

Due to the huge complexity of the problem, because edges
and vertices are allowed to be repeated on paths, the exact
method can not find solution on instances with grids of size
larger than 6x6 within 20 hours. The Table shows that the
local search model can find optimal solutions on some small
instances (for the grid 4x4 and grid 5x5).

6. CONCLUSION
In this paper, we have extended the LS(Graph) framework

by constructing abstractions which allow to model and solve
different constrained optimum non-simple paths problems.
We have also introduced a novel routing problem on net-
works, an instance of that problem class, which consists of
finding paths for a fleet of identical vehicles with limited ca-
pacity from a given depot on a transportation network in
order to carry out some works along streets, for instance,
to collect the damage informations after natural disasters or
to clean streets, etc. Two important constraints are consid-
ered: each vehicle must start from and terminate their path
at the depot and respect their capacity; a set of streets of the
network need to be visited. There exists different side con-
straints in real-world situations but we consider here a basic
version of the problem with the above two constraints. This
problem is proved to be NP-hard. A local search modeling

Graph d r
20 iters 100 iters 200 iters B & B

m M f t(sec.) m M f t(sec.) m M f t(sec.) f∗

grid 4x4

4 0.5 2 3 2.05 1.51 2 2 2 1.86 2 2 2 2.2 2
2 0.5 2 3 2.05 1.54 2 2 2 1.84 2 2 2 2.25 2
1 1 3 3 3 1.78 3 3 3 2.51 3 3 3 3.32 3
10 1 3 4 3.4 1.91 3 4 3.05 2.47 3 3 3 3.23 3

grid 5x5
24 0.5 2 3 2.95 1.93 2 3 2.7 2.69 2 3 2.55 3.71 2
18 0.5 3 5 3.7 2.14 3 4 3.2 3.05 3 4 3.1 4.36 3

grid 10x10

14 0.5 7 10 8.6 8.93 7 9 8 26.19 7 9 7.7 47.49 -
16 0.5 7 9 7.75 8.15 6 7 6.6 22.5 6 7 6.7 42.55 -
54 1 14 17 15.4 15.13 13 16 14.25 48.26 13 15 13.65 84.93 -
69 1 11 14 12.35 12.66 11 12 11.35 41.61 10 12 10.9 73.7 -

grid 15x15

61 0.5 11 14 12.7 31.15 10 12 11.05 100.22 9 11 10.45 182.77 -
218 0.5 12 16 14.25 35.5 11 14 12.3 106.89 11 13 12.15 201.59 -
169 1 18 21 19.4 49.18 16 19 17.6 168.06 16 18 16.75 310.11 -
52 1 20 23 21.4 53.42 18 20 18.85 175.64 18 20 18.85 332.02 -

grid 20x20

207 0.5 23 26 23.65 127.51 19 22 20.5 365.96 19 20 19.65 649.45 -
309 0.5 20 23 21.35 116.33 18 20 18.55 341.52 17 19 18.1 623.27 -
19 1 22 25 23.9 141.15 19 22 20.9 474.56 18 21 20.15 871.45 -
241 1 26 29 27.55 155.56 23 25 24.45 508.23 23 26 24.1 955.71 -

grid 25x25

381 0.5 33 37 34.75 365.83 30 33 31.25 997.67 28 31 29.65 1727.41 -
420 0.5 27 31 29.25 314.45 25 27 26.25 892.06 24 26 25 1545.11 -
418 1 40 44 42.6 473.79 36 40 38.15 1383.21 36 39 37.45 2528.95 -
440 1 41 46 43 472.14 38 41 38.65 1392.56 37 39 37.55 2522.91 -

grid 30x30

66 0.5 32 38 33.55 657.68 27 30 28.85 1713.57 27 31 28.1 3081.24 -
130 0.5 36 40 38.35 744.43 31 36 33 1881.9 30 33 31.85 3307.93 -
305 1 51 55 53.1 1063.87 46 50 47.75 2929.8 45 48 46 5235.79 -
247 1 50 52 50.8 1011.71 43 48 45.2 2854.93 42 47 43.85 5075.64 -

Figure 10: Results for 20, 100, 200 iterations

has been proposed by using the constructing abstractions.
First experimental results show the feasibility and the inter-
est of our approach. Our future work will focus on explor-
ing other meta-heuristic algorithms and testing the model
on extensive data sets, especially, in real urban networks.
We will also consider different variants of this RNC prob-
lem with different constraints and objective function to be
optimized.

7. REFERENCES
[1] J. E. Beasley and N. Christofides. An algorithm for

the resource constrained shortest path problem.
Networks, 19:379–394, 1989.

[2] C. Blum and M. Blesa. New metaheuristic approaches
for the edge-weighted k-cardinality tree problem.
Computers and Operations Research, pages
32(6):1355–1377, 2005.

[3] R. J. O. Carlyle, W. M. and R. Wood. Lagrangian
relaxation and enumeration for solving constrained
shortest-path problems. Networks, 52:256–270, 2008.

[4] G. B. Dantzig and R. Ramser. The truck dispatching
problem. Management Science, 6:80–91, 1959.

[5] I. Dumitrescu and N. Boland. Algorithms for the
weight constrained shortest path problem.
International Transactions in Operational Research,
8(1):15–29, 2001.

[6] M. R. Garey and D. S. Johnson. Computers and
Intractability: A guide to the Theory of
NP-Completeness. W. H. Freeman, 1st ed., 1979.

[7] F. Guerriero and R. Musmanno. Label correcting
methods to solve multicriteria shortest path problems.

Journal of Optimization Theory and Applications,
111:589–613, 2001.

[8] P. V. Hentenryck and L. Michel. Constraint-based local
search. The MIT Press, 2005.

[9] J. M. F. C. João C. N. Cĺımaco and M. M. B. Pascoal.
A bicriterion approach for routing problems in
multimedia networks. Networks, 41:206–220, 2003.

[10] W. Michiels, E. Aarts, and J. Korst. Theoretical
Aspects of Local Search. Springer, 2007.

[11] MSI/IFI. Around project, url =
http://www.ifi.auf.org/site/content/view/48/84/.
2006.

[12] Q. D. Pham, Y. Deville, and P. V. Hentenryck.
Constraint-based local search for constrained optimum
paths problems. In Proceedings of the seventh
International Conference on Integration of Artificial
Intelligence and Operations Research techniques in
Constraint Programming, 2010.

[13] Q. D. Pham, Y. Deville, and P. Van Hentenryck.
Ls(graph & tree): A local search framework for
constraint optimization on graphs and trees.
Proceedings of the 24th Annual ACM Symposium on
Applied Computing (SAC’09), 2009.

[14] A. Skriver and K. Andersen. A label correcting
approach for solving bicriterion shortest-path
problems. Computer and Operations Research,
27:507–524, 2000.

