Symmetry Breaking in Subgraph Pattern Matching

Stéphane Zampelli, Yves Deville, and Pierre Dupont

Université catholique de Louvain,
Department of Computing Science and Engineering,
2, Place Sainte-Barbe
1348 Louvain-la-Neuve (Belgium)
{sz,yde,pdupont } @info.ucl.ac.be

Abstract

Graph pattern matching, a central application in
many fields, can be modelled as a CSP. This CSP ap-
proach can be competitive with dedicated algorithms.
In this paper, we develop symmetry breaking techniques
for subgraph matching in order to increase the number
of tractable instances of this problem. Specific detec-
tion techniques are first developped for the classical vari-
ables symmetries and value symmetries. It is also shown
how these symmetries can be broken when solving graph
matching. We also show how conditional value symme-
tries can be automatically detected and handled in the
search process. Then, the concept of local value symme-
tries is introduced ; it is shown how these new symmetries
can be computed and exploited. Finally, experimental re-
sults show that symmetry breaking is an effective way to
increase the number of tractable instances of the graph
matching problem.

1 Introduction

A symmetry in a Constraint Satisfaction Problem
(CSP) is a bijective function that preserves CSP struc-
ture and solutions. Symmetries are important because
they induce symmetric subtrees in the search tree. If
the instance has no solution, failure has to be proved for
equivalent subtrees regarding symmetries. If the instance
has solutions, many symmetric solutions will have to be
enumerated in symmetric subtrees. The detection and
breaking of symmetries can thus speed up the solving of
a CSP.

Symmetries arise naturally in graphs since a set of
bijective function can be viewed as the automorphism
group of a graph. However, althought a lot of graph
problems have been tackled [1] [2] [25] and a computa-
tion domain for graphs has been defined [8], and despite
the fact that symmetries and graphs are related, little has
been done to investigate the use of symmetry breaking
for graph problems in constraint programming.

This paper aims at applying and extending symme-
tries techniques for subgraph matching. Existing tech-
niques usually handle only initial symmetries and are not

able to detect symmetries arising during search, so called
conditional symmetries. We will show how to detect and
handle those conditional symmetries.

Related Works Handling symmetries to reduce
search space has been a subject of research in con-
straint programming for many years. Crawford and al.
[6] showed that computing the set of predicates break-
ing the symmetries of an instance is NP-hard in gen-
eral. Different approaches exist for exploiting symme-
tries. Symmetries can be broken during search either by
posting additional constraints (SBDS) [14] [12] or by
pruning the tree below a state symmetrical to a previous
one (SBDD) [13]. Symmetries can be broken by taking
into account the symmetries into the heuristic [18] . The
main idea is to select the variable involved in the greatest
number of symmetries local to the current state, so that
symmetries are broken as soon as possible by the heuris-
tic. Symmetries can be broken by adding constraints to
the initial problem at its root node [6] [11]. Symmetries
can also be broken by remodelling the problem [26].

More recently, research efforts has been done to-
wards defining, detecting and breaking symmetries. Co-
hen and al. [4] defined two types of symmetries, solution
symmetries and constraint symmetries and proved that
the group of constraint symmetries is a subgroup of solu-
tion symmetries. Moreover, Gent and al. [10] evaluated
several techniques to break conditional symmetries, that
is symmetries arising during search. However the detec-
tion of conditional symmetries remains a research topic.
Symmetries were also shown to produce stronger forms
of consistency and more efficient mechanisms for estab-
lishing them [9]. Finally, Puget [22] showed how to de-
tect symmetries automatically, and showed that all vari-
able symmetries could be broken with a linear number of
constraints for injective problems [21] and all value sym-
metries can be broken for surjective problems, by adding
one variable per value of the problem plus a linear num-
ber of binary constraints [20].

Graph pattern matching is a central application in
many fields [5]. Many different types of algorithms have
been proposed, ranging from general methods to specific
algorithms for particular types of graphs. In constraint
programming, several authors [15, 24] have shown that

graph matching can be formulated as a CSP problem,
and argued that constraint programming could be a pow-
erful tool to handle its combinatorial complexity. Within
the CSP framework, a model for subgraph monomor-
phism has been proposed by Rudolf [24] and Valiente
et al. [15]. Our modeling [29] is based on these works.
Sorlin [27] proposed a filtering algorithm based on paths
for graph isomorphism and part of our approach can
be seen as a generalization of this filtering. A declara-
tive view of matching has also been proposed in [16]. In
[29], we showed that CSP approach is competitive with
dedicated algorithms over a graph database representing
graphs with various topologies.

Objectives This work aims at developping symmetry
breaking techniques for subgraph matching modelled as
a CSP in order to increase the number of tractable in-
stances of graph matching. Our first goal is to develop
specific detection techniques for the classical variables
symmetries and value symmetries, and to break such
symmetries when solving the graph matching. Our sec-
ond goal is to develop more advanced symmetries that
can be easily detected for graph matching.

Results

— We show that variable symmetries and value sym-
metries can be detected by computing the set of
automorphisms on the pattern graph and on the
target graph.

— We show that conditional value symmetries can be
detected by computing the set of automorphisms
on various subgraphs of the target graph, called
dynamic target graphs. The GE-Tree method can
be extended to handle these conditional symme-
tries.

— We introduce the concept of local value symme-
tries, that is symmetries on a subproblem. It is
shown how such new symmetries can be computed
and exploited using standard methods such as GE-
Tree.

— Experimental results compare and analyse the
enhancement achieved by these symmetries and
show that symmetry breaking is an effective way
to increase the number of tractable instances of
the graph matching problem.

Outline Sections 2 provides the necessary back-
ground in graph matching and in symmetry breaking.
Section 3 describes a CSP approach for graph match-
ing. Sections 3 and 4 present variable symmetries and
value symmetries in graph matching. Conditional value
symmetries are handled in Section 6, and Section 7 intro-
duces local value symmetries in graph matching. Finally,
Section 8 describes experimental results and Section 9
concludes this paper.

2 Background and Definitions

2.1 Graph matching

Before presenting the basic CSP for subgraph match-
ing, we define the notion of subgraph matching.

2 BACKGROUND AND DEFINITIONS

Gp

FiGc. 1 Example solution for a monomorphism prob-
lem instance.

Gp

F1G. 2 — Example solution for an isomorphism problem
instance.

A graph G = (N, E) consists of a node set N and
an edge set E C N x N, where an edge (u,v) is a pair
of nodes. The nodes u and v are the endpoints of the
edge (u,v). We consider directed and undirected graphs.

A subgraph of a graph G = (N, E) is a graph S =
(N', E") where N’ is a subset of N and E’ is a subset
of E.

A subgraph isomorphism between a pattern graph
Gp = (Np, Ep) and a target graph G¢ = (N, Ey) is a
total function f : N, — N; respecting two conditions :

1. the function f is injective

2. f is an isomorphism : (u,v) € E, <&
(f(u), f(v)) € Er.

A subgraph monomorphism between G, and G is a
total function f : N, — N; respecting two conditions :

1. the function f is injective

2. f is a monomorphism : (u,v) € E, =
(f(uw), f(v)) € Ex.

A subgraph matching is either a subgraph isomor-
phism or a subgraph monomorphism.

The neighborhood function V' : N — N is defined
as V(i) = {j | (¢,j) € E}. We note V,, for the neigh-
borhood function of the pattern graph and V; for the
neighborhood function of the target graph.

In this paper, we focus on symmetries in subgraph
monomorphism.

2.2 Symmetries

A CSP instance is a triple < X, D, C > where X is
the set of variables, D is the universal domain specifying
the possible values for those variables, and C' is the set

of constraints. In the rest of this document, n = |Np|,
d = |D| , and D(z;) is the domain of z;.

A symmetry over a CSP instance P is a bijection o
mapping solutions to solutions, and hence non solutions
to non solutions [22].

Since a symmetry is a bijection where domain and
target sets are the same, a symmetry is a permutation.
For instance, the permutation (ai1a2)(b1b2b3) is the bi-
jection o(a1) = a2, o(az2) = a1, o(b1) = b2, o(b2) = b3,
o(bs) = b1 and o(c) = ¢ otherwise.

A variable symmetry is a bijective function

X — X permuting a (non) solution s =
((xl,dl) (xn,dn)) to a (non) solution s =
((o(z1),d) ., (0(xn),dy)). For instance, the con-
straint z +y = 5 implies the variable symmetry (z y).

A value symmetry is a bijective function o : D — D
permuting a (non) solution s = ((z1,d1),..., (Tn,dn))
to a (non) solution s" = ((z1,0(d1)), ..., (Tn,o(dn)).
For instance, the constraint z mod 3 = 2 implies the
value symmetry (8 5).

A value and variable symmetry is a bijective func-
tion o : X x D — X x D permuting a (non) solution
s =((z1,d1),...,(xn,dn)) to a (non) solution
s = (o(z1,d1),...,0(Tn,dys)). For instance, con-
sider the CSP D(z) = [1,2,4], D(y) = [1,3,4],
D(z) = [4, z+vy = 5 y < z The set of
solutions is {(z,1),(y,4).(2,4)}, {(z,4).(y,1).,(2,4)),
((z,2),(y,3),(2,4))}. A value and variable symmetry
is ((z,1) (x,4)), ((y,4) (y,1)). Note that (z y) is not
a variable symmetry and (1 4) is not a value symmetry.

A conditional symmetry of a CSP P is a symmetry
holding holds only in a sub-problem P’ of P. The con-
ditions of the symmetry are the constraints necessary to
generate P from P [10].

A group is a finite or infinite set of elements together
with a binary operation (called the group operation) that
together satisfy the four fundamental properties of clo-
sure, associativity, the identity property, and the inverse
property. An automorphism of a graph is a graph isomor-
phism with itself. The sets of automorphisms Aut(G)
define a finite permutation group.

Handling symmetries consists in three steps : sym-
metry detection, breaking the symmetry to reduce search
space, and generating the set of all solutions.

2.3 Goal of symmetry breaking

The general goal of symmetry breaking is to find a
subset of canonical solutions [19].

Without loss of generality, we may apply an arbitrary
order upon variables and values. Let <;., be an ordering
upon vectors representing the solutions. Given G the
symmetry group and Sol the set of solutions, the subset
BSol of canonical solutions is defined as :

BSol = {s € Sol | s <iez 0(s) Yo € G}.

The solutions Sol can be generated by applying the
elements of G to BSol :

Sol = {o(s) | c € GAs € Bsol}.

3 CSP approach for graph matching

The CSP model of graph matching should represent
a total function f : N, — N;. This total function can be
modeled with X = x1,...,x, with z; representing the
i*" node of Gp and D = N;. Thus the set of variables is
the set of pattern nodes and their initial domain is the
set of target nodes.

The injection constraint can be stated by using
alldiff (x1,...,Tn).

Conditions on the function for monomorphism have
to be translated into constraints.

The monomorphism constraint states that if an edge
exists between two pattern nodes, then an edge must
exist between their corresponding images :

V (7'7]) € EP : (f(l)vf(])) € Et .

For each (i,j) € E,, the corresponding basic
monomorphism constraint is defined as :

MC(Ii7Ij) = (Ii7Ij) € E:.

A global constraint MC(x1,...,x,) can be formu-
lated, instead of having one constraint MC' per node
pair :

MC(z1, ..., Tn) = /\ MC(zs,x5) -

(i,5)EEp

Moreover, a redundant constraint pruning the search
space has been proposed in [15]. This constraint reduces
the search time for difficult instances. This redundant
constraint is a local Alldiff constraint [23] upon the
neighborhood of a node, by noting that the number of
candidates available in the union of z; neighbors domain
could not be less than the actual number of x; neighbors
in the pattern graph :

LA(2:) = | Ujev,) Diey) O Vilai)| > [V(0)] -

An algorithmic global constraint LA(z1,...,z») can
be formulated :

LA(z1,...,xn) = /\ LA(x;)

For the monomorphism problem, the following con-
straints of the corresponding CSP are :

alldiff(z1,..xn) , MC(21, ..., Tn) and LA(z1, ..., Zxn) .

Implementation, comparison with dedicated algo-
rithms, and extension to subgraph isomorphism can be
found in [29]. Extension of this framework for approxi-
mate matching using graph and function domain com-
putation has been introduced in [7].

4 Variable Symmetries

4.1 Detection

This section shows that, in graph matching, variable
symmetries are the automorphisms of the pattern graph
and do not depend on the target graph.

It has been shown that the set of variable symme-
tries of the CSP is the automorphism group of a symbolic
graph [22] . The automorphism group of this symbolic
graph is the set of symmetries of the constraint. The fi-
nal symbolic graph is obtained by merging nodes playing
the same role in the different symbolic graphs. The au-
tomorphism group can be computed by using tools such
as NAUTY [17]. Those tools output a set of generators
of the group useful for breaking symmetries.

We will apply those ideas to the pattern graph, repre-
senting the symbolic graph of the constraint network of
the CSP. The pattern G,, is transformed into a symbolic
graph S(Gp) where Aut(S(Gp)) is the set of variable
symmetries of the CSP.

Definition 1 A CSP P modeling a subgraph monomor-
phism instance (Gp,G:) can be transformed into the
following symbolic graph S(P) :

1. Each variable z; is a distinct node labelled i

2. If there exists a constraint M C(x;,x;), then there
exists an arc between i and j in the symbolic graph

3. The constraint alldiff, as suggested in [22], is trans-
formed into a node typed with label 'a’; an arc
(a,z:) is added to the symbolic graph

Because LA constraints are redundant, they do not
modify the set of solutions, hence they do not modify
the set of variable symmetries of P. The constraint LA
can be safely omitted in the symbolic graph.

If we do not consider the extra node and arcs intro-
duced by the alldiff constraint, then the symbolic graph
S(P) and G, are isomorphic by construction.

Given the labeling of nodes representing constraints,
an automorphism in S(P) maps the alldiff node to itself
and the nodes corresponding to the variables to another
node corresponding to the variables. Each automorphism
in Aut(Gp) will thus be a restriction of an automorphism
in Aut(S(P)), and an element in Aut(S(P)) will be
an extension of an element in Aut(G,). Hence the two
following theorems.

Theorem 1 Given a subgraph monomorphism instance
(Gp, G) and its associated CSP P :
- Vo Aut(Gy)Io € Aut(S(P)) :
VneN,:on)= a/(n)
- Vo €Aut(S(P)) 3o e Aut(G,) :
VneN, :o(n)=o (n)

Theorem 2 Given a subgraph monomorphism instance
(Gp,G+) and its associated CSP P, the set of vari-
able symmetries of P is the set of bijective functions
Aut(S(P)) restricted to Ny, which is equal to Aut(Gp).

4 VARIABLE SYMMETRIES

alldiffos=. .

Fia. 3 — Example of symbolic graph for a square pat-
tern.

1
1.(23)
2.(12)
groupsize = 6
3 2
1 2
1.(24)
2.(12)(34)
groupsize = 8
4 3
1
1.(123)
groupsize = 3
3 2

Fi1G. 4 — Example of pattern graphs and their genera-
tors.

Theorem 2 says that only Aut(Gp) has to be com-
puted in order to get all variable symmetries.

Figure 3 shows a pattern transformed into its sym-
bolic graph.

Figure 4 gives some example of variable symmetries
for different patterns. For each pattern graph, the list of
generators and the size of the whole group are given. The
undirected triangle graph has two generators (2 3) and
(1 2) and 3! automorphisms (with e being the identity
function) :

or=(2 3)
o2=(1 2)
01-0220102:(1 3 2)
O‘2'O‘1:0'20'1:(1 2 3)

010201 = 010201 = €

S O BAW N =

02~0102:c720102:(1 3)

The automorphism group of the square undirected
graph, known as Dy, has two generators and 8 auto-
morphisms. The directed triangle has one generator and
3 automorphisms : {(1 2 3),(1 3 2),e}.

4.2 Breaking

Two techniques were selected to break variable sym-
metries. The first technique is an approximation and

5.2 Breaking

consist in breaking only the generators of symmetry
group [6]. Those generators are obtained by using a
tool such as NAUTY, that outputs the generator of the
symmetry group. For each variable symmetry o, an or-
dering constraint is posted to keep only canonical so-
lutions. Since s < os & ((z1,v1), +* , (Tn,vn)) <
((o(z1),v1), -+, (0(xn),vn)), a constraint z1 < o(x1)
is posted to respect the lexicographic ordering.

The second technique breaks all variable symmetries
of a injective problem by using a SchreierSims algorithm,
provided that the generators of the variable symmetry
group are known [22]. In an injective problem such as
subgraph matching, Puget showed the number of con-
straints to be posted is linear with the number of vari-
ables. The Schreier-Sims algorithm is an efficient method
of computing a base and strong generating set of a per-
mutation group. It takes generators as input and runs
in O(n%log®|G| + t.n.log|G|) where G is the group, t
the number of generators and n the size of the of group
of all permutations containing G. The strong generating
set output is precisely the information needed to post
the non redundant breaking symmetry constraints.

These two techniques will be compared in the exper-
imental results section.

5 Value Symmetries

5.1 Detection

In graph matching, value symmetries are automor-
phisms of the target graph and do not depend on the
pattern graph.

Theorem 3 Given a subgraph monomorphism instance
(Gp,G+) and its associated CSP P, each o € Aut(G:)
is a value symmetry of P.

Proof Suppose Sol = (vi,---,vn) is a solution.
Consider the subgraph G = (N,E) of G: where
N ={vi,--,vn} and E = {(i,j) | (¢07"(i),07"(j)) €
E,}. This means there exists a monomor-
phic function f/ matching G, to oG. Hence
((z1,0(w1)), -, (&n,o(vn))) is a solution.

|

All value symmetries of P are not in Aut(Gy).
Consider Figure 5. There exists two value sym-
metric solutions : {(z1, 1), (z2,2), (x3,3), (z4,4)} and
{(z1,2), (z2,1), (x3,4), (x4,3)} althought Aut(G:) =
0

Figure 6 gives an example of a value symmetry on the
target graph. There is only one generator for this graph :
(1 2). Suppose the pattern graph is a path of length 2 :
x1 — x2 — x3. Suppose (1,3,2) is a solution. Then
(2,3,1) is also a solution. Suppose (1,3, 4) is a solution.
Then (2,3,4) is also a solution.

5.2 Breaking

Breaking inital value symmetries can be done by us-
ing GE-Tree technique [3]. The idea is to modify the

3 7
Pattern Target

Fi1Ga. 5 — Example of matching where the set of value
symmetries is not empty and Aut(G;) = 0.

1 2
3
1.(12)
groupsize = 2
4 5
6
Fig. 6 Example of value symmetry on the target
graph.

distribution by avoiding symmetrical value assignment.
Suppose a state S is reached, where x1,--- ,) are as-
signed to vi,- - , vy respectively, and zgy1, -,y are
not assigned yet. The variable x441 should not be as-
signed to two symmetrical values, since two symmet-
ric subtrees would be searched. For each value v; €
D(vk+1) that is symmetric to a value v; € D(vi+1),
only one state S; should be generated with the new
constraint Tx4+1 = v;; no new state Sy with z; = v;
should be generated.

A convenient way to compute those symetrical val-
ues is to compute a base and a strong generating set by
the SchreierSims. Algorithm SchreierSims outputs the
subgroups of Aut(G¢) G; (1 < i < d) such that Vo €
Gi:0(j) =37V je|l,i] (called the pointwize stabiliza-
tors of G). Moreover SchreierSims outputs the set of im-
ages of ¢ that let O, - - - ,4 invariant : U;4+1 = (H—l)GHl.
Those sets U; are interesting because they give the set of
symmetrical values of i given that the values 1,...,7 are
not subject to any permutation (mapped to themselves).

In order to use those Uj, the values are assigned in
an increasing order, so that the hypothesis that 1,--- |4
is not subject to any permutation is ensured. Suppose a
state S is reached, x1,--- ,) are assigned to v, -+ , Uk
respectively, with v; < --- < v and v; < v; Vi €
[1,k]V j € [k+1,d]. The variables z41,- - ,n are not
assigned yet. The next value vy41 € D(z;) is selected in
the increasing ordering and is assigned to x;. We create
two new states S1 and S3. The constraint xx4+1 = Vgt1
is posted in S1 and the constraints zy4+1 # vk+1 and

O--ooee- °
Q-------- o
1 2 a
®] ®
4 3 O-------- :
Pattern 3
O--nnnnne O--memes 2o
Target

Fig. 7 Example of dynamic target subgraph.

Trt1 F EvE e Uk. The value symmetries in the
state Sy have been deleted for zj1.

6 Conditional Value Symmetries

In subgraph monomorphism, the relations between
values are explicitly represented in the target graph. This
allows the detection of conditional values symmetries.

6.1 Detection

During the search, the target graph looses a node a
whenever a ¢ Uien, D(x;). This is interesting because
the relation between the values are known dynamically.

The set of values U;en, D(z:) denotes the nodes of
subgraph of G in which a solution is searched. For a
given state .S, such a subgraph can be, for a given state
S, computed efficiently. We first define this subgraph of
Gt.

Definition 2 Let S be a state in the search where
x1,--- ,x are assigned, and xyi1,--- , T, are not as-
signed. The dynamic target graph G; = (N;,E}) is a
subgraph of G such that :

- Nt* = Uze[l,n]D(IZ)

- Ef ={(a,b) € By |a€ N Nbe N{}

Figure 7 shows an example of dynamic target
graph. In this figure, the circled nodes are assigned to-
gether. The blank nodes are the nodes excluded from
Uieq,..- ,n)D (i), and the black nodes are the nodes in-
cluded in Ujeqy,... n)D(2x:). The plain edges are the se-
lected edges for the dynamic target subgraph.

Each automorphism of Gy is a conditional value
symmetry for the state S.

Theorem 4 Given a subgraph monomorphism intance
(Gp, Gt), its associated CSP P, and a state S in the
search, each o € Aut(Gy) is a conditional value sym-
metry of P. Moreover, the conditions of o are x1 =
Vi," " , Tk = Vk-

6 CONDITIONAL VALUE SYMMETRIES

Proof Suppose Sol = (v1,--- ,vx) is a partial solution.
Consider the subgraph Gi. The state S can be consid-
ered as a new CSP P’ of an instance (Gp, Gf) with ad-
ditional constraints 1 = v1, -+ ,xr = vi. By Theorem
3, the thesis follows.

The size of G} is an important issue, as we will dy-
namically compute symmetry information with it. The
following theorem shows that, because of the MC con-
straints, the longest path in G) has the same length
than the longest path in Gt whenever at least a variable
is assigned.

Definition 3 Let G = (N,E) be a graph. Then
maxzd(G) denotes the size of the longest simple path
between two nodes a,b € N.

Theorem 5 Given a subgraph monomorphism intance
(Gp, Gy), its associated CSP P, and a state S in the
search, if 34 € Ny | |D(z;)| = 1, then mazd(Gp) =
maxd(Gy).

This is a nice result for complexity issues, when
maxd(Gp) is small. In Figure 7, mazd(Gp)=2 and only
nodes at shortest distance 2 from node 1 in the target
graph are included in G;.

The dynamic target graph G can be computed dy-
namically. In [7], we showed how graph matching can
be modelled and implemented in CP(Graph), an exten-
sion of CP with graph domain variables. In this setting,
a graph domain variable T is used for target graph, with
initial domain [@,--- , G¢]. When a solution is found, T
is instantiated to the matched subgraph of G;. Hence,
during the search, the dynamic target graph Gf will be
the upper bound of variable T and can be obtained in
O(1).

6.2 Breaking

In this subsection, we show how to modifiy GE-Tree
method to handle conditional value symmetries. Before
distribution, the following actions are triggered :

1. Get Gf.

2. The NAUTY and SchreierSir/'ns algorithms are
called. This returns the new U, sets.

3. The main problem is how to adapt the variable and
value selection such that conditional value symme-
tries are broken. In GE-Tree, from a given state S,
two branches are created :

(a) a new state S; with a constraint z = vy,
(b) a new state S with constraints :

i Tk 7& Vk

i, xp # v; Vj € Ug-1.
To handle conditional value symmetries, we

slightly modify this schema. From a given state
S, two branches are created :

(a) a new state S; with a constraint z = vy,

7.1 Detection 7

(b) a new state S with constraints : 6
i. Tk 7 vk
. . ’ 1 7
i,z #£v; Ve U1 UU,_; / 1
. . 12 3 N PsTTTTTTT A
An issue is how to handle structure U. In Gecode e——¢ ! : :

system (http ://www.gecode.org), in which the actual :
implementation is made, the states are copied and trail- :
ing is not needed. Thus the structure U must not be
updated because of backtraking. A single global copy is g 51 i3 21

kept during the whole search process. Pattern Target

In a state S where conditional values symmetries are
discovered, structure U is copied into a new structure U
and merged with U’ This structure U~ shall be used for
all states S having S in its predecessors.

FiG. 8 Example of conditional local value symmetry.
The dashed squares show the new subgraph monomor-
phism instance for CSP P .

Of course, some heuristics should be added to choose
the states where a new conditional value symmetry
should be computed.

7 Local Value Symmetries

In this section, we introduce the concept of local
value symmetries, that is value symmetries on a sub-
problem. Such symmetries will be detected and exploited
during the search.

7.1 Detection

We first introduce partial dynamic graph concept.
Those graphs are associated to a state in the search and
corespond to the unsolved part of the problem. This can
be viewed as a new local problem to the current state.

Definition 4 Let S be a state in the search whose vari-
ables x1,-- - ,xy, are assigned to v1,--- , vk respectively,
and xyx41,- - , @y are not assigned yet.
The partial dynamic pattern graph G, = (N, ,E,) is
a subgraph of G, such that :

- N, ={ielk+1,d}

- E, ={(,j) € E,|a€e N, Abe N, }
The partial dynamic target graph G, = (N, ,E;) is a
subgraph of Gt such that :

- Ny = Uielht1,9D(:)

- E; ={(a,b) € By |ae N, ANbe N; }

When forward checking (FC) is used during the
search, in any state in the search tree, every constraint
involving one uninstantiated variable is arc consistent. In
other words, every value in the domain of an uninstanti-
ated variable is consistent with the partial solution. This
FC property on a binary CSP ensures that one can focus
on the uninstantiated variables and their associated con-
straints without loosing or creating solutions to the ini-
tial problem. Such a property also holds when the search
achieves stronger consistency in the search tree (Partial
Look Ahead, Maintaining Arc Concistency, ...).

Theorem 6 Let (G,,G:) be a subgraph monomorphism
intance, P its associated CSP, and S a state in of
P during the search, where the assigned variables are
x1,--- , Tk with valuesvy,--- ,v. Let P’ be a new CSP
of a subgraph monomorphism instance (G, ,G;) with

. . / /
additional constraints xy, = D(z1),- -+ , %, = D(xn).

Then :
1. Each o € Aut(Gy) is a value symmetry of r.

2. Assuming we have the FC property, we have
((z1,v1),- -+, (@n,vn)) € Sol(S)
iff /
(Tht1,V%41)5 7+ 5 (¥, vn)) € Sol(P).

The theorem states that value symmetries of the lo-
cal CSP P’ can be obtained by computing Aut(G}), and
that these symmetries can be exploited without loosing
or adding solutions to the initial matching problem.

It is important to notice that the value symmetries
of P’ are not conditional symmetries of P. It is not
possible to add constraints to P to generate P’. As the
CSP P’ is a local CSP associated to a state S, these
value symmetries are called local value symmetries.

The computation of G, can be easily performed
thanks to graph variables. If T is the target graph vari-
able over initial domain [(),---,G¢], then during the
computation Gy is lub(T') \ glb(T).

Consider the subgraph monomorphism instance
(Gp,G¢) in Figure 8. Nodes of the pattern graph are
the variables of the corresponding CSP, i.e. node i of
Gp corresponds to variable x;. Suppose that z; has been
assigned to value 1. Because of MC(x1,x3), D(x3) =
{4,6,7}. Moreover, because of alldiff(zi,---,zx),
value 1 is deleted from all domains D(z;) (i #
1). The new CSP P’ consistd of the subgraph of
G, = ({2,3,4,5}, {(2,3), (3,2), (3,5), (5,3), (4,5),
(5,4), (2,4), (4,2)}) and G, = ({2,3,4,5}.{(2,3),
(3,2), (3,5), (5,3), (4,5), (5,4), (2,4), (4,2)}). The
domains of the variables of P’ are : D(z3) =
{4,6,7} = {4}, D(z2) = {2,5,6,7} = {2,5}, D(ws)
= {2,5,6,7} = {2,5}, D(z3) = {3,4,6,7} = {3,4}.
The automorphisms of G, are Djs. For the state S,
Sol(S) = {(1,5,4,3,2),(1,2,4,3,5)} and BSol(S) =
{(1,2,4,3,5)}. For the subproblem P, Sol(P/) =
{(5,4,3,2),(2,4,3,5)} and BSol(P") = {(2,4,3,5)}.
The partial assignment (z1,1) in state S together with
the solutions of P’ equals Sol(S).

8 EXPERIMENTAL RESULTS

7.2 Breaki
reaking TaB. 1 Comparison over GraphBase undirected

Breaking local value symmetries is equivalent to graphs.

breaking value symmetries on the subproblem P’
Puget's method and the dynamic GE-Tree method can
thus be applied to the local CSP P’

8 Experimental results

The CSP model for subgraph monomorphism has
been implemented in Gecode (http ://www.gecode.org),
using CP(Graph) and CP(Map) [8] [7] . CP(Graph)
provides graph domain variables and CP(Map) povides
function domain variables. All the software was im-
plemented in C+-+. The standard implementation of
NAUTY algorithm was used. We also implemented
SchreierSims algorithm. The computation of the con-
straints for breaking injective problems was imple-
mented, and GE-Tree method was also incorporated.

We have evaluated variable symmetry detection and
breaking, value symmetry detection and breaking, and
variable and value symmetry breaking.

The data graphs used to generate instances are from
the GraphBase database containing different topologies
and has been used in [15]. There is a directed and an
undirected set of graphs. We took the first 30 graphs
and the first 50 graphs from GraphBase. The directed
set contains graphs ranging from 10 nodes to 462 nodes.
The undirected set contains graphs ranging from 10
nodes to 138 nodes. Using those graphs, there are 405 in-
stances for directed graphs and 1225 instances for undi-
rected graphs. All runs were performed on a dual Intel(R)
Xeon(TM) CPU 2.66GHz with 2 Go of RAM.

A main concern is how much time it takes to pre-
process the graphs. NAUTY processed each undirected
graph in less than 0.02 second. For directed graphs, each
graph was processed in less than 0.01 second except one
of them which terminate in 0.8 second and 4 of them
which did not terminate in five minutes. Note that we
did not tune NAUTY. For the SchreierSims algorithm,
each directed graph was processed in less than one sec-
ond except for 3 of them which terminate in 0.5 second,
1 of them in 1.5 seconds, and 1 of them in 3.1 sec-
onds. All undirected graphs were processed in less than
one second, except two of them, with 4 seconds and 8
seconds.

In our tests, we look for all solutions. A run is solved
if it finishes under 5 minutes, unsolved otherwise. We
applied the basic CSP model, the model where breaking
variable symmetries with generators (Gen.) are posted,
and finally the full variable symmetry (FVS) that breaks
all variable symmetries. Results are shown in Table 1 and
2. In those runs, the preprocessing time has not been
considered. The total time column shows the total time
needed for the solved instances. The mean time column
shows the mean time for the solved instances.

Thanks to variable symmetry breaking constraints
more instances are solved, either for the directed graphs
or for the undirected graphs. Moreover, the time for

All solutions 5 min.
solved unsol total time mean time
CSP 58% 42% 70 min. 5.95 sec.
Gen. 60,5% 39,5% 172 min. 13.95 sec.
FVS 61.8% 38.2% 101 min. 8 sec.

TaB. 2 Comparison over GraphBase directed graphs.

All solutions 5 min.
solved unsol total time mean time
CSP 67% 33% 21 min. 4.31 sec.
Gen. 74% 26% 47 min. 8.87 sec.
FVS 74% 26% 40 min. 7.64 sec.

solved instances was increased because of the vari-
able symmetry breaking constraints. Regarding the mean
time, the full variable symmetry breaking constraint has
a clear advantage. This mean time increase is an aston-
ishing behaviour that should be investigated.

Value symmetry breaking was evaluated on the set of
directed graphs. Table 3 shows that only one percent was
gained. This may be due to the fact that there are less
symmetries in directed graph than in undirected graphs.

For variable and value symmetries, a total of 233
undirected random instances were treated. We evalu-
ated variable and values symmetries separately and then
together in Table 4. This table shows that, as expected,
value symmetries and variable symmetries each increase
the number of solved instances. Notice here that value
symmetry breaking with GE-Tree leads to new solved
instances and better performance, reducing mean time
on solved instances. Full variable symmetry technique
makes new instances solved, but does not significatively
reduce mean time on solved instances. Moreover, the
combination of value symmetry breaking and variable
symmetry breaking do not combine the power of the
two techniques. In fact the GE-Tree upper bound of the
number of the solved solutions is not increased by using
full variable symmetry technique, and its mean time is
even increased.

From these experiments, we conclude that although
variable and value symmetry gives better performances
and make new instances solved, they are not sufficient
to make a significative higher percentage of instances
solved. This calls for conditional and local symmetry de-
tection and breaking.

TaB.3 Comparison over GraphBase directed graphs
for value symmetries.

All solutions 5 min.
[solved | unsol [total time [mean time
GE-Tree | 68% | 32% | 21 min. | 4.39 sec.

TAB. 4

REFERENCES

Comparison over GraphBase undirected
graphs for variable and value symmetries.

All solutions 5 min.

solved unsol total time mean time
CSP 53,6% 46,3 % 31 min. 20.1 sec.
GE-Tree 55,3% 45,7 % 6 min. 3.21 sec.
FVS 54,9 % | 45,1% 31 min. 19 sec.
GE-Tree and FVS | 55,3 % 44,7% 26 min. 8.68 sec.

9 Conclusion

In this paper, we presented techniques for symme-
try breaking in graph matching. Specific detection tech-
niques were first developped for the classical variables
symmetries and value symmetries. We show that vari-
able symmetries and value symmetries can be detected
by computing the set of automorphisms on the pattern
graph and on the target graph. We also showed that con-
ditional value symmetries can be detected by computing
the set of automorphisms on various subgraphs of the
target graph, called dynamic target graphs. The GE-Tree
method has been extended to handle these conditional
symmetries. We introduced the concept of local value
symmetries, that is symmetries on a subproblem. It was
shown how such new symmetries can be computed and
exploited using standard methods such GE-Tree. Exper-
imental results analysed the enhancement achieved by
variables symmetries and value symmetries. It showed
that symmetry breaking is an effective way to increase
the number of tractable instances of the graph matching
problem.

Future work includes more experiments on condi-
tional symmetries and local value symmetries, and the
development of heuristics for the integration of these
symmetries on suitable search states. An interesting re-
search direction is the automatic detection of symmetries
in graph domain variable. Finally, an open issue is the
ability to handle local variable symmetries.

Références

[1] N. Beldiceanu, P. Flener, and X. Lorca. The tree
constraint. In Proceedings of CP-Al-OR’05, volume
LNCS 3524. Springer-Verlag, 2005.

[2] H. Cambazard and E. Bourreau. Conception d'une
constrainte globale de chemin. In 10e Journ. nat.
sur la résolution de problémes NP-complets (JN-
PC'04), pages 107-121, 2004.

[3] Ronay-Dougal C.M., I.P. Gent, Kelsey T., and Lin-
ton S. Tractable symmetry breaking in using re-
stricted search trees. ECAI'04, 2004.

[4] David Cohen, Peter Jeavons, Christopher Jefferson,
Karen E.Petrie, and Barbara M. Smith. Symmetry
definitions for constraint satisfaction problems. In
van Beek [28], pages 17-31.

[5] Donatello Conte, Pasquale Foggia, Carlo Sansone,
and Mario Vento. Thirty years of graph matching

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

in pattern recognition.
2004.

J. Crawford, M. Ginsberg, E. Luks, and A. Roy.
Symmetry breaking predicates for search problem.
In Proceedings of KR'96, 1996.

IJPRAI, 18(3) :265-298,

Yves Deville, Grégoire Dooms, Stéphane Zampelli,
and Pierre Dupont. Cp(graph+map) for approxi-
mate graph matching. Ist International Workshop
on Constraint Programming Beyond Finite Integer
Domains, CP2005, 2005.

Grégoire Dooms, Yves Deville, and Pierre Dupont.
Cp(graph) : Introducing a graph computation do-
main in constraint programming. Principles and
Pratice of Constraint Programming, 2005.

lan .P. Gent, Tom Kelsey, Steve Linton, and Colva
Roney-Dougal. Symmetry and consistency. In van
Beek [28], pages 271-285.

lan .P. Gent, Tom Kelsey, Steve A. Linton, lain Mc-
Donald, lan Miguel, and Barbara M. Smith. Condi-
tional symmetry breaking. In van Beek [28], pages
256-270.

I.P. Gent. A symmetry breaking constraint for in-
distinguishable values. In Proceedings of CP'01,
SymCon'01 Workshop, 2001.

I.P. Gent, W. Harvey, and T. Kelsey. Groups and
constraints : symmetry breaking during search. In
Proceedings of CP'02, pages 415-430, 2002.

I.P. Gent, W. Harvey, and T. Kelsey. Generic shdd
using computational group theory. In Proceedings
of CP'03, pages 333-346, 2003.

I.P. Gent and B.M. Smith. Symmetry breaking dur-
ing search in constraint programming. In Proceed-
ings of CP'01, pages 599-603, 2001.

Javier Larrosa and Gabriel Valiente. Constraint
satisfaction algorithms for graph pattern match-
ing. Mathematical. Structures in Comp. Sci.,
12(4) :403-422, 2002.

Nikos Mamoulis and Kostas Stergiou. Constraint
satisfaction in semi-structured data graphs. In
Mark Wallace, editor, CP2004, volume 3258 of Lec-
ture Notes in Computer Science, pages 393-407.
Springer, 2004.

B. D. McKay. Practical graph isomorphism. Con-
gressus Numerantium, 30 :45-87, 1981.

P. Meseguer and C. Torras. Exploiting symmetries
within the constraint satisfaction search. Artificial
intelligence, 129(1-2) :133-163, 2001.

Jean-Francois Puget. Symmetry breaking using sta-
bilizers. In Francesca Rossi, editor, Proceedings of
CP’03, volume 2833 of Lecture Notes in Computer
Science, pages 585-599. Springer, 2003.

Jean-Francois Puget. Breaking all values symme-
tries in surjection problems. In Proceedings of
CP'05, pages 490-504, 2005.

10

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

Jean-Francois Puget. Elimination des symétries
dans les problémes injectifs. In Proceedings des
Journées Francophones de la Programmation par
Contraintes, 2005.

Jean-Francois Puget. Automatic detection of vari-
able and value symmetries. In van Beek [28], pages
477-489.

J.-C. Regin. A filtering algorithm for constraints of
difference in CSPs. In Proc. 12th Conf. American
Assoc. Artificial Intelligence, volume 1, pages 362—
367. Amer. Assoc. Artificial Intelligence, 1994.

Michael Rudolf. Utilizing constraint satisfaction
techniques for efficient graph pattern matching.
In Hartmut Ehrig, Gregor Engels, Hans-Jérg Kre-
owski, and Grzegorz Rozenberg, editors, TAGT,
volume 1764 of Lecture Notes in Computer Sci-
ence, pages 238-251. Springer, 1998.

M. Sellman. Cost-based filtering for shorter path
constraints. In Proc. of the 9th International Con-
ference on Principles and Pratice of Constraint Pro-
gramming (CP)., volume LNCS 2833, pages 694-
708. Springer-Verlag, 2003.

B. Smith. Reducing symmetry in a combinatorial
design problem. Proc. CP-Al-OR’'01, 3rd Int. Work-
shop on Integration of Al and OR Techniques in
CP, 2001.

Sébastien Sorlin and Christine Solnon. A global
constraint for graph isomorphism problems. In
Jean-Charles Régin and Michel Rueher, editors,
CPAIOR, volume 3011 of Lecture Notes in Com-
puter Science, pages 287-302. Springer, 2004.

Peter van Beek, editor. Principles and Practice of
Constraint Programming - CP 2005, 11th Interna-
tional Conference, CP 2005, Sitges, Spain, Augus-
tus 1-5, 2005, Proceedings, volume 3709 of Lecture
Notes in Computer Science. Springer, 2005.

Stéphane Zampelli, Yves Deville, and Pierre
Dupont. Approximate constrained subgraph
matching. Principles and Pratice of Constraint Pro-
gramming, 2005.

REFERENCES

