
Constraint Processing in cc�FD�

Pascal Van Hentenryck�� Vijay Saraswat�� Yves Deville�

Abstract

Constraint logic programming languages such as CHIP ������ have demonstrated the practicality of declar�
ative languages supporting consistency techniques and nondeterminism� Nevertheless they su�er from the
black�box e�ect	 the programmer must work with a monolithic� unmodi
able� inextensible constraint�solver�

This problem can be overcome within the logically and computationally richer concurrent constraint
�cc� programming paradigm �
��� We show that some basic constraint�operations currently hardwired into
constraint�solvers can be abstracted and made available as combinators in the programming language� This
allows complex constraint�solvers to be decomposed into logically clean and e�ciently implementable cc

programs over a much simpler constraint system� In particular� we show that the CHIP constraint�solver
can be simply programmed in cc�FD�� a cc language with an extremely simple built�in constraint solver for

nite domains�

� Introduction

The purpose of our research is to design programming languages that support the solution of various com�
binatorial search problems arising in areas like combinatorial optimization� arti
cial intelligence� natural
language processing� and hardware design� Our goal is to extract some of the fundamental techniques used
in those areas and to support them inside programming languages in order to speed development time� allow
rapid prototyping� and ease modi
ability�

One aspect of our work has focused on the support of consistency techniques� a paradigm emerging from
Arti
cial Intelligence� inside constraint logic programming� Consistency techniques have been used in a
number of systems �e�g� �
����
��
�� in order to reduce the search space by removing combinations of values
that cannot appear together in a solution� Constraint Logic Programming �CLP� is a new class of declarative
languages which generalizes Logic Programming by replacing uni
cation with constraint solving �
��� Such
languages are attractive for solving combinatorial search problems since their nondeterminism makes them
adequate for stating various search procedures and their relational form makes it easy to state constraints�
The support of consistency techniques in conjunction with nondeterminism is particularly appealing �as
noted by Mackworth in �
��� as it frees the programmer from implementing both tree�search and constraint
propagation�

The feasibility and practicality of a declarative language supporting both consistency techniques and
nondeterminism was demonstrated in the CHIP system ������� Solutions for a large variety of combinatorial
problems � test�generation �������� car�sequencing ���� microcode labelling ���� scheduling and cutting stock
���� � were developed quickly� and were comparable in e�ciency �within a constant factor� to specialized
algorithms using the same approach� CHIP supported consistency techniques mainly by providing a number
of primitive constraints� such as equations� inequalities� and disequations involving variables ranging over

nite subsets of natural numbers�

Though successful� CHIP has a number of limitations� the most important being its lack of extensibility�
The programmer has to recast non�primitive constraints in terms of existing constraints� is unable to de
ne
new primitive constraints and is unable to cope adequately with disjunctions of constraints or the de
nition
of incomplete constraint solvers� As a result� non�primitive constraints are often recast in terms of more
basic variables �e�g� Boolean variables� and�or are used to make choices� Both alternatives decrease pruning�
increase the search space� and entail a substantial loss in e�ciency compared to procedural languages� The

�Brown University� Box ����� Providence� RI ������ Email� pvh�cs�brown�edu
�Xerox Palo Alto Research Center� ���� Coyote Hill Road� Palo Alto� CA �	��	� Email� saraswat�parc�xerox�com
�Universit
e Catholique de Louvain� Pl� Ste Barbe� � B���	� Louvain�La�Neuve� Belgium� Email� yde�info�ucl�ac�be






problem is not speci
c to CHIP but present in all CLP languages which are all based on a black�box constraint
solver that the programmer cannot extend or modify�

The glass�box approach� We propose to remove the above limitation by taking a di�erent approach�
Our thesis is that consistency techniques can be supported in a much more fundamental way by providing
general�purpose� e�ciently implementable� declarative operations in the programming language that capture
essential algorithmic techniques embedded in the implementation of such systems� To support this thesis�
we introduce four new constraint language ideas	 �
� indexical constraints� related to a restricted use of
universal quanti
cation� ��� cardinality operators with indexical bounds� related to the threshold operator of
propositional logic ����� ��� constructive disjunction� related to intuitionistic disjunction� and ��� extended
Asks� related to intuitionistic implication� We instantiate these ideas in the programming language cc�FD��
incorporating a very simple constraint system over 
nite systems� FD� Through these combinators� we show
that cc�FD� supports the basic reasoning principles implemented in systems such as ALICE �
��� REF�ARF
���� CHIP in a very simple and �exible way� Further� we brie�y discuss a prototype implementation of cc�FD�
that supports our contention that the language can be implemented extremely e�ciently�

The main advantages of our approach are generality� extensibility� e�ciency and semantic simplicity�
The constructs introduced are general�purpose	 they are de
nable on very general notions of constraint

systems �
��� including rational arithmetic� Booleans and 
rst�order terms�
They are powerful enough that the underlying constraint�solver can be extremely simple �e�g�� it may

provide only unary constraints�� The additional functionality provided by more powerful constraint�solvers
can be obtained by means of user�level programs� This signi
cantly reduces the black�box e�ect� The
programmer can de
ne his own constraints �to the extent of the reasoning principles supported� without
sacri
cing the declarative reading of the programs�

Since the embedded constraint�solver is extremely simple� it can be very e�ciently implemented� The
combinators themselves are su�ciently �low�level� as not to introduce overhead �in time or space� compared
to procedural implementation of the reasoning principles supported�

Finally� the abstract semantics of these combinators can be presented in a very simple way� within the
concurrent constraint �cc� programming �
��
��
��� In this framework� computation progresses through
the interaction of agents that communicate with each other via a shared store that is itself a constraint�
The basic operations are Tell �add a constraint to the store� and Ask �check that a constraint is entailed
by the store�� �
��
��
�� also discuss several other combinators such as parallel composition� hiding� and
backtracking� Logically� the Ask operation corresponds to a primitive form of intuitionistic implication�
parallel composition to conjunction� hiding to existential quanti
cation and backtracking to disjunction in
a very precise way �
��� Denotationally� agents can be thought of as closure operators over the underlying
constraint system�� The four new combinators we introduce in this paper can readily be integrated into the
framework as new operations on closure operators�

Rest of this paper� In summary� cc�FD� o�ers a new alternative to the traditional CLP model for
constraint programming by systematically exploiting the cc framework� It proposes to design constraint
languages by abstracting the computational principles behind a class of applications and by supporting them
at the language level via constraint operations� The combinators are based on procedural interpretations
of logical connectives� hence the approach combines the advantages of referential transparency� �exibility�
and computational e�ciency� This idea would bring similar advantages for other solvers �e�g� 
rst�order
terms� rationals� and application areas exploiting constraint technology �e�g� natural language processing�
arti
cial intelligence�� Although languages of this type would be more basic� it is natural to imagine that
constraint solvers would be built in a modular� incremental� and hierarchical manner recovering the ease of
programming of existing CLP languages while adding �exibility and e�ciency�

The rest of this paper is devoted to an overview of the constraint processing facilities of cc�FD�� First we
present the FD constraint system underlying cc�FD�� this is used in several examples throughout the paper�

�A closure operator over a lattice is a monotone� idempotent and extensive operator�

�



Next� we introduce the four combinators and discuss their operational and denotational semantics� Finally
we consider the design of the cc language� which is an instantiation of the cc language with these combinators�
over the FD constraint system� In particular� we sketch the implementation of the CHIP constraint�solver in
cc�FD��

To ease reading� only informal presentation are given in the text� The precise operational and denotational
semantics of the new constructs will be given in the full version of the paper�

Note for the reviewer ��� This technical abstract assumes some familiaritywith the notions of constraint
systems� concurrent constraint programming languages and closure operators� For more information on these�
the reviewer may consult �
��� Appendix A brie�y summarizes the notions of closure operators� �
�� is a
good source for information on local consistency techniques �e�g�� arc�consistency��

� The FD constraint system

We brie�y present the very simple constraint system underlying cc�FD�� �In reality� the constraint system
in cc�FD� also provides Herbrand trees� but for the purposes of this paper we concentrate on novel aspects��

There are three kinds of syntactic objects� �t� arithmetic terms� �r� ranges� and �c� constraints� Their
syntax is given by the grammar in Table 
� Ranges denote a 
nite union of intervals on the number�line �
the given operations are interpreted in the obvious way� The entailment relation on constraints is induced
in the obvious way from the interpretation	 a valuation � satis
es a constraint X in r exactly when ��X�
lies in the range denoted by r� Thus the constraint

X in t� �� t�

is inconsistent if t� � t� � this is the only way inconsistency can arise in this system� Note that the
constraint system is closed under negation	 the constraint �X in r is just X in � r�

Incremental algorithms for checking consistency of constraints� and for entailment are completely straight�
forward and very e�ciently implementable�

The following proposition is easy to establish�

Proposition ��� Any �nite conjunction of constraints in this system in one variable can be represented by
a single constraint of one of the following kinds�

X in �m� �� n� 	 � � � 	 mk �� nk�
X in �m� �� n� 	 � � � 	 mk �� �

where either �k � 
�m� � 
� n� � �� or �k � 
�mi � ni � mi����

Such a constraint is said to be in normal form� A set of constraints fXi in si j i � Ig� for some index�set
I� is in normal form if all the variables are distinct and each constraint is in normal form�

The construction in the following theorem is the completion by ideals used in the de
nition of information
systems ��
��

Theorem ��� For any �nite set of variables V � let FDV be the family of all entailment�closed sets of con�
straints generated from a set of constraints with free variables in V �

�� FDV is a complete distributive lattice� with glbs given by intersection� and lubs by closure of the union�

�� The �nite elements of FDV are exactly those generated from a �nite set of constraints��

�� FDV is not �nitary� that is� there exists a �nite constraint which has in�nitely many �nite elements
below it�

�u is a 
nite element of a lattice L i� for every directed subset S of L with lub above u� there is a 
nite subset of S with
lub above u�

�



In the following� n ranges over natural numbers�

t ��� X j n j t� t j t� t j t � t j t mod t j t� t

r ��� �t�� �� �t�� �from t�� default �� to t�� default in�nity�

j t �shorthand for t �� t�

j r� � r� �union�

j r� � r� �intersection�

j � r �complementation�

j r � t �pointwise addition�

j r mod t �pointwise mod�

c ��� X in r

Each constraint is associated with an implicit ask restriction ���� � a constraint X in r can be added to the store only when r

is ground�

Some handy abbreviations�

X in fn�� � � � � nkg
�

� X in n� � � � � � nk

X � t
�

� X in �� t

X � t
�

� X in �� �t� ��

X � t
�

� X in t ��

X � t
�

� X in �t� �� ��

X �� t
�

� X in �� �t� �� � �t� �� ��

X � t
�

� X in t

Table 
	 The constraint system FD

	� The glb of two �nite elements of FDV is itself �nite�

In particular� the glb of two normal�form sets of constraints fXi in ri j i � Ig and fYj in sj j j � Jg is
just the set of constraints generated by Z in ri 	 sj where Xi � Yj �

Note that the choice of the constraints represent one more step towards simplicity in the constraint�solver
and hence reduces the black�box e�ect of usual CLP languages� In previous work ����� primitive constraints
were limited to at most two variables� Such constraints can be solved completely with arc�consistency� In
this paper� we can achieve the same e�ect while assuming that the implementation supports just unary
constraints� using indexical constraints�

� The Extended cc language framework

The basic Ask�and�Tell cc languages provide several combinators	 Tell� Ask� Parallel composition� Hiding
and Backtracking� These are provided in cc�FD� as well� The discussion of these combinators is omitted
because they are standard � some information about Ask� Tell and Parallel composition can be obtained
from the operational semantics in Table ��

Indexical Constraints� Suppose we would like to write a program on top of the FD constraint system
to implement reasoning with variation intervals for the constraint X � Y � c� for X� Y variables and c a
constant� That is� we would like this program to have the following e�ect	


� whenever it is true that Y � e �for e a constant�� the program should impose the constraint X � e� c�

�� whenever it is true that e � X� the program should impose the constraint �e� c � Y ��

In other words� we would like the program to behave as if it were the in
nite conjunction of rules of the
form

�Y � �� � �X � �� c�

�



Basic Ask�and�Tell language�

Programs P ��� H��A j P � P j �X P

Agents A��� B �Tell�

j B � A �Ask�

j A�A �Conjunction�

j A�A �Disjunction�

j 	XA �Local variables�

j H �Procedure Call�

Basic constraints B��� c j B�B

Procedure Call H��� p�X�� � � � � Xn�

The Extended language� The language allows Basic agents to be de
ned using cardinality� constructive disjunction� and in�

dexical constraints� It allows users to specify new primitive constraints �the atomic formulasD�� provided tell� ask� declarations

are provided� It adds to the grammar for the basic Ask�and�Tell language the productions�

Basic agents B��� ��l� �B� � � � �B�� j ���c� � � � � c�� u� �Cardinality�

j r �B� � � � � B� �Constructive Disjunction�

j ic �Indexical constraints�

j D �User�de
ned constraints�

Programs P ��� tell D �� B j ask D �� B

Basic agents are required to be monotone in their indexical arguments in the Tell part� and anti�monotone in their Ask part�

The de
nitions for user�de
ned constraints are required to be recursion�free�

Table �	 Abstract Syntax for cc�FD�

for all values of ��
For this purpose we introduce the notion of indexical terms and indexical constraints� An indexical term

is syntactically an ordinary term �e�g�� max�X��� but semantically it denotes a mapping from constraints to
terms� As an example� for X a variable� we may de
ne max�X� to be the indexical term which in store s
denotes n� where n is the least upper bound on X given s� Thus� in store s � fX in 
 	 � 	 � �� ��g� the
value max�X�s of the indexical term max�X� would be ��� The indexical terms min�X� �returns the greatest
lower bound on X� and dom�X� �returns the domain of X� can similarly be de
ned in FD�

We allow indexical terms to be used within constraints just as ordinary terms� A constraint containing
an indexical sub�term is called an indexical constraint� It denotes a mapping from constraints to constraints
obtained in the obvious way	 given an indexical constraint d and input constraint s� the mapping returns
the constraint obtained from d by replacing each indexical sub�term t by ts� For example� in the store
s � fX in � ��� Z in �g� the indexical constraint �Y in min�X� ��� denotes the constraint �Y in � ����

Example ��� �greatereqc��� The constraint greatereqc�� may now be programmed as follows	

greatereqc�X� Y� C� �� �X in �min�Y� � C� ���� �Y in �� �max�X� � C���

In any store s� both constraints may 
re� producing information about X and Y respectively� exactly as
desired�

Logically� a constraint �X in �min�Y � � c� ��� can be thought of as the constraint	 �k��Y � k� �
X � k � c� However� only very restricted kinds of universal quanti
cations can be obtained by using
min�
�max�
� dom�
 indexical terms�

Example ��� �mod��� As another example� consider the constraint mod�X�Y�C�Base� which holds i�
X � �Y � C� mod Base assuming that X�Y are variables ranging over f���Base	
g and C is a integer in
f���Base	
g and Base is a positive number� We can get this e�ect with	

�



Con
gurations are pairs of the form h�� si where s is a set of constraints� and � is a multiset of agents� �The empty multiset

is denoted ���� Below� we de
ne a binary relation ��� the transition relation which speci
es how con
gurations evolve� Note

that only fair execution sequences �e�s�� are considered legal� �A fair e�s� is not unfair� an unfair e�s� is one in which some

given transition is enabled at every con
guration in the sequence� and never taken��

Basic Ask�and�Tell language� We omit the rules for existential quanti
cation� backtracking and procedure calls� since they

are standard� �See for example� ������ Below� 
 is the entailment relation of the underlying constraint system�

�Tell� h��� c�� si �� h�� s � fcgi

�Ask� h��� d � A�� si �� h���A�� si s 
 d

�Parallel Composition� h��� �A��A���� si �� h���A�� A��� si

Indexical Constraints�

h��� ic�� si �� h��� ic�� s � ficsgi

Cardinality� To simplify presentation we assume that the collection of agents of a cardinality constraint is a multiset of the

form ��B�� d��� � � � � �Bn� dn��� where the di are �possibly empty� sets of constraints� �The di denote local stores for each basic

agent��

hB�d � si �� hB�� d�i
h�����l� ��B�d� j ����� si �� h�����l� ��B�� d�� j ����� si

h�����l� ��B�false� j ����� si �� h�����l� ���� si

h�����l� �����d� j ����� si �� h�����l� �� ���� si if s 
 d

h�����l� ��B�� d��� � � � � �Bl� dl����� si �� h���B�� � � � �Bl�� s � d� � � � � � dli

h�����l� ���� si �� h���falsei if j�j � l

The rules for upper�cardinality agents are similar� and omitted�

Constructive Disjunction� To simplify presentation we assume that the argument of a disjunctive agent is an unordered

collection of agents of the form �B�d�� where d is a possibly empty set of constraints�

hB�d � si �� hB�� d�i
h��� r ��B�d��E��� si �� h��� r ��B�� d���E��� si

h��� r ��B�� d��� � � � � �Bn� dn���� si �� h��� r ��B�� d��� � � � � �Bn� dn���� s � glb�d�� � � � � dn�i

Extended Asks� To simplify presentation� we assume that the ask part is an agent of the form �B�d�� where d is a possibly

empty set of constraints�

hB�d � si �� hB�� d�i
h��� �B�d� � A�� si �� h��� �B�� d�� � A�� si

h��� ���� d� � A�� si �� h��� d � A�� si

Table �	 Transition system for Extended cc language

it ��� X j n j it� it j it� it j it� it j it mod t j it� it j min�X� j max�X�

ir ��� �it�����it�� j it j ir� � ir� j ir��ir� j � ir j ir � t j ir mod t j dom�X�

ic ��� X in ir

The indexical terms min�X�� max�X�� and dom�X� are considered ground� for purposes of the implicit Ask restriction� Also�

constraints satisfy the condition that terms min�X� must occur �negatively� in the range� and terms max�X� must occur

�positively� in the range�

Table �	 Indexical constraints in cc�FD�

�



mod�X� Y� C� Base� �� X in �dom�Y� � C� mod Base� Y in �dom�X� � C� mod Base�

The 
rst expression makes sure that� whenever a value is removed from the domain of Y� the corresponding
value is removed from the domain of X� Similarly for the second�

For indexical constraints to generate closure operators� �and hence to be well�de
ned� they must denote
monotone functions	 that is� as the information content of the store increases� the strength of the constraint
yielded by the indexical constraint should increase�� This is true� for example� for �Y in min�X� ���� It is
not true for �Y in �� min�X��� Therefore� additional syntactic restrictions have to be placed on occurrences
of indexical terms to ensure that the overall constraints built using them are monotone� These conditions
are easy to state	 intuitively all �positive� occurrences of terms max�X� should be in the �upper� portions
of range�restrictions� and all �positive� occurrences of terms min�X� should be in �lower� portions of range�
restrictions�

Use� Indexical arithmetic constraints provide more e�ective algorithms for arc�consistency� The new
algorithms are O�ed� �where e is the number of constraints and d the size of the domains�� improving on the
traditional quadratic algorithms� More important� the space requirement is O�e� � each constraint takes
constant space� An example of an application which can bene
t from this extension is the microcode labeling
problem �����

Implementation� It should be clear that for the FD constraint system� the implementation of indexical
terms and constraints is totally straightforward� The implementation already maintains max� min and dom
information for each variable	 we are now simply providing a mechanism for the user to access this information
in a �safe� way�

Cardinality� The cardinality combinator ���� is a generalization of the threshold operators for propositional
calculus and provides a general form of disjunction� Related to the Andorra model of computation ����� it
allows arc�consistency of any 
nite domain constraint to be implemented within the complexity bounds of
the optimal algorithm of �
��� Moreover� it provides a general way of implementing the DMA
DMT options
as well as the conditional summation of ALICE �
���

There are two cardinality combinators� the lower and the upper� of the form ��it� �B�� � � � � Bn�� and
���c�� � � � cn�� it� respectively� where it is an indexical term� Intuitively� the constraint ��l� �B�� � � � � Bn��
holds in store s i� at least ls of the given agents are true� and the constraint ���c�� � � � � cn�� u� holds i�
at most us of the given constraints are true� Note that for this to be well�de
ned it must be the case
that ls increases as s becomes stronger �e�g� l � min�X��� and us decreases as s becomes stronger �e�g�
u � max�X��� In the following� we will consider the expression c� d as shorthand for ��
� ��c� d��� and the
expression c �� d as shorthand for �c� d�� �d� c��

The agent ��l� �c�� � � � � cn�� is executed by spawning n Ask agents� one for each argument and maintaining
a counter each for the number of entailed constraints �a�� and the number of constraints whose negation is
not yet entailed �t�� If in any store a � l� the agent may terminate without adding any new information to
the store� On the other hand� if l � t� then the agent may terminate� adding those constraints c � �c�� � � � � cn�
such that neither c nor its negation is entailed by the store� If l � t� the agent may terminate� causing the
store to become inconsistent� The evaluation rules for ���c�� � � � � cn�� u� are similar � note just that if u � a�
the agent may terminate� adding the negations of all the constraints in �c�� � � � � cn� not entailed by the store�
The set of equational laws underlying this procedural description are given in Table ��

�Every monotone function f generates a closure operator �f � �s�fix��a�s � �fa��� by augmentation and iteration to
quiescence�

�



Use�

Example ��� �Arc�consistency�� We show how to enforce directional arc�consistency on a binary con�
straint p�X�Y�� First� the domains of X and Ymust be reduced respectively to the projections of the constraint
on the 
rst and second arguments� say D�� D�� Next� for each value v in D�� we generate the constraint

Y 	� w
� � � � � Y 	� wp � X 	� v

where w��� � ��wp are all values w such that p�v�w�� Thus� as soon as Y is constrained to be di�erent from all
values in fw��� � ��wpg� X is constrained to be di�erent from v� Conversely� if X is equated to v� then Y will
be required to take on one of the given values�

���� showed that� on simple examples� cardinality can bring an exponential improvement over traditional
approaches� Most CHIP applications can be solved more naturally using cardinality removing the need for
ad�hoc built�in constraints� For these applications� the overhead may be as low as �� �e�g� car�sequencing
���� while not exceeding ���� A new interesting application is the allocation of jobs to pipeline processors to
minimize total delay� A cc�FD� program was developed for the task and is comparable �sometimes faster�
in e�ciency to a speci
c branch and bound algorithm� Cardinality was used to implement conditional
summation �e�g� the summation of the computation times of all jobs assigned to the same processor must
not exceed it capacity in a cycle time� as well as the constraint for the transmission time which is	 if either
job is run on the master processor �processor 
�� then transmission time is �� and if the two jobs are run
on adjacent machines �neither of which is the master processor� then transmission time is 
� otherwise
transmission time is �� This can be expressed directly in cc�FD�	

���� �P
 �� �� P� �� �� T
� � ���

���� �P
 � �� P� � �� ���X in dom�Y� � �� Y in dom�X� � ��� ��� T
� � ���

���� �P
 � �� P� � �� ���min�P
� � max�P�� � �� min�P�� � max�P�� � ��� ��� T
� � ���

where P
� P� are the processors associated with jobs 
 and � and T
� is the transmission time between them�

Constructive Disjunction� The basic idea behind constructive disjunction is to add to the store con�
straints entailed by all possible alternatives� i�e� the conjunctions made up from the store and one of the
disjunctions� By factoring common information from the disjuncts constructive disjunction produces more
pruning than cardinality� albeit at a greater cost� Constructive disjunction can be used for many constraints
involving �explicitly or implicitly� disjunctions�

Example ��� �max��� A typical example is the max�� constraint� especially useful in scheduling problems
����� The constraint max�X�Y�Z� holds i� Z is the maximumof X and Y� It can be expressed� using cardinality�
in the following way	

max�X� Y� Z� �� Z in min�X� �� � min�Y� ��� ���� �Z in dom�X�� Z in dom�Y����

The 
rst two constraints ensure that Z is always not smaller than X and Y� while the last constraint
ensures that Z is equal to one of them� The constraint however does not achieve as much pruning as we
would like� For instance� if X�Y�Z range over f���
�g� f���

g� and f
����g respectively� the above program
would reduce the domain of Z to to f�����g instead of the expected f���

g� because cardinality handles the
two equations locally and concludes that neither is entailed�

�



Constructive disjunction adds to the store the constraints common to the disjuncts� e�g� Z in f���

g
in the above example� Syntactically� a constructive disjunction is of the form r �B�� � � � � Bn� and can be
read declaratively as a disjunction� Operationally it performs constraint generalization� i�e� it computes
the greatest lower bound �glb� in the constraint lattice of the constraints B��s�� � � � � Bn�s� �where we are
thinking of each Bi as a closure operator�� If a glb algorithm is not available for the constraint system� any
approximation �i�e� any set of constraints which is implied by all constraints in the glb� would do as well�

Example ��	 �max�� contd�� The max�� constraint can be expressed as

max�X� Y� Z� �� Z in min�X� �� � min�Y� ��� r �Z in dom�X�� Z in dom�Y���

This program achieves the expected pruning since information from both equations can be combined
during propagation�

Use� Constructive disjunction is mainly motivated by disjunctive scheduling applications although it
may be used in many other applications �e�g� biology�� In the general problem� tasks have to be scheduled
on di�erent machines in presence of precedence and other constraints� For simplicity� we assume that the
machine on which a task has to be executed has already been determined� At this point� the key problem is
to 
nd an ordering of the tasks on a machine so as to minimize an objective function �e�g� the makespan or
the total delay�� To obtain reasonable e�ciency� it becomes necessary to exploit the disjunctions to prune
the search space� Consider n tasks in such a disjunction and assume that their starting dates� end dates and
durations are denoted by S�� Ei� Di respectively� A typical pruning rule ��� is as follows	

If the starting date of task i plus the summation of all durations is greater than the maximum
of all end dates but the one of task i� then task i cannot be scheduled 
rst�

This rule can be implemented using implication and constructive disjunction as

Max in min�E
� �� � � � � � min�En��
r �Max in dom�E
�� � � � � Max in dom�En���
Max in �� �min�Si� � D
 � � � � � Dn � �� � Pi in � � � ����

where P� represents the position of task i in the disjunction�
The branch � bound algorithm of ��� was implemented using the above constraint and additional ones

in the same spirit� The resulting program is short� yet it provides reasonable e�ciency �between ��
� time
slower�� As constraint programming languages are still rather recent and cc�FD� is a prototype� the result
is encouraging�

Implementation� In our current implementation constraint generalization is done pairwise and changes
are propagated only when the result has been modi
ed and a subsequent operation may change the result�
Successive glbs are maintained in a persistent data structure �somewhat similar to a RETE network ���� to
avoid restarting the whole computation from scratch when the store is updated� Similar implementations
are possible for other domains �e�g� 
rst�order terms��

Extended Asks� To obtain a �exible� extensible� and e�cient system� it is desirable to ask non�primitive
constraints as well as primitive constraints� In general� a non�primitive constraint will be a closure operator�
Asking whether a primitive constraint c holds is just checking to see if the store has enough information to
entail c� Semantically� the closure operator corresponding to c � f �for c a constraint� and f a closure

�



operator� is just the operator whose 
xed�point set is fs j s 	
 cg�f �
�� �see the Appendix for the connection
between closure operators and their 
xed�point sets�� What should it mean to Ask a closure operator 

One natural answer is as follows	 say that a store s solves a closure operator f if f terminates when run
in s� without producing any more information� In such a case� f cannot produce any more information in
s� or in any strengthening of s� More abstractly� we can say that s solves f �and write s 
 f� if s is a stable

xed�point of f � that is� every t � s is a 
xed�point of f �notationally	 � s 
 f�� Now it becomes easy to
de
ne an extended ask operator	 given a closure operators f and g� f � g is the closure operator whose

xed�point set is given by

fs j s 	
 fg � g

It is easy to see that this set is closed under glbs and hence is the 
xed�point set of a closure operator�
The operational semantics of Extended Asks is given in more detail in Table �� The correspondence

between the operational and denotational semantics is not di�cult to establish� We note that this operation
satis
es a number of nice properties� summarized in Table �� Note� however� that the operation is anti�
monotone in its 
rst argument � hence we cannot allow the class of agents that appear in this position
�namely� Basic Agents� to be closed under recursion�

We also note in passing that �monotone� indexical constraints can be answered quite e�ciently in
cc�FD�� We illustrate with an example� A constraint s solves the indexical constraint X in ��max�Y � i�
s 
 �X in �� min�Y �s� Thus� all that needs to be done is to evaluate a constraint in the current store � if
the check succeeds� then the Ask succeeds� no more work needs to be done�

Non�primitive Constraints� cc�FD� also provides a simple facility for de
ning Basic Agents� For each
new non�primitive constraint� two actions need to be de
ned� tell and ask� via declarations of the form	

tell D �� Bt�
ask D �� Ba�

The 
rst is used in situations where the user�de
ned constraint needs to imposed� and the second in
situations where it is to be asked� If the user supplies only the tell action Bt for a user�de
ned constraint
D� the system will take the ask action to be Bt as well� However� the tell action is usually an incomplete
approximation to the intended interpretation of D� and it may be possible for the user to supply a better
approximation for Ask� For this reason� we allow the user to specify the two actions separately� It is the
user!s responsibility to ensure that these two de
nitions are logically related to each other in the expected
way�

Example ��
 �greatereqc�X�Y�C�� This example illustrates the advantage of allowing the user to de
ne
the four basic actions di�erently� A typical de
nition for this constraint in cc�FD� would be	

tell greatereqc�X� Y� C� �� X in �min�Y� � C ���� Y in ���max�X�� C��

ask greatereqc�X� Y� C� �� X in �max�Y� � C ����

Denotational semantics� Above� we have discussed the denotational semantics of extended asks explic�
itly� The semantics of the other constructs �indexical constraints� cardinality and constructive disjunction�
is straightforward	 all of them can be seen as de
ning closure operators in the obvious way� Indeed the con�
structive disjunction operation is just the glb operation in the lattice of closure operators over the constraint
system� �This is how they were 
rst discovered� only later was their computational signi
cance understood��


�



Cardinality� In the following� �� is a permutation of ��

��l� �� u� � ��l� ������� u�
��l� �� � ��l� ��� ���� u� � ����� u�
c���l� �d j ��� � ��l� �e j ��� c����d j ��� u� � ���e j ��� u� �c� d� 
� �c� e�
��l� �� � false �j�j � l� ���� u� � false �u � ��
��l� �� � true �l � �� ���� u� � true �j�j � u�
��l� �false j ��� � ��l� �� ���false j ��� u� � ���� u�
��l� �true j ��� � ��l� �� �� ���true j ��� u� � ���� u� ��
��l� �c�� � � � � cl�� � �c�� � � � � cl� ���c�� � � � � cn ���� � ��c��� � � � � ��cn�

Constructive Disjunction�
c� r c� � c� �if c� � c��
c� �d r B� � c� �e r B� �if c� �d� e��
c r d � glb�c� d�� �c r d�
B r false� B
B� r B� � B� r B�

B� r �B� r B�� � �B� r B�� r B�

Extended Asks�

De�nition ��� s 
 B
�

�� s � B

Proposition ��� s 
 �B�� B�� i� s 
 B� and s 
 B��

De�nition ��� B� � B�

�

� fs j s �
 B�g �B�

Proposition ��� s 
 B� � B� if B��s� 
 B��

The converse may not hold� there are simple counter�examples�
The following laws are satis
ed by Extended Asks� �I is the identity closure operator�

A � A � I
I � A � A
B� � B� � �B� � �B�� B��
B� � �B� � B�� � �B��B�� � B�

B� � �B�� B�� � �B� � B��� �B� � B��

Table �	 Simpli
cation rules for basic combinators�







� The language cc�FD�

cc�FD� is simply an instantiation of the above language framework� over the FD constraint system� In many
ways it can be thought of as a �rational reconstruction� of CHIP� Below we discuss how the constraint�solver
of CHIP can be programmed in cc�FD� in very straightforward ways�

Arithmetic Constraints� CHIP supports the use of numerical constraints over 
nite domains using
reasoning over variation intervals� These constraints are constructed from natural numbers� domain variables�
the operators �� �� �� and the relations �� �� �� �� �� It is easy to see that any such constraint can be
expressed in terms of constraints having more than three variables� Hence it is su�cient to show how to
simulate three�variable CHIP constraints in cc�FD�� For this we use indexical constraints� For instance� the
constraint X� Y � Z is modelled as	

gtemult�X� Y� Z� ��

Z in ��� max�X�� max�Y���

X in �� ��� � Y in �min�Z��max�X�����

Y in �� ��� � X in �min�Z��max�Y�����

Similarly for other constraints�
Disequations are only handled in cc�FD� exactly in the same way as in CHIP	 suspend until exactly one

variable is left in the constraint� Minimum and Maximum constraints can be de
ned directly as discussed
earlier�

Symbolic Constraints� A number of symbolic constraints were available in CHIP and were instrumental
in solving many practical problems� For example� CHIP provides the constraint element�I�L�V� which
holds i� element I of list L is equal to V� The constraint is used with I and V being domain variables and L

being a list of integers� In CHIP� the user may specify that the system reason with this constraint using either
arc�consistency or reasoning about variation intervals� Both these reasoning techniques can be expressed as
user�programs in cc�FD� as follows� To enforce arc�consistency on element�I�L�V�� generate the constraint
V � e � I in i
 	 � � � 	 ip for all values e with occurrences i
� � � � � ip in L� To enforce reasoning with
variation intervals� generate the constraint V � e � I �� fi�� � � � � ipg for each value e in L� where i
� � � � � ip
are all positions in L with values smaller than e� If desired� similar constraints can be generated for V � e �
and indeed that is the basic point of cc�FD�	 the programmer can put in his own heuristics in a declarative
way�

The most di�cult constraint is circuit which enforces a circuit among a set of n variables wrt their
indices� The easiest way to implement the constraint is to spawn a recursive predicate for each variable�
Those constraints make sure that all variables at a distance � n	� on the path starting from a variable are
di�erent from the index of that variable� The recursive predicate makes use of Ask to control the termination
and 
nd the successor �instead of guessing it�� It is also possible to express the circuit constraint using
only cardinality and universal quanti
cation by creating variables for the successors of a variable�

Demons and Declarations� CHIP also has demon declarations and an if then else construct� which
are easily expressed using Asks� It also has two declaration mechanisms to de
ne non�primitive constraints
using forward checking and lookahead� These two mechanisms are obsolete since arc�consistency can be
enforced in an optimalmanner using cardinality� In addition� Ask can delay a constraint until it is su�ciently
instantiated thus obtaining the e�ect of forward checking�

Discussion� cc�FD� generalizes the 
nite domain part of CHIP in many ways� First� it provides� at the
language level� all the principles that were previously buried inside the implementation� Typical examples
are arithmetic reasoning and consistency techniques� Second� it proposes general ways of dealing with


�



some issues such as disjunctions� Cardinality and constructive disjunction are particularly helpful in that
respect� Third� it allows more e�cient implementation techniques by taking advantage of the property of
the constraints� This is one of the basic features of universal and existential quanti
cation� Last� it allows
non�primitive constraints to be handled in exactly the same way as primitive constraints�

� Conclusion

This paper aimed at presenting an overview of the constraint processing facilities of cc�FD�� cc�FD� is
best viewed as a systematic reconstruction and extension of the 
nite domain part of CHIP and supports
both consistency techniques and nondeterminism in a declarative language� The main novelty in cc�FD�

is to support consistency techniques at the language level through a number of combinators and constraint
operations� This is to be contrasted with existing constraint logic programming languages where all constraint
techniques are buried inside the constraint solver with the consequence that the user has no way to extend
and modify the constraint solver and to de
ne his own non�primitive constraints�

The main advantages which result from the design of cc�FD� are �
� the additional �exibility and exten�
sibility which enables the user to de
ne his own constraints ��� the clean semantic foundation in terms of an
extremely simple constraint solver�

Another contribution of this research is the identi
cation of a number of general�purpose constraint
operations and combinators which will be valuable for other constraint systems as well�

Current research on this topic is devoted to a robust implementation of the language as well as the study
of the combinators for other constraint systems� e�g� linear rational arithmetics�

Acknowledgements� We thank John Lamping� Johan deKleer� Danny Bobrow and Francesca Rossi for
useful discussions�

References

��� A� Borning� The Programming Language Aspects of ThingLab� a Constraint�Oriented Simulation Laboratory� ACM
Transaction on Programming Languages and Systems� ��	����� ���� �����

��� J� Carlier� Ordonnacement a contraintes disjunctives� RAIRO � ������ ���� �����

��� M� Dincbas� H� Simonis� and P� Van Hentenryck� Solving the Car Sequencing Problem in Constraint Logic Programming�
In European Conference on Arti�cial Intelligence �ECAI����� Munich� W� Germany� August �����

�	� M� Dincbas� H� Simonis� and P� Van Hentenryck� Solving Large Combinatorial Problems in Logic Programming� Journal
of Logic Programming� ��������� ��� �����

��� M� Dincbas� P� Van Hentenryck� H� Simonis� A� Aggoun� T� Graf� and F� Berthier� The Constraint Logic Programming
Language CHIP� In Proceedings of the International Conference on Fifth Generation Computer Systems� Tokyo� Japan�
December �����

��� R�E� Fikes� A Heuristic Program for Solving Problems Stated as Non�deterministic Procedures� PhD thesis� Comput� Sci�
Dept�� Carnegie�Mellon Univ� Pittsburgh� PA� �����

��� C�L� Forgy� Rete� A Fast Algorithm for the Many Pattern!Many Object Pattern Match Problem� Arti�cial Intelligence�
����� ��� �����

��� G�Gierz� K�H�Ho�man� K�Keimel� J�D�Lawson� M�Mislove� and D�S�Scott� editors� A compendium of continuous lattices�
Springer�Verlag Berlin Heidelberg New York� �����

��� T� Graf� P� Van Hentenryck� C� Pradelles� and L� Zimmer� Simulation of Hybrid Circuits in Constraint Logic Programming�
Computers and Mathematics with Applications� ����!����	� ��� �����

���� J� Ja�ar and J�L� Lassez� Constraint Logic Programming� In POPL���� Munich� FRG� January �����

���� R� Jagadeesan� V� Shanbhogue� and V� Saraswat� Angelic non�determinism in concurrent constraint programming� Tech�
nical report� System Sciences Laboratory� Xerox PARC� January �����

���� J�L� Lauriere� A Language and a Program for Stating and Solving Combinatorial Problems� Arti�cial Intelligence�
�������� ���� �����

���� Patrick Lincoln and Vijay Saraswat� Proofs as Concurrent Processes� A Logical Interpretation for Concurrent Constraint
Programming� Technical report� Systems Sciences Laboratory� Xerox PARC� November �����


�



��	� Alan� K� Mackworth� Consistency in Networks of Relations� AI Journal� ������� ���� �����

���� Alan� K� Mackworth� Constraint Satisfaction� Handbook of AI� ��� ���� �����

���� R� Mohr and T�C� Henderson� Arc and Path Consistency Revisited� Arti�cial Intelligence� ������ ���� �����

���� V�A� Saraswat� Concurrent Constraint Programming Languages� PhD thesis� Carnegie�Mellon University� �����

���� V�A� Saraswat and M� Rinard� Concurrent Constraint Programming� In Proceedings of Seventeenth ACM Symposium on
Principles of Programming Languages� San Francisco� CA� January �����

���� V�A� Saraswat� M� Rinard� and P� Panangaden� Semantic Foundations of Concurrent Constraint Programming� In
Proceedings of Ninth ACM Symposium on Principles of Programming Languages� Orlando� FL� January �����

���� Dana S� Scott� Data types as lattices� SIAM� �������� ���� �����

���� Dana S� Scott� Domains for denotational semantics� In Proceedings of ICALP� �����

���� H� Simonis� Test Generation using the Constraint Logic Programming Language CHIP� In Sixth International Conference
on Logic Programming� Lisbon� Portugal� June �����

���� H� Simonis and M� Dincbas� Using an Extended Prolog for Digital Circuit Design� In IEEE International Workshop on
AI Applications to CAD Systems for Electronics� pages ��� ���� Munich� RFA� October �����

��	� H� Simonis and M� Dincbas� Using Logic Programming for Fault Diagnosis in Digital Circuits� In German Workshop on
Arti�cial Intelligence �GWAI����� pages ��� �	�� Geseke� RFA� Septembre �����

���� A� Tarski� Logics� semantics and meta�mathematics� Oxford University Press� ����� Translated by J�H� Woodger�

���� P� Van Hentenryck�Constraint Satisfaction in Logic Programming� Logic ProgrammingSeries� The MIT Press� Cambridge�
MA� �����

���� P� Van Hentenryck and Y� Deville� Operational Semantics of Constraint Logic Programming over Finite Domains� In
Third International Symposium on Programming Language Implementation and Logic Programming �PLILP�	
�� Passau
�Germany�� August �����

���� P� Van Hentenryck and Y� Deville� The Cardinality Operator� A new Logical Connective and its Application to Constraint
Logic Programming� In Eighth International Conference on Logic Programming �ICLP�	
�� Paris �France�� June �����

���� P� Van Hentenryck� H� Simonis� and M� Dincbas� Constraint Satisfaction Using Constraint Logic Programming� Technical
Report �Forthcoming�� Brown University� November �����

���� D�H�D� Warren� The Andorra Principle� Presented at the ���� GigaLips workshop� U� of Bristol�

A Closure operators

An operator over a partial order that is extensive� idempotent and monotone is called a closure operator �or�
more classicaly� a consequence operator� ������ Closure operators are extensively studied in ���� continuous
closure operators have been used in ���� to characterize data�types�

We list here some basic properties� Every closure operator can be uniquely represented by its range
�which is the same as its set of 
xed points�� the function can be recovered by mapping each input to the
least element in the range above it� �In the following� we shall often confuse a closure operator with its
range� writing x � f to mean f�x� � x�� In fact� a subset of jDj is the range of a closure operator i� it is
closed under glbs of arbitrary subsets� �Thus� the range of every closure operator is non�empty� since it must
contain �jDj � glb���

Also� it can be shown that a closure operator is continuous i� its range is closed under the lubs of directed
subsets� The extensional partial order on closure operators �f � g i� for all x� f�x� � g�x�� translates into
reverse�inclusion on the set of 
xed points	 f � g i� f � g� The identity operator I �with range jDj� is the
bottom element� the operator which maps every element to � �and hence has range f�g� is the top element�
In fact it is easy to see that the set of closure operators over jDj ordered by � is a complete lattice� with
meets and joins given by	 P uQ � fcud j c� d � P �Qg and P tQ � P �Q� As we shall see� joins correspond
to parallel composition�

In the presence of angelic non�determinism �disjunction�� it becomes necessary to take the denotation
of a program to be a linear closure operator over PI�jDj�� the indeterminate power�domain of jDj �

��
�Roughly� this power�domain has as elements upwards�closed subsets of jDj� ordered by reverse set inclusion�
A function is linear if it satis
es the property that f�S� � �s�Sf�fsg��� Such closure operators can also be
characterized by the set of their 
xed�points� which need not be closed under glbs�


�


