
Just-In-Time Scheduling with Constraint Programming

Jean-Noël Monette and Yves Deville
Computing Sciences and Engineering Department

Université catholique de Louvain
1348 Louvain-la-Neuve

Belgium

Pascal Van Hentenryck
Brown University

Box 1910
Providence, RI 02912, USA

Abstract

This paper considers Just-In-Time Job-Shop Scheduling, in
which each activity has an earliness and a tardiness cost with
respect to a due date. It proposes a constraint programming
approach, which includes a novel filtering algorithm and ded-
icated heuristics. The filtering algorithm uses a machine re-
laxation to produce a lower bound that can be obtained by
solving a Just-In-Time Pert problem. It also includes prun-
ing rules which update the variable bounds and detect prece-
dence constraints. The paper presents experimental results
which demonstrate the effectiveness of the approach over a
wide range of benchmarks.

Introduction
Scheduling problems may feature a variety of objective
functions. Minimizing makespan and the sum of weighted
tardiness are probably the most commonly used and they
aim at scheduling activities early. Just-In-Time Scheduling
is a class of problems which has been gaining in importance
and whose goal is not to schedule activities as soon as pos-
sible but rather at the right moment. The simplest objective
capturing this high-level goal consists in having linear earli-
ness and tardiness costs with respect to a fixed due date for
each activity or each job.

This paper studies the Just-In-Time Job-Shop Problem
(JITJSP) proposed in (Baptiste, Flamini, and Sourd 2008)
and whose definition is the following. Let N be the num-
ber of jobs and M be the number of machines. Each job is
composed of a sequence of M activities. Each activity A is
described by the following information:
• dur(A) : The execution time of activity A.
• m(A) : The machine required by activity A.
• d(A) : The due date of activity A.
• e(A) : The earliness unit cost of activity A.
• t(A) : The tardiness unit cost of activity A.
The constraints impose that the activities of a job must be
executed in the given order and that two activities requiring
the same machine cannot execute at the same time. The ob-
jective is to minimize the sum of the earliness and tardiness
costs of all the activities. More formally, if C(A) is the com-
pletion time of activity A, the earliness cost of activity A is

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

defined as

E(A) = max(0, e(A) ∗ (d(A)− C(A)))

and the tardiness cost as

T (A) = max(0, t(A) ∗ (C(A)− d(A))).

The objective is to minimize the sum of E(A) + T (A) for
all activities. We assume that e(A) and t(A) are positive for
all activities.

Compared to other Just-In-Time Job-Shop problems, this
problem requires the costs to be defined on all activities in-
stead of on the last activity of each job only. As discussed
in (Baptiste, Flamini, and Sourd 2008), it is more realistic
to have earliness costs (e.g., storage cost) not only for the
finished products but also for all the partial products.

A version of the problem with costs on the last activities
only was studied in several papers (Beck and Refalo 2003;
Danna and Perron 2003), as well as in Just-In-Time Re-
source Constrained Project Scheduling Problems (JITR-
CPSP) (Vanhoucke, Demeulemeester, and Herroelen 2001).
However, to the best of our knowledge, the JITJSP has
only been studied in (Baptiste, Flamini, and Sourd 2008),
in which the authors propose several lower bounds and use
a local search procedure to produce upper bounds in order
to assess the value of their Lower Bounds. The JITJSP is
also tackled in (Laborie and Godard 2007), where the au-
thors present a Self-Adapting Large Neighborhood Search
applied on a large set of problems comprising the JITJSP.
Their method improves several upper bounds over (Baptiste,
Flamini, and Sourd 2008).

This paper proposes a constraint-programming (CP) ap-
proach to the JITJSP. Its main focus is on the design of a
global constraint for the earliness and tardiness costs but
it also presents heuristics to guide the search, as well as
a Large Neighborhood Search (LNS) to scale to larger in-
stances. The paper starts by presenting the general search al-
gorithm. It then presents the filtering algorithm and some of
its theoretical results before introducing some hybrid search
strategies. Finally, the paper presents the experimental re-
sults and concludes.

Branch-and-Bound for JITJSP
This section describes the CP model and the Branch-and-
Bound (BB) strategy to solve the JITJSP. The basic CP
model is given in Figure 1. It is specified in COMET, an
object-oriented optimization programming language (Van



1 range Activities = 1..N∗M;
2 range Machines = 1..M;
3 range Jobs = 1..N;
4
5 Scheduler<CP> cp(0,infinity);
6 UnaryResource<CP> r[Machines](cp);
7 Activity<CP> a[i in Activities](cp,dur[i]);
8 var<CP>{int}[] C = all(i in acts)a[i].end();
9 var<CP>{int} cost(cp,0..infinity);

10 var<CP>{int} E[Activities](cp,0..infinity);
11 var<CP>{int} T[Activities](cp,0..infinity);
12
13 minimize<cp>
14 cost
15 subject to {
16 forall(j in Jobs)
17 forall(i in job[j].low()..job[j].up()−1)
18 a[job[j][i]].precedes(a[job[j][i+1]]);
19 forall(i in Activities){
20 a[i].requires(r[m[i]]);
21 cp.post(E[i]==max(0,e[i]∗(d[i]−C[i])));
22 cp.post(T[i]==max(0,t[i]∗(C[i]−d[i])));
23 }
24 cp.post(cost==sum(i in Activities)(E[i]+T[i]));
25 }

Figure 1: The Comet Model for the JITJSP.

Hentenryck and Michel 2005) which features a module to
solve scheduling problems with Constraint Programming.

The model contains the input data presented in the first
section. In addition, the matrix job contains, for each job,
the ordered indexes of its activities. For instance, job[4][3]
is the index of the third activity of the fourth job. The dec-
laration of the data is not shown in Figure 1. The decision
variables are the completion dates of the activities and C(A)
denotes the completion date of activity A in the remainder
of the paper. In the model, array C declared in line 8 con-
tains the completion dates of the activities. The arrays E and
T contain the auxiliary variables for the earliness and tardi-
ness of each activity and the variable cost is the total cost
to be minimized (lines 13-14). Those auxiliary variables are
linked to the decision variables by the constraints in lines
21, 22, and 24. The other constraints of the problem are
the precedences into the jobs (lines 16–18) and the machine
requirements (line 20).

Each unary resource (which represents a machine) sup-
ports the traditional disjunctive scheduling, edge-finding
(Carlier and Pinson 1989; 1994), and not-first-not-last (Car-
lier and Pinson 1990; Vilim 2004) algorithms. An almost
identical model may be used to solve efficiently the classical
Job-Shop Problem with makespan minimization. However,
the above model is inefficient for the JITJSP, as the sum con-
straint in line 24 does not propagate information from the
cost variable back to the decision variables (i.e., the comple-
tion time of the activities). In order to overcome this short-
coming, this paper introduces a global constraint to perform
deductions based on the cost variable and the current state
of the schedule.

1 Input: S : JITJSP instance
2 Input−Output: UB : Global Variable (Upper Bound)
3 Output: Best found solution
4 solve(S, UB){
5 propagate();
6 solve a machine relaxation of S;
7 Let LB be the value of the solution;
8 if (LB>=UB) fail;
9 if (the solution is machine−feasible){

10 UB := LB;
11 Save current solution;
12 }else{
13 find 2 conflicting activities A and B;
14 try{
15 S.add(A precedes B);
16 solve(S, UB);
17 }or{
18 S.add(B precedes A);
19 solve(S, UB);
20 }
21 }
22 }

Figure 2: Pseudo-code of the Branch-and-Bound

The search procedure is given by the pseudo-code in Fig-
ure 2. This procedure is recursive and each call corresponds
to a node of the search tree. After constraint propagation,
a relaxation of the problem is solved. This relaxation con-
sists in removing the machines of the problem, resulting in a
PERT problem with convex cost functions that can be solved
in polynomial time (Chrétienne and Sourd 2003). The value
of this relaxation gives a valid Lower Bound (LB) for the
original problem. If this LB is larger or equal to the current
Upper Bound (UB), it is useless to explore the subtree rooted
at the current node. In contrast, if the LB is smaller than the
UB and the solution to the relaxation satisfies all the ma-
chine constraints (meaning that no two tasks that require the
same machine overlap in time), the search has found a new
best solution and it updates the UB. Finally, if the solution
of the relaxation is not feasible in the original problem, this
means that at least two activities requiring the same machine
overlap in time. This constraint violation can be repaired by
adding a precedence constraint between the two conflicting
activities. As there are two possibilities to order the two
activities, it is necessary to branch and explore the two sit-
uations recursively (which is represented in Figure 2 by the
non-deterministic instruction “try{}or{}” (Van Hentenryck
and Michel 2005)). Note that adding a precedence can only
increase the total cost.

A Global Constraint for Earliness/Tardiness
This section introduces a global constraint to reduce the
search space using both the UB and the machine relaxation
of the problem. The global constraint updates the domains
of the variables, detects implied precedence relations, and
provides heuristic information for branching.

The machine relaxation (removing the machines and
the associated requirements) is a PERT problem with



convex cost functions. This problem can be solved in
O(n max{n, m}) with the algorithm of (Chrétienne and
Sourd 2003) for linear earliness and tardiness costs. In this
paper, the algorithmic complexities are expressed in func-
tion of the number of activities (n) and the number of prece-
dences between activities (m). Sourd and Chrétienne’s algo-
rithm can also be generalized naturally to the case of convex
piecewise linear cost functions. This generalization is im-
portant in this paper to accommodate the release dates and
deadlines of the activities. As noted in (Hendel and Sourd
2007), it suffices to add almost vertical segments to the cost
function of an activity at its release date and deadline to
model these constraints.

As mentioned, from the optimal solution of the relaxation,
it is possible to perform several deductions such as bounds
reduction and precedence detection. The bound reductions
take the form of unary constraints on the decision variables
C(A), while the precedences are binary constraints on pairs
of decision variables. We now review these two forms of
propagation and the heuristic information provided by the
global constraint.

Bound Reduction
The solution of the machine relaxation (i.e., the PERT prob-
lem) gives a fixed completion time for each activity A which
is denoted by C∗(A). Both kinds of deduction are based on
what happens to the cost if the optimal solution of the re-
laxation is perturbed by the displacement of an activity A
earlier or later than C∗(A). The modification of the cost as
a function of the completion time of an activity is a convex
piecewise linear function whose minimum coincides with
the optimal solution of the machine relaxation. Let ∆A de-
note the function for activity A giving the increase in cost
with respect to the optimal solution of the PERT problem.
∆A is a convex piecewise linear function of the completion
time of an activity and its minimum is ∆A(C∗(A)) = 0.
This is proved in the next section by Theorem 1.

The first type of pruning is the bound reduction of the
completion time variable of each activity. This pruning is
enforced by the constraint

∆A(C(A)) < (UB − LB)

and, since ∆A is a convex function, this constraint may di-
rectly update the bounds of the variable C(A). Figure 3
shows an example of a ∆A function with the new inferred
bounds denoted by mC(A) and MC(A) in the figure.

Precedence Detection
The second type of pruning consists in detecting prece-
dences that must hold between two tasks in conflict in the
original problem (i.e., two tasks requiring the same ma-
chine and overlapping in time in the optimal solution of
the PERT relaxation). If two activities A and B are in
conflict, either A must precede B or B must precede A.
If A is forced to precede B, A and B cannot stay at the
minimum of their respective ∆A (or ∆B) functions. They
must move and their optimal positions minimize the func-
tion ∆A(x) + ∆B(x + dur(B)) over x, where x represents
the value given to variable C(A). Let us call Inc(A, B) the
minimum of this function, i.e.,

Inc(A, B) = min
x

(∆A(x) + ∆B(x + dur(B))).

Figure 3: Illustration of the Delta Function and the Bound
Reduction.

Inc(A, B) represents the minimum increase of the total cost
when A is forced to precede B and C∗(B) − C∗(A) <
dur(B). This last condition is true whenever A and B are
in conflict. As C∗(B) − C∗(A) < dur(B) holds and the
∆ functions are convex, it follows that the increase is min-
imized when there is no free time between A and B, i.e. if
A ends at x and B ends at x + dur(B). The filtering can be
written as:
• if Inc(A, B) > (UB − LB), then post (B precedes A).
• if Inc(B, A) > (UB − LB), then post (A precedes B).

If Inc(A, B) is larger than the allowed increase, then the
opposite precedence can be posted. As the sum of two con-
vex functions is also a convex function, it is easy to compute
Inc(A, B) and Inc(B, A) and check whether some prece-
dence constraint must be posted.

The computation of the value Inc(A, B) may consider
twice a third task C but the result remains a valid lower
bound of the real increase. Indeed, A and B must move
in opposite directions to solve their conflict. Then C may
only influence positively one of the two functions. It may
have a negative influence on the other function, leading to a
valid lower bound of the real increase.

Branching Heuristics
In addition to the above pruning, the information computed
for the filtering can be used to guide the search heuristically.
As indicated in Figure 2, the branching consists in adding
precedences between two conflicting activities. The first-
fail principle commands to choose two activities to detect
failures earlier in the search tree. In the present problem,
this suggests choosing a pair of activities that improves the
lower bound the most.

More precisely, the search strategy adopted in the algo-
rithm resolves all the conflicts of one machine before go-
ing onto another machine. It chooses the machine with the
largest sum of minimum increase (Inc(A, B)) for all its con-
flicts. Among the activities requiring the chosen machine,
the heuristic chooses to branch on the two conflicting activ-
ities maximizing the minimal increase in cost when they are
ordered (as computed for the filtering), i.e.,

argmax
A and B

{max(Inc(A, B), Inc(B, A))}

To guide the search towards good solutions (and improve the
upper bound), the branch with the smallest increase in cost



Figure 4: Illustration of the three cases in the proof of The-
orem 1, before (left) and after (right) a breakpoint. The sim-
ple arrows depict precedences and the large arrows show the
activities that are moving. Below the activities are the cor-
responding individual cost functions and the right of the ∆A

cost function (dashed).

is visited first

argmin{Inc(A, B), Inc(B, A)}.

Slope Computations for the Cost Functions
This section presents the algorithmic and theoretical results
behind the computation of the ∆A functions. It first proves
that the cost functions are convex and piecewise linear. It
then proposes an approximation of the ∆A function and
shows that it is sound with respect to pruning. Finally, the
section describes how to compute these functions.

The Shape of the Slope
Theorem 1 Starting from the optimal solution of a machine
relaxation, the function ∆A, the evolution of the cost as a
function of the completion time of activity A, is convex piece-
wise linear.

Proof (Sketch) From the optimal solution, moving a task
to the right or to the left can only increase the cost, as the
current position is at the minimum. Let LS(A) and RS(A)
be the unit increase cost (or slope) directly to the left and to
the right of C∗(A) respectively. In general, slopes of the ∆A

functions are denoted by an uppercase S, while the slopes of
the individual cost function of the activities (i.e., their joint

earliest/tardiness cost functions with additional segments for
capturing the release and deadline constraints) are denoted
by a lowercase s. For brevity, we only consider the right part
of the ∆A function as the left part is similar. When activity
A is pushed to the right, some other activities must move to
satisfy the precedence constraints or should move to reduce
the increase in cost. At any point in time, the slope S of the
function ∆A is the sum of all the individual slopes s of the
currently moving activities. Some slope s may be negative
but their overall sum is positive on the right of C∗(A). Di-
rectly on the right of C∗(A), the cost is increased by RS(A).
However, the cost will increase further subsequently when
breakpoints of other slopes are reached. The breakpoints are
of several kinds.

1. An activity A′ (or a group of activities) reaches an opti-
mum of its individual cost function and is not forced to
move by precedence constraints. This activity is left at
its optimum and the slope S of ∆A is increased by the
opposite of the slope s at the left of the optimum of the
individual function of A′. This is a positive increment as
the slope s on the left of the optimum is negative by defi-
nition. This is illustrated in the first part of Figure 4 which
considers the move of activity A. Before reaching d(A′)
(left of the figure), A′ moves with A. Passed d(A′), A
continues alone and A′ is left at its optimum (right of the
figure).

2. A moving activity A′ reaches a breakpoint of its own indi-
vidual cost function (and it does not respect the conditions
of case 1): The slope S of ∆A is increased by the differ-
ence between the slopes s on the left and on the right of
the breakpoint. This increment is positive as the individ-
ual cost functions are convex. This is shown in the middle
part of Figure 4.1

3. The block of moving activities reaches a non-moving ac-
tivity A′. The slope S of ∆A is increased by RS(A′)
which is positive, as this activity was optimally sched-
uled. This case is illustrated in the third part of Figure
4.

Each successive breakpoint falls in one of those three cate-
gories. The increase of the slope S of ∆A at every break-
point is thus positive making the whole function convex.
The slope S is only modified at breakpoints and, between
two breakpoints, the function follows linear segments, mak-
ing the whole function piecewise linear. �

Approximating the ∆A Function
The exact outline of the ∆A function for each activity can
be computed with a variation of the PERT algorithm of
(Chrétienne and Sourd 2003). We could not find an algo-
rithm with a complexity better than O(n2 max{n, m}). For
this reason, our implementation uses a lower approxima-
tion ∆̃A of the ∆A function that only considers the initial
slopes (RS(A) and LS(A)) and a subset of the breakpoints.
Considering only a subset of the breakpoints gives a convex
piecewise linear function that is a lower bound of ∆A. This
lower approximation is used instead of ∆A in the implemen-
tation.

1Note that the individual functions may have more than 2 seg-
ments due to the release and deadline constraints.



Figure 5: Illustration of the relaxation of the cost function.
Parts 1-3 show the relaxed function ∆̃A while Part 4 (lower
right) presents ∆A.

The breakpoints used in the lower approximation belong
to the second category given in the proof of Theorem 1. For
such breakpoints, it is relatively easy to compute the individ-
ual breakpoints of each activity and the associated increases
in slope. The activities considered for ∆̃A are the successors
of A in the transitive closure of the precedence graph. The
breakpoints for all ∆̃A functions can then be computed in
one pass over the precedence graph.

Figure 5 illustrates the functions ∆A and ∆̃A on a small
example with two activities. Part 1 of the figure shows the
initial state at C∗(A). Part 2 shows that breakpoints of the
first category are not considered for ∆̃A, as if the individual
cost function of A′ was a linear decreasing function. Part 3
shows a considered breakpoint of the individual cost func-
tion of A. Finally, part 4 presents the shape of ∆A when all
breakpoints are considered.

Computing RS(A)
It remains to show how to compute RS(A) and LS(A) for
every activity A. For brevity, we consider the RS(A) case
only. Its computation can be performed in several ways. The
first possibility is to reuse the algorithm for PERT schedul-
ing with the additional constraint that A cannot finish earlier
than C∗(A) + 1. The difference between the optimal total
cost of the variation and the optimal cost of the base ver-
sion gives RS(A). This mechanism has the disadvantage
to run the whole PERT algorithm for every activity giving
a time complexity of O(n2 max{n, m}). A better way is
to use an adaptation of the PERT algorithm. Starting from
the optimal solution for the machine relaxation, it consists in
adding a new fictional activity A′ that has only A as succes-
sor. The due date of this task is C∗(A)−dur(A) + 1 and its
earliness cost is set to an arbitrarily large value e(A′) = M .
The idea is to perform the first steps of the PERT algorithm
until the step where it is necessary to move the block of A.
At this point, the slope of the block containing A and A′ is
equal to RS(A) + M . The time complexity is bounded by
O(n2 max{n, m}). However, in practice, there are very few
steps of the algorithm to perform and it is easy to remove A′

from the schedule in order to be ready to compute the next

Figure 6: Illustration of the computation of the RS(A)

RS.

Faster Computation of RS(A)
A faster and more elegant way to compute the RS(A) exists
for a special case that appears often in practice. Call equal-
ity arcs the arcs (A, B) of the precedence graph satisfying
C∗(B) − C∗(A) = dur(B), that is the arcs between two
activities that are directly chaining up. The equality graph is
the restriction of the precedence graph to the equality arcs.
Clearly, only the activities that are part of the connected
component of A in the equality graph may impact the value
of RS(A). In the special case where the equality graph con-
sists of trees (there is no cycle in the underlying undirected
graph), the following recurrence relations allow to compute
the RS(A) for all activities efficiently:
• RS(A) = s(A) +

∑
(A,B) FS(A, B) +∑

(B,A) BS(A, B)

• FS(A, B) = s(B) +
∑

(B,C) FS(B, C) +∑
(C,B) 6=(A,B) BS(B, C)

• BS(A, B) = min(0, s(B)+
∑

(B,C)6=(B,A) FS(B, C)+∑
(C,B) BS(B, C))

where s(A) is the slope of the individual cost function of
activity A directly to the right of C∗(A). The summa-
tions are performed over every in- or out-arcs of an activ-
ity in the equality graph. As the equality graph is a col-
lection of trees, each arc separates a connected component
into two disconnect parts. FS(A, B) (forward slope) is the
slope induced by the part containing B when A is moved.
The same is true for BS(A, B) (backward slope) except
that it may be zero as the part containing B is not forced
to move when A moves if its slope is positive. The base
of the recurrence relations happen when the activity B of
FS(A, B) (resp. BS(A, B)) is incident only to the edge
(A, B) (resp. (B, A)). In such a case, FS(A, B) = s(B)
(resp. BS(A, B) = min(0, s(B))). Another special case is
when an activity A is not incident to any edge. In this case,
RS(A) = s(A). This means that the recurrence starts from
the leaves of the tree. There are two values to compute for
each arc and one for each node, that is there are O(n + m)
values to compute in total.
Figure 6 presents a little example with 4 activities. The s(A)
and RS(A) are noted in the respective activities, while the
FS(A, B) and BS(A, B) are noted on the arcs. The arc
(4, 3) illustrates the case where activity 4 does not move
when any of the three others move, as it would incur an addi-
tional cost of 17 (BS(3, 4) = 0). On the contrary, activities
1 and 2 are moved whenever activity 3 is displaced because
it reduces the cost (BS(2, 1) and BS(3, 2) are negative).



The same relations exist for LS(A). In the experiments,
the faster computation mechanism is used whenever it is
possible. The variation of the PERT algorithm is only used
in the cases where the equality graph is not composed of
trees.

Additional Heuristics
As JITJSPs are extremely hard problems, we embedded
two additional mechanisms into our search procedure: a
simple local search to post-optimize each solution and a
Large Neighborhood Search (Shaw 1998; Danna and Perron
2003).

Simple Local Search
The local search starts from a feasible solution and try to im-
prove it greedily by swapping the order of two tasks that exe-
cute successively on the same machine and undo the move if
it does not improve the value of the solution. This is repeated
until a local optimum is obtained. Each time the branch-and-
bound finds a new solution, the local search is run from the
current solution trying to improve it. The value of the local
optimum is then used as new UB. This makes it possible to
obtain good upper bounds early. It is important to note that
the addition of this local search preserves the completeness
of the Branch-and-Bound search.

Large Neighborhood Search
In addition to the above complete search procedure, we also
implemented an incomplete Large Neighborhood Search
(LNS). LNS is a local search whose moves explore the so-
lutions of a subproblem using CP. For the JITJSP, our LNS
consists of the following steps:

1. Let n = 20;
2. Choose n/10 machines.
3. Relax the current solution by removing the precedences

between activities executed on the chosen machines.
4. Solve the problem with the B&B search limited to 1000

fails.
5. Update the current solution if a better solution has been

found.
6. Increase n if the search was complete, decrease it other-

wise (with a minimum of 20).
7. Go to step 2 unless the running time is exhausted.
The choice of the machines to relax is performed randomly
according to a distribution that reflects the costs incurred by
the activities executed on each machine.

Experimental Validation
The aim of the experiments is to demonstrate the effective-
ness of the global constraint and the influence of the two ad-
ditional mechanisms to help solving the JITJSP. The bench-
marks are those introduced in (Baptiste, Flamini, and Sourd
2008) and include 72 instances ranging from 20 to 200 ac-
tivities. The instances are distributed following four criteria:
tightness of the due dates, repartition of the costs, number
of jobs, and number of machines. The due dates are either
tight or loose. If they are tight, the distance between the
due dates of two successive activities of a job are equal to

the duration of the second activity. If they are loose, some
free time is allocated between two due dates. The earliness
and tardiness unit costs are either taken randomly in [0.1, 1]
(equal scheme) or in [0.1, 0.3] for the earliness cost and in
[0.1, 1] for the tardiness cost (tard scheme). The number of
jobs is 10, 15, or 20, and the number of machines is 2, 5,
or 10. Only 1 instance of this benchmark was previously
closed (optimum known and proved), namely the 10x2-t-l-
1 instance (10 jobs, 2 machines, tight due dates, loose cost
scheme, number 1).

We ran four versions of our search on the whole collection
of benchmarks. The first one, denoted CPnoG, is the pure
CP approach without the novel global constraint.The second
one, called CP, is the same CP approach but with the novel
global constraint. CP+ls adds the local search described in
the previous section and LNS adds the local search and the
Large Neighborhood Search of the previous section. Every
run is allocated 600 seconds (10 minutes) and is performed
on one core of a Intel Core 2 Quad at 2.40GHz with 4MB of
memory. The entire algorithm is implemented in Comet.

Results
The results are presented in Table 1. The column LB gives
the best-known lower bound. These values are taken from
(Baptiste, Flamini, and Sourd 2008), except those we im-
proved which are shown in italic. The column BF&S shows
the upper bounds from (Baptiste, Flamini, and Sourd 2008)
and serves as reference for our results. The column SA-LNS
presents the results from (Laborie and Godard 2007). This
approach has only been tested on the instances with 15 or 20
jobs. The last four columns show the cost of the best solu-
tions found by each version of our algorithm. In the case of
LNS, this value is an average over 10 runs. The bold values
are the best ones for each instance.

The comparison of the values between CPnoG and CP
shows clearly the benefits of using the new global constraint.
On the whole, CP improves over BF&S on 9 instances.
CP+ls and LNS provide significant benefits and improve
over BF&S on 40 instances each. In addition, CP+ls was
able to prove optimality on 5 instances thus closing 4 new
instances. These new instances with their respective total
costs are:

• 10x2-tight-equal-2 : 448.32
• 10x2-loose-equal-1 : 224.84
• 10x2-tight-tard-1 : 179.46
• 10x2-loose-tard-2 : 137.94

SA-LNS provides the best solution for 25 instances out
of 48, while our LNS approach only provides 11 such best
solutions. But is is interesting to analyze de the average per-
formance of the algorithms, as summarized in Table 2. In
this table, we give the gap averaged by size. The gap is
defined as (UB − LB)/LB where LB is the best-known
lower bound of an instance and UB is the total cost com-
puted by each algorithm for the same instance. This table
indicates that, for the smallest instances (20 tasks), BF&S
gives better solutions. In general, for the instances with 2 or
5 machines, SA-LNS is the best. However, as size increases,
LNS becomes the best on average. Again, we see that the



Instance LB BF&S SA-LNS CPnoG CP CP+ls LNS
10x2-tight-equal-1 434 453 - 742.15 461.96 461.96 522.9
10x2-tight-equal-2 448.32 458 - 448.32 448.32 448.32 484.86
10x5-tight-equal-1 660 826 - 2556.47 935.78 783.43 764.8
10x5-tight-equal-2 612 848 - 1686.04 779.4 779.4 808.64
10x10-tight-equal-1 1126 1439 - 5901.26 1622.26 1339.64 1527.28
10x10-tight-equal-2 1535 2006 - 5552.85 1930.65 1930.65 1902.3
10x2-loose-equal-1 224.84 225 - 384.52 224.84 224.84 225.81
10x2-loose-equal-2 313 324 - 565.15 319.37 319.37 347.65
10x5-loose-equal-1 1263 1905 - 3191.61 1995.5 1877.93 1823.85
10x5-loose-equal-2 878 1010 - 2732.44 1851.56 1155.89 999.14
10x10-loose-equal-1 331 376 - 1676.34 620.29 403.87 381.88
10x10-loose-equal-2 246 260 - 4122.75 325.92 274.31 256.78
10x2-tight-tard-1 179.46 195 - 184.9 179.46 179.46 193.44
10x2-tight-tard-2 143 147 - 259.17 173.67 164.38 164.38
10x5-tight-tard-1 361 405 - 1722.42 444.64 407.4 398.37
10x5-tight-tard-2 461 708 - 1364.13 722.76 707.81 639.16
10x10-tight-tard-1 574 855 - 2138.78 928.98 806.74 773.26
10x10-tight-tard-2 666 800 - 1939.05 1094.71 879.5 830.39
10x2-loose-tard-1 416 416.44 - 416.44 416.44 416.44 416.44
10x2-loose-tard-2 137 138 - 171.11 148.31 137.94 147
10x5-loose-tard-1 168 188 - 930.13 243.06 199.91 182.64
10x5-loose-tard-2 355 572 - 1643.19 733.69 513.91 542.29
10x10-loose-tard-1 356 409 - 1950.79 476.82 402.27 387.05
10x10-loose-tard-2 138 152 - 1155.84 152.66 151.97 144.94
15x2-tight-equal-1 3316 3559 3372.09 4318.16 4269.09 3641.19 3641.19
15x2-tight-equal-2 1449 1579 1508.59 1885.51 1578.2 1534.12 1534.12
15x5-tight-equal-1 1052 1663 1684.17 5131.06 1604.52 1538.09 1504.04
15x5-tight-equal-2 1992 2989 2919 7719.21 3042.32 2993.5 3096.6
15x10-tight-equal-1 4389 8381 6848.97 16798.5 9870.99 9089.61 8189.7
15x10-tight-equal-2 3539 7039 7199.82 20606.2 10072.8 5665.38 5536.07
15x2-loose-equal-1 1032 1142 1048.47 1389.12 1453.6 1249.68 1249.68
15x2-loose-equal-2 490 520 529.24 1064.7 550.86 524.1 560.15
15x5-loose-equal-1 2763 4408 3572.86 10489.4 5011.53 3757.93 3745.96
15x5-loose-equal-2 2818 4023 3642.24 9786.51 5449.25 3418.87 3397.42
15x10-loose-equal-1 758 1109 1205.42 10851.1 1747.86 1083.02 1033.06
15x10-loose-equal-2 1242 2256 1855.01 10533.2 3703.48 1937.27 1792.67
15x2-tight-tard-1 786 913 824.19 1123.88 1214.39 835.52 835.52
15x2-tight-tard-2 886 956 905.37 1219.88 1100.32 947.17 947.17
15x5-tight-tard-1 1014 1538 1553.22 4365.97 1567.86 1530.96 1597.9
15x5-tight-tard-2 626 843 761.25 4030.46 959.25 785.36 775.01
15x10-tight-tard-1 649 972 921.46 3411.5 1458.38 921.67 923.88
15x10-tight-tard-2 955 1656 1633.14 8666.48 2341.59 1663.05 1693.04
15x2-loose-tard-1 650 730 655.93 847.64 869.72 666.37 666.37
15x2-loose-tard-2 278 310 312.17 567.02 370.98 336.48 336.48
15x5-loose-tard-1 1098 1723 1431.36 5849.32 3802.18 1528.36 1478.97
15x5-loose-tard-2 314 374 386.25 1642.12 585.72 409.6 401.65
15x10-loose-tard-1 258 312 324.03 5200.42 564.65 342.49 300.11
15x10-loose-tard-2 476 855 781.8 11036.2 1378.26 658.9 717.9
20x2-tight-equal-1 1901 2008 1967.4 2434.94 2148.81 2115.58 2115.58
20x2-tight-equal-2 912 1014 993.43 1412.43 1400.2 1104.2 1124.47
20x5-tight-equal-1 2506 3090 3266.35 9800.11 4085.52 3349.28 3349.28
20x5-tight-equal-2 5817 7537 7456.91 15568.0 10226.2 8112 7883.5
20x10-tight-equal-1 6708 12951 11929.2 42488 21405.9 14537.1 14004.9
20x10-tight-equal-2 5705 9435 7763.34 34149.5 13363.6 8603.76 8535.88
20x2-loose-equal-1 2546 2708 2750.21 3142.91 3410.65 2789.07 2789.07
20x2-loose-equal-2 3013 3318 3182.94 4754.77 3760.64 3386.88 3386.88
20x5-loose-equal-1 6697 9697 8285.88 27431.9 15069.2 9481.56 9481.56
20x5-loose-equal-2 6017 8152 8400.03 25041.6 13138.5 8835.72 8835.72
20x10-loose-equal-1 3538 6732 6742.01 36924.7 10773.3 6206.3 6101.67
20x10-loose-equal-2 1344 2516 2023.89 18332.5 4797.62 2006.67 1963.05
20x2-tight-tard-1 1515 1913 1761.69 2729.81 2395.97 1892.22 1892.22
20x2-tight-tard-2 1375 1594 1471.25 2039.81 2121.18 1704.26 1744.25
20x5-tight-tard-1 3244 4147 3778.88 9814.55 6420.98 4067.73 4067.73
20x5-tight-tard-2 1633 1916 2006.45 9443.06 3497.69 2040.7 2040.7
20x10-tight-tard-1 3003 5968 5622.63 32574.2 9871.52 5172.14 5125.88
20x10-tight-tard-2 2740 3788 4382.08 19923.2 6229.24 3992.48 3938.51
20x2-loose-tard-1 1194 1271 1256.02 2177.05 1545.92 1409.73 1409.73
20x2-loose-tard-2 735 857 784.54 1700.04 1170.59 907.6 907.6
20x5-loose-tard-1 2524 3377 3421.56 8466.93 5091.8 4015.62 4644.44
20x5-loose-tard-2 3060 5014 3965.95 13980.5 6946.88 4539.36 4539.36
20x10-loose-tard-1 2462 6237 6877.88 38611.5 20511.3 7462.39 7287
20x10-loose-tard-2 1226 1830 2046.53 12267.0 2776.79 1741.44 1727.88

Table 1: Detailed results for the 72 instances



Size BF&S SALNS CPnoG CP CP+ls LNS
10x2 2.80 - 41.48 4.79 3.03 8.79
15x2 10.11 4.46 53.41 29.61 10.06 10.98
20x2 12.32 7.66 63.30 40.81 18.09 18.73
10x5 33.55 - 277.04 58.67 32.07 27.09
15x5 46.60 36.67 366.54 90.08 37.49 37.32
20x5 34.50 28.30 294.70 102.88 39.92 42.54
10x10 21.48 - 539.69 45.06 21.75 19.06
15x10 67.69 58.84 1026.50 152.08 56.67 51.30
20x10 84.44 81.06 902.55 253.81 81.92 78.53

Table 2: Average gap by size (in %). Bold values are the
best on their benchmarks

pure CP search greatly benefits from the introduction of the
global constraint. However it is still not effective due to the
lack of a good upper bound early in the search which would
allow to prune large parts of the search tree. Adding good
upper bounds, thanks to the local search, greatly improves
the pure CP approach. Finally, LNS improves the larger in-
stances but is useless on instances with 2 machines. Indeed,
the idea behind our LNS is to relax at least 2 machines, which
is the complete problem in 2-machines instances. For such
instances, LNS only serves as a restart and cannot drive the
search as it is the case for larger problems.

Conclusion and Future Work
This paper introduced a Constraint Programming approach
for the Just-In-Time Job-Shop Problem, a Job-Shop variant
where the total earliness and tardiness costs must be mini-
mized. This approach relies on efficient filtering algorithms
and intelligent search heuristics. In particular, the paper pre-
sented a global filtering algorithm based on a machine relax-
ation and an analysis of the cost evolution under modifica-
tion of the completion time of activities. The filtering algo-
rithm reduces the bounds of the decision variables, detects
precedences between activities, and provides heuristic infor-
mation for branching in order to improve the lower bound
earlier in the search tree. The CP algorithm was then en-
hanced by a simple local search performed on each solution
to get good upper bounds early. Finally, a large neighbor-
hood search was implemented to find high-quality solutions
quickly.

Experimental results show that constraint programming
with the local search at the leaves and/or large neighbor-
hood search produces good results. Among the 72 bench-
mark instances introduced in (Baptiste, Flamini, and Sourd
2008), the algorithm closed 4 open instances and improved
the best-known solutions on 29 instances. Additional exper-
iments have shown that the PERT algorithm adapted from
(Chrétienne and Sourd 2003) is the bottleneck of the search.
Future work will be devoted to the development of an incre-
mental version of a convex PERT algorithm and to an exten-
sion of the approach to other kinds of Just-In-Time Schedul-
ing Problems that feature cumulative and state resources. In
particular, it will focus on the adaptation of the global con-
straint for these problems.

Aknowledgments
The authors want to thank the anonymous reviewers for
their helpful comments. This research is partially supported
by the Interuniversity Attraction Poles Programme (Bel-
gian State, Belgian Science Policy). This work was sup-
ported in part by the U.S. Department of Homeland Secu-
rity’s National Infrastructure Analysis and Simulation Cen-
ter (NISAC) Program, by NSF award DMI-0600384, and
ONR Award N000140610607.

References
Baptiste, P.; Flamini, M.; and Sourd, F. 2008. Lagrangian
bounds for just-in-time job-shop scheduling. Comput.
Oper. Res. 35(3):906–915.
Beck, J. C., and Refalo, P. 2003. A hybrid approach to
scheduling with earliness and tardiness costs. Annals OR
118(1-4):49–71.
Carlier, J., and Pinson, E. 1989. An algorithm for solving
the job-shop problem. Management Science 35(2):164–
176.
Carlier, J., and Pinson, E. 1990. A practical use of jack-
son’s preemptive schedule for solving the job-shop prob-
lem. Ann. Oper. Res. 26:269–287.
Carlier, J., and Pinson, E. 1994. Adjustment of heads
and tails for the job-shop problem. European J. Oper. Res.
78:146–161.
Chrétienne, P., and Sourd, F. 2003. Pert scheduling with
convex cost functions. Theor. Comput. Sci. 292(1):145–
164.
Danna, E., and Perron, L. 2003. Structured vs. unstruc-
tured large neighborhood search: A case study on job-shop
scheduling problems with earliness and tardiness costs. In
CP, 817–821.
Hendel, Y., and Sourd, F. 2007. An improved earliness-
tardiness timing algorithm. Computers & OR 34(10):2931–
2938.
Laborie, P., and Godard, D. 2007. Self-adapting large
neighborhood search: Application to single-mode schedul-
ing problems. In Proceedings MISTA-07, Paris 276–284.
Shaw, P. 1998. Using constraint programming and lo-
cal search methods to solve vehicle routing problems. CP
417431.
Van Hentenryck, P., and Michel, L. 2005. Constraint-
Based Local Search. The MIT Press.
Vanhoucke, M.; Demeulemeester, E.; and Herroelen, W.
2001. An exact procedure for the resource-constrained
weighted earliness-tardiness project scheduling problem.
Annals of Operations Research 102:179–196.
Vilim, P. 2004. O(n log n) filtering algorithms for unary
resource constraint. CPAIOR 335–347.


