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.beAbstra
tGraph pattern mat
hing, a 
entral appli
ation inmany �elds, 
an be modelled as a CSP. This CSP ap-proa
h 
an be 
ompetitive with dedi
ated algorithms.In this paper, we develop symmetry breaking te
hniquesfor subgraph mat
hing in order to in
rease the numberof tra
table instan
es of this problem. Spe
i�
 dete
-tion te
hniques are �rst developped for the 
lassi
al vari-ables symmetries and value symmetries. It is also shownhow these symmetries 
an be broken when solving graphmat
hing. We also show how 
onditional value symme-tries 
an be automati
ally dete
ted and handled in thesear
h pro
ess. Then, the 
on
ept of lo
al value symme-tries is introdu
ed ; it is shown how these new symmetries
an be 
omputed and exploited. Finally, experimental re-sults show that symmetry breaking is an e�e
tive way toin
rease the number of tra
table instan
es of the graphmat
hing problem.1 Introdu
tionA symmetry in a Constraint Satisfa
tion Problem(CSP) is a bije
tive fun
tion that preserves CSP stru
-ture and solutions. Symmetries are important be
ausethey indu
e symmetri
 subtrees in the sear
h tree. Ifthe instan
e has no solution, failure has to be proved forequivalent subtrees regarding symmetries. If the instan
ehas solutions, many symmetri
 solutions will have to beenumerated in symmetri
 subtrees. The dete
tion andbreaking of symmetries 
an thus speed up the solving ofa CSP.Symmetries arise naturally in graphs sin
e a set ofbije
tive fun
tion 
an be viewed as the automorphismgroup of a graph. However, althought a lot of graphproblems have been ta
kled [1℄ [2℄ [25℄ and a 
omputa-tion domain for graphs has been de�ned [8℄, and despitethe fa
t that symmetries and graphs are related, little hasbeen done to investigate the use of symmetry breakingfor graph problems in 
onstraint programming.This paper aims at applying and extending symme-tries te
hniques for subgraph mat
hing. Existing te
h-niques usually handle only initial symmetries and are not

able to dete
t symmetries arising during sear
h, so 
alled
onditional symmetries. We will show how to dete
t andhandle those 
onditional symmetries.Related Works Handling symmetries to redu
esear
h spa
e has been a subje
t of resear
h in 
on-straint programming for many years. Crawford and al.[6℄ showed that 
omputing the set of predi
ates break-ing the symmetries of an instan
e is NP-hard in gen-eral. Di�erent approa
hes exist for exploiting symme-tries. Symmetries 
an be broken during sear
h either byposting additional 
onstraints (SBDS) [14℄ [12℄ or bypruning the tree below a state symmetri
al to a previousone (SBDD) [13℄. Symmetries 
an be broken by takinginto a

ount the symmetries into the heuristi
 [18℄ . Themain idea is to sele
t the variable involved in the greatestnumber of symmetries lo
al to the 
urrent state, so thatsymmetries are broken as soon as possible by the heuris-ti
. Symmetries 
an be broken by adding 
onstraints tothe initial problem at its root node [6℄ [11℄. Symmetries
an also be broken by remodelling the problem [26℄.More re
ently, resear
h e�orts has been done to-wards de�ning, dete
ting and breaking symmetries. Co-hen and al. [4℄ de�ned two types of symmetries, solutionsymmetries and 
onstraint symmetries and proved thatthe group of 
onstraint symmetries is a subgroup of solu-tion symmetries. Moreover, Gent and al. [10℄ evaluatedseveral te
hniques to break 
onditional symmetries, thatis symmetries arising during sear
h. However the dete
-tion of 
onditional symmetries remains a resear
h topi
.Symmetries were also shown to produ
e stronger formsof 
onsisten
y and more e�
ient me
hanisms for estab-lishing them [9℄. Finally, Puget [22℄ showed how to de-te
t symmetries automati
ally, and showed that all vari-able symmetries 
ould be broken with a linear number of
onstraints for inje
tive problems [21℄ and all value sym-metries 
an be broken for surje
tive problems, by addingone variable per value of the problem plus a linear num-ber of binary 
onstraints [20℄.Graph pattern mat
hing is a 
entral appli
ation inmany �elds [5℄. Many di�erent types of algorithms havebeen proposed, ranging from general methods to spe
i�
algorithms for parti
ular types of graphs. In 
onstraintprogramming, several authors [15, 24℄ have shown that1



2 2 BACKGROUND AND DEFINITIONSgraph mat
hing 
an be formulated as a CSP problem,and argued that 
onstraint programming 
ould be a pow-erful tool to handle its 
ombinatorial 
omplexity. Withinthe CSP framework, a model for subgraph monomor-phism has been proposed by Rudolf [24℄ and Valienteet al. [15℄. Our modeling [29℄ is based on these works.Sorlin [27℄ proposed a �ltering algorithm based on pathsfor graph isomorphism and part of our approa
h 
anbe seen as a generalization of this �ltering. A de
lara-tive view of mat
hing has also been proposed in [16℄. In[29℄, we showed that CSP approa
h is 
ompetitive withdedi
ated algorithms over a graph database representinggraphs with various topologies.Obje
tives This work aims at developping symmetrybreaking te
hniques for subgraph mat
hing modelled asa CSP in order to in
rease the number of tra
table in-stan
es of graph mat
hing. Our �rst goal is to developspe
i�
 dete
tion te
hniques for the 
lassi
al variablessymmetries and value symmetries, and to break su
hsymmetries when solving the graph mat
hing. Our se
-ond goal is to develop more advan
ed symmetries that
an be easily dete
ted for graph mat
hing.Results� We show that variable symmetries and value sym-metries 
an be dete
ted by 
omputing the set ofautomorphisms on the pattern graph and on thetarget graph.� We show that 
onditional value symmetries 
an bedete
ted by 
omputing the set of automorphismson various subgraphs of the target graph, 
alleddynami
 target graphs. The GE-Tree method 
anbe extended to handle these 
onditional symme-tries.� We introdu
e the 
on
ept of lo
al value symme-tries, that is symmetries on a subproblem. It isshown how su
h new symmetries 
an be 
omputedand exploited using standard methods su
h as GE-Tree.� Experimental results 
ompare and analyse theenhan
ement a
hieved by these symmetries andshow that symmetry breaking is an e�e
tive wayto in
rease the number of tra
table instan
es ofthe graph mat
hing problem.Outline Se
tions 2 provides the ne
essary ba
k-ground in graph mat
hing and in symmetry breaking.Se
tion 3 des
ribes a CSP approa
h for graph mat
h-ing. Se
tions 3 and 4 present variable symmetries andvalue symmetries in graph mat
hing. Conditional valuesymmetries are handled in Se
tion 6, and Se
tion 7 intro-du
es lo
al value symmetries in graph mat
hing. Finally,Se
tion 8 des
ribes experimental results and Se
tion 9
on
ludes this paper.2 Ba
kground and De�nitions2.1 Graph mat
hingBefore presenting the basi
 CSP for subgraph mat
h-ing, we de�ne the notion of subgraph mat
hing.
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Fig. 1 � Example solution for a monomorphism prob-lem instan
e.
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Fig. 2 � Example solution for an isomorphism probleminstan
e.A graph G = (N, E) 
onsists of a node set N andan edge set E ⊆ N ×N , where an edge (u, v) is a pairof nodes. The nodes u and v are the endpoints of theedge (u, v). We 
onsider dire
ted and undire
ted graphs.A subgraph of a graph G = (N, E) is a graph S =
(N ′, E′) where N ′ is a subset of N and E′ is a subsetof E.A subgraph isomorphism between a pattern graph
Gp = (Np, Ep) and a target graph Gt = (Nt, Et) is atotal fun
tion f : Np → Nt respe
ting two 
onditions :1. the fun
tion f is inje
tive2. f is an isomorphism : (u, v) ∈ Ep ⇔

(f(u), f(v)) ∈ Et.A subgraph monomorphism between Gp and Gt is atotal fun
tion f : Np → Nt respe
ting two 
onditions :1. the fun
tion f is inje
tive2. f is a monomorphism : (u, v) ∈ Ep ⇒
(f(u), f(v)) ∈ Et.A subgraph mat
hing is either a subgraph isomor-phism or a subgraph monomorphism.The neighborhood fun
tion V : N → N is de�nedas V (i) = {j | (i, j) ∈ E}. We note Vp for the neigh-borhood fun
tion of the pattern graph and Vt for theneighborhood fun
tion of the target graph.In this paper, we fo
us on symmetries in subgraphmonomorphism.2.2 SymmetriesA CSP instan
e is a triple < X, D, C > where X isthe set of variables, D is the universal domain spe
ifyingthe possible values for those variables, and C is the set



3of 
onstraints. In the rest of this do
ument, n = |Np|,
d = |D| , and D(xi) is the domain of xi.A symmetry over a CSP instan
e P is a bije
tion σmapping solutions to solutions, and hen
e non solutionsto non solutions [22℄.Sin
e a symmetry is a bije
tion where domain andtarget sets are the same, a symmetry is a permutation.For instan
e, the permutation (a1a2)(b1b2b3) is the bi-je
tion σ(a1) = a2, σ(a2) = a1, σ(b1) = b2, σ(b2) = b3,
σ(b3) = b1 and σ(c) = c otherwise.A variable symmetry is a bije
tive fun
tion
σ : X → X permuting a (non) solution s =
((x1, d1), . . . , (xn, dn)) to a (non) solution s′ =
((σ(x1), d1), . . . , (σ(xn), dn)). For instan
e, the 
on-straint x + y = 5 implies the variable symmetry (x y).A value symmetry is a bije
tive fun
tion σ : D → Dpermuting a (non) solution s = ((x1, d1), . . . , (xn, dn))to a (non) solution s′ = ((x1, σ(d1)), . . . , (xn, σ(dn)).For instan
e, the 
onstraint x mod 3 = 2 implies thevalue symmetry (8 5).A value and variable symmetry is a bije
tive fun
-tion σ : X × D → X × D permuting a (non) solution
s = ((x1, d1), . . . , (xn, dn)) to a (non) solution
s′ = (σ(x1, d1), . . . , σ(xn, dn)). For instan
e, 
on-sider the CSP D(x) = [1, 2, 4], D(y) = [1, 3, 4],
D(z) = [4], x + y = 5, y ≤ z. The set ofsolutions is {(x, 1),(y, 4),(z, 4)}, {(x, 4),(y, 1),(z, 4)),
((x, 2), (y, 3), (z, 4))}. A value and variable symmetryis ((x, 1) (x, 4)), ((y, 4) (y, 1)). Note that (x y) is nota variable symmetry and (1 4) is not a value symmetry.A 
onditional symmetry of a CSP P is a symmetryholding holds only in a sub-problem P

′ of P . The 
on-ditions of the symmetry are the 
onstraints ne
essary togenerate P
′ from P [10℄.A group is a �nite or in�nite set of elements togetherwith a binary operation (
alled the group operation) thattogether satisfy the four fundamental properties of 
lo-sure, asso
iativity, the identity property, and the inverseproperty. An automorphism of a graph is a graph isomor-phism with itself. The sets of automorphisms Aut(G)de�ne a �nite permutation group.Handling symmetries 
onsists in three steps : sym-metry dete
tion, breaking the symmetry to redu
e sear
hspa
e, and generating the set of all solutions.2.3 Goal of symmetry breakingThe general goal of symmetry breaking is to �nd asubset of 
anoni
al solutions [19℄.Without loss of generality, we may apply an arbitraryorder upon variables and values. Let ≤lex be an orderingupon ve
tors representing the solutions. Given G thesymmetry group and Sol the set of solutions, the subset

BSol of 
anoni
al solutions is de�ned as :
BSol = {s ∈ Sol | s ≤lex σ(s) ∀ σ ∈ G}.The solutions Sol 
an be generated by applying theelements of G to BSol :

Sol = {σ(s) | σ ∈ G ∧ s ∈ Bsol}.

3 CSP approa
h for graph mat
hingThe CSP model of graph mat
hing should representa total fun
tion f : Np → Nt. This total fun
tion 
an bemodeled with X = x1, ..., xn with xi representing theith node of Gp and D = Nt. Thus the set of variables isthe set of pattern nodes and their initial domain is theset of target nodes.The inje
tion 
onstraint 
an be stated by usingalldiff(x1, ..., xn).Conditions on the fun
tion for monomorphism haveto be translated into 
onstraints.The monomorphism 
onstraint states that if an edgeexists between two pattern nodes, then an edge mustexist between their 
orresponding images :
∀ (i, j) ∈ Ep : (f(i), f(j)) ∈ Et .For ea
h (i, j) ∈ Ep, the 
orresponding basi
monomorphism 
onstraint is de�ned as :

MC(xi, xj) ≡ (xi, xj) ∈ Et .A global 
onstraint MC(x1, ..., xn) 
an be formu-lated, instead of having one 
onstraint MC per nodepair :
MC(x1, ..., xn) =

^

(i,j)∈Ep

MC(xi, xj) .Moreover, a redundant 
onstraint pruning the sear
hspa
e has been proposed in [15℄. This 
onstraint redu
esthe sear
h time for di�
ult instan
es. This redundant
onstraint is a lo
al Alldi� 
onstraint [23℄ upon theneighborhood of a node, by noting that the number of
andidates available in the union of xi neighbors domain
ould not be less than the a
tual number of xi neighborsin the pattern graph :
LA(xi) ≡ | ∪j∈Vp(i) D(xj) ∩ Vt(xi)| ≥ |Vp(i)| .An algorithmi
 global 
onstraint LA(x1, ..., xn) 
anbe formulated :

LA(x1, ..., xn) ≡
^

i

LA(xi) .For the monomorphism problem, the following 
on-straints of the 
orresponding CSP are :alldiff(x1, ...xn) , MC(x1, ..., xn) and LA(x1, ..., xn) .Implementation, 
omparison with dedi
ated algo-rithms, and extension to subgraph isomorphism 
an befound in [29℄. Extension of this framework for approxi-mate mat
hing using graph and fun
tion domain 
om-putation has been introdu
ed in [7℄.



4 4 VARIABLE SYMMETRIES4 Variable Symmetries4.1 Dete
tionThis se
tion shows that, in graph mat
hing, variablesymmetries are the automorphisms of the pattern graphand do not depend on the target graph.It has been shown that the set of variable symme-tries of the CSP is the automorphism group of a symboli
graph [22℄ . The automorphism group of this symboli
graph is the set of symmetries of the 
onstraint. The �-nal symboli
 graph is obtained by merging nodes playingthe same role in the di�erent symboli
 graphs. The au-tomorphism group 
an be 
omputed by using tools su
has NAUTY [17℄. Those tools output a set of generatorsof the group useful for breaking symmetries.We will apply those ideas to the pattern graph, repre-senting the symboli
 graph of the 
onstraint network ofthe CSP. The pattern Gp is transformed into a symboli
graph S(Gp) where Aut(S(Gp)) is the set of variablesymmetries of the CSP.De�nition 1 A CSP P modeling a subgraph monomor-phism instan
e (Gp, Gt) 
an be transformed into thefollowing symboli
 graph S(P ) :1. Ea
h variable xi is a distin
t node labelled i2. If there exists a 
onstraint MC(xi, xj), then thereexists an ar
 between i and j in the symboli
 graph3. The 
onstraint alldi�, as suggested in [22℄, is trans-formed into a node typed with label 'a' ; an ar

(a, xi) is added to the symboli
 graphBe
ause LA 
onstraints are redundant, they do notmodify the set of solutions, hen
e they do not modifythe set of variable symmetries of P . The 
onstraint LA
an be safely omitted in the symboli
 graph.If we do not 
onsider the extra node and ar
s intro-du
ed by the alldi� 
onstraint, then the symboli
 graph

S(P ) and Gp are isomorphi
 by 
onstru
tion.Given the labeling of nodes representing 
onstraints,an automorphism in S(P ) maps the alldi� node to itselfand the nodes 
orresponding to the variables to anothernode 
orresponding to the variables. Ea
h automorphismin Aut(Gp) will thus be a restri
tion of an automorphismin Aut(S(P )), and an element in Aut(S(P )) will bean extension of an element in Aut(Gp). Hen
e the twofollowing theorems.Theorem 1 Given a subgraph monomorphism instan
e
(Gp, Gt) and its asso
iated CSP P :� ∀ σ ∈ Aut(Gp) ∃ σ

′

∈ Aut(S(P )) :

∀ n ∈ Np : σ(n) = σ
′

(n)� ∀ σ
′

∈ Aut(S(P )) ∃ σ ∈ Aut(Gp) :

∀ n ∈ Np : σ(n) = σ
′

(n)Theorem 2 Given a subgraph monomorphism instan
e
(Gp, Gt) and its asso
iated CSP P , the set of vari-able symmetries of P is the set of bije
tive fun
tions
Aut(S(P )) restri
ted to Np, whi
h is equal to Aut(Gp).

Fig. 3 � Example of symboli
 graph for a square pat-tern.

Fig. 4 � Example of pattern graphs and their genera-tors. Theorem 2 says that only Aut(Gp) has to be 
om-puted in order to get all variable symmetries.Figure 3 shows a pattern transformed into its sym-boli
 graph.Figure 4 gives some example of variable symmetriesfor di�erent patterns. For ea
h pattern graph, the list ofgenerators and the size of the whole group are given. Theundire
ted triangle graph has two generators (2 3) and
(1 2) and 3! automorphisms (with e being the identityfun
tion) :1. σ1 =

`

2 3
´2. σ2 =

`

1 2
´3. σ1 · σ2 = σ1σ2 =

`

1 3 2
´4. σ2 · σ1 = σ2σ1 =

`

1 2 3
´5. σ1 · σ2σ1 = σ1σ2σ1 = e6. σ2 · σ1σ2 = σ2σ1σ2 =

`

1 3
´The automorphism group of the square undire
tedgraph, known as D4, has two generators and 8 auto-morphisms. The dire
ted triangle has one generator and3 automorphisms : {`

1 2 3
´

,
`

1 3 2
´

, e}.4.2 BreakingTwo te
hniques were sele
ted to break variable sym-metries. The �rst te
hnique is an approximation and



5.2 Breaking 5
onsist in breaking only the generators of symmetrygroup [6℄. Those generators are obtained by using atool su
h as NAUTY, that outputs the generator of thesymmetry group. For ea
h variable symmetry σ, an or-dering 
onstraint is posted to keep only 
anoni
al so-lutions. Sin
e s ≤ σs ⇔ ((x1, v1), · · · , (xn, vn)) ≤
((σ(x1), v1), · · · , (σ(xn), vn)), a 
onstraint x1 ≤ σ(x1)is posted to respe
t the lexi
ographi
 ordering.The se
ond te
hnique breaks all variable symmetriesof a inje
tive problem by using a S
hreierSims algorithm,provided that the generators of the variable symmetrygroup are known [22℄. In an inje
tive problem su
h assubgraph mat
hing, Puget showed the number of 
on-straints to be posted is linear with the number of vari-ables. The S
hreier-Sims algorithm is an e�
ient methodof 
omputing a base and strong generating set of a per-mutation group. It takes generators as input and runsin O(n2log3|G| + t.n.log|G|) where G is the group, tthe number of generators and n the size of the of groupof all permutations 
ontaining G. The strong generatingset output is pre
isely the information needed to postthe non redundant breaking symmetry 
onstraints.These two te
hniques will be 
ompared in the exper-imental results se
tion.5 Value Symmetries5.1 Dete
tionIn graph mat
hing, value symmetries are automor-phisms of the target graph and do not depend on thepattern graph.Theorem 3 Given a subgraph monomorphism instan
e
(Gp, Gt) and its asso
iated CSP P , ea
h σ ∈ Aut(Gt)is a value symmetry of P .Proof Suppose Sol = (v1, · · · , vn) is a solution.Consider the subgraph G = (N, E) of Gt, where
N = {v1, · · · , vn} and E = {(i, j) | (σ−1(i), σ−1(j)) ∈
Ep}. This means there exists a monomor-phi
 fun
tion f

′ mat
hing Gp to σG. Hen
e
((x1, σ(v1)), · · · , (xn, σ(vn))) is a solution.

�All value symmetries of P are not in Aut(Gt).Consider Figure 5. There exists two value sym-metri
 solutions : {(x1, 1), (x2, 2), (x3, 3), (x4, 4)} and
{(x1, 2), (x2, 1), (x3, 4), (x4, 3)} althought Aut(Gt) =
∅. Figure 6 gives an example of a value symmetry on thetarget graph. There is only one generator for this graph :
(1 2). Suppose the pattern graph is a path of length 2 :
x1 → x2 → x3. Suppose (1, 3, 2) is a solution. Then
(2, 3, 1) is also a solution. Suppose (1, 3, 4) is a solution.Then (2, 3, 4) is also a solution.5.2 BreakingBreaking inital value symmetries 
an be done by us-ing GE-Tree te
hnique [3℄. The idea is to modify the

Fig. 5 � Example of mat
hing where the set of valuesymmetries is not empty and Aut(Gt) = ∅.

Fig. 6 � Example of value symmetry on the targetgraph.distribution by avoiding symmetri
al value assignment.Suppose a state S is rea
hed, where x1, · · · , xk are as-signed to v1, · · · , vk respe
tively, and xk+1, · · · , xn arenot assigned yet. The variable xk+1 should not be as-signed to two symmetri
al values, sin
e two symmet-ri
 subtrees would be sear
hed. For ea
h value vi ∈
D(vk+1) that is symmetri
 to a value vj ∈ D(vk+1),only one state S1 should be generated with the new
onstraint xk+1 = vi ; no new state S2 with xi = vjshould be generated.A 
onvenient way to 
ompute those symetri
al val-ues is to 
ompute a base and a strong generating set bythe S
hreierSims. Algorithm S
hreierSims outputs thesubgroups of Aut(Gt) Gi (1 ≤ i ≤ d) su
h that ∀ σ ∈
Gi : σ(j) = j ∀ j ∈ [1, i] (
alled the pointwize stabiliza-tors of G). Moreover S
hreierSims outputs the set of im-ages of i that let 0, · · · , i invariant : Ui+1 = (i+1)Gi+1 .Those sets Ui are interesting be
ause they give the set ofsymmetri
al values of i given that the values 1, ..., i arenot subje
t to any permutation (mapped to themselves).In order to use those Ui, the values are assigned inan in
reasing order, so that the hypothesis that 1, · · · , iis not subje
t to any permutation is ensured. Suppose astate S is rea
hed, x1, · · · , xk are assigned to v1, · · · , vkrespe
tively, with v1 ≤ · · · ≤ vk and vi ≤ vj ∀ i ∈
[1, k] ∀ j ∈ [k+1, d]. The variables xk+1, · · · , xn are notassigned yet. The next value vk+1 ∈ D(xj) is sele
ted inthe in
reasing ordering and is assigned to xj . We 
reatetwo new states S1 and S2. The 
onstraint xk+1 = vk+1is posted in S1 and the 
onstraints xk+1 6= vk+1 and



6 6 CONDITIONAL VALUE SYMMETRIES

Fig. 7 � Example of dynami
 target subgraph.
xk+1 6= k

′

∀ k
′

∈ Uk. The value symmetries in thestate S2 have been deleted for xk+1.6 Conditional Value SymmetriesIn subgraph monomorphism, the relations betweenvalues are expli
itly represented in the target graph. Thisallows the dete
tion of 
onditional values symmetries.6.1 Dete
tionDuring the sear
h, the target graph looses a node awhenever a /∈ ∪i∈NpD(xi). This is interesting be
ausethe relation between the values are known dynami
ally.The set of values ∪i∈NpD(xi) denotes the nodes ofsubgraph of Gt in whi
h a solution is sear
hed. For agiven state S, su
h a subgraph 
an be, for a given state
S, 
omputed e�
iently. We �rst de�ne this subgraph of
Gt.De�nition 2 Let S be a state in the sear
h where
x1, · · · , xk are assigned, and xk+1, · · · , xn are not as-signed. The dynami
 target graph G∗

t = (N∗

t , E∗

t ) is asubgraph of Gt su
h that :� N∗

t = ∪i∈[1,··· ,n]D(xi)� E∗

t = {(a, b) ∈ Et | a ∈ N∗

t ∧ b ∈ N∗

t }Figure 7 shows an example of dynami
 targetgraph. In this �gure, the 
ir
led nodes are assigned to-gether. The blank nodes are the nodes ex
luded from
∪i∈[1,··· ,n]D(xi), and the bla
k nodes are the nodes in-
luded in ∪i∈[1,··· ,n]D(xi). The plain edges are the se-le
ted edges for the dynami
 target subgraph.Ea
h automorphism of G∗

t is a 
onditional valuesymmetry for the state S.Theorem 4 Given a subgraph monomorphism intan
e
(Gp, Gt), its asso
iated CSP P , and a state S in thesear
h, ea
h σ ∈ Aut(G∗

t ) is a 
onditional value sym-metry of P . Moreover, the 
onditions of σ are x1 =
v1, · · · , xk = vk.

Proof Suppose Sol = (v1, · · · , vk) is a partial solution.Consider the subgraph G∗

t . The state S 
an be 
onsid-ered as a new CSP P
′ of an instan
e (Gp, G∗

t ) with ad-ditional 
onstraints x1 = v1, · · · , xk = vk. By Theorem3, the thesis follows.
�The size of G∗

t is an important issue, as we will dy-nami
ally 
ompute symmetry information with it. Thefollowing theorem shows that, be
ause of the MC 
on-straints, the longest path in Gp has the same lengththan the longest path in Gt whenever at least a variableis assigned.De�nition 3 Let G = (N, E) be a graph. Then
maxd(G) denotes the size of the longest simple pathbetween two nodes a, b ∈ N .Theorem 5 Given a subgraph monomorphism intan
e
(Gp, Gt), its asso
iated CSP P , and a state S in thesear
h, if ∃ i ∈ Np | |D(xi)| = 1, then maxd(Gp) =
maxd(G∗

t ).This is a ni
e result for 
omplexity issues, when
maxd(Gp) is small. In Figure 7, maxd(Gp)=2 and onlynodes at shortest distan
e 2 from node 1 in the targetgraph are in
luded in G∗

t .The dynami
 target graph G 
an be 
omputed dy-nami
ally. In [7℄, we showed how graph mat
hing 
anbe modelled and implemented in CP(Graph), an exten-sion of CP with graph domain variables. In this setting,a graph domain variable T is used for target graph, withinitial domain [∅, · · · , Gt]. When a solution is found, Tis instantiated to the mat
hed subgraph of Gt. Hen
e,during the sear
h, the dynami
 target graph G∗

t will bethe upper bound of variable T and 
an be obtained in
O(1).6.2 BreakingIn this subse
tion, we show how to modi�y GE-Treemethod to handle 
onditional value symmetries. Beforedistribution, the following a
tions are triggered :1. Get G∗

t .2. The NAUTY and S
hreierSims algorithms are
alled. This returns the new U
′

i sets.3. The main problem is how to adapt the variable andvalue sele
tion su
h that 
onditional value symme-tries are broken. In GE-Tree, from a given state S,two bran
hes are 
reated :(a) a new state S1 with a 
onstraint xk = vk(b) a new state S2 with 
onstraints :i. xk 6= vkii. xk 6= vj ∀ j ∈ Uk−1.To handle 
onditional value symmetries, weslightly modify this s
hema. From a given state
S, two bran
hes are 
reated :(a) a new state S1 with a 
onstraint xk = vk



7.1 Dete
tion 7(b) a new state S2 with 
onstraints :i. xk 6= vkii. xk 6= vj ∀ j ∈ Uk−1 ∪ U
′

k−1An issue is how to handle stru
ture U . In Ge
odesystem (http ://www.ge
ode.org), in whi
h the a
tualimplementation is made, the states are 
opied and trail-ing is not needed. Thus the stru
ture U must not beupdated be
ause of ba
ktraking. A single global 
opy iskept during the whole sear
h pro
ess.In a state S where 
onditional values symmetries aredis
overed, stru
ture U is 
opied into a new stru
ture U
′′and merged with U

′ . This stru
ture U
′′ shall be used forall states S

′ having S in its prede
essors.Of 
ourse, some heuristi
s should be added to 
hoosethe states where a new 
onditional value symmetryshould be 
omputed.7 Lo
al Value SymmetriesIn this se
tion, we introdu
e the 
on
ept of lo
alvalue symmetries, that is value symmetries on a sub-problem. Su
h symmetries will be dete
ted and exploitedduring the sear
h.7.1 Dete
tionWe �rst introdu
e partial dynami
 graph 
on
ept.Those graphs are asso
iated to a state in the sear
h and
orespond to the unsolved part of the problem. This 
anbe viewed as a new lo
al problem to the 
urrent state.De�nition 4 Let S be a state in the sear
h whose vari-ables x1, · · · , xk are assigned to v1, · · · , vk respe
tively,and xk+1, · · · , xn are not assigned yet.The partial dynami
 pattern graph G−

p = (N−

p , E−

p ) isa subgraph of Gp su
h that :� N−

p = {i ∈ [k + 1, d]}� E−

p = {(i, j) ∈ Ep | a ∈ N−

p ∧ b ∈ N−

p }The partial dynami
 target graph G−

t = (N−

t , E−

t ) is asubgraph of Gt su
h that :� N−

t = ∪i∈[k+1,d]D(xi)� E−

t = {(a, b) ∈ Et | a ∈ N−

t ∧ b ∈ N−

t }When forward 
he
king (FC) is used during thesear
h, in any state in the sear
h tree, every 
onstraintinvolving one uninstantiated variable is ar
 
onsistent. Inother words, every value in the domain of an uninstanti-ated variable is 
onsistent with the partial solution. ThisFC property on a binary CSP ensures that one 
an fo
uson the uninstantiated variables and their asso
iated 
on-straints without loosing or 
reating solutions to the ini-tial problem. Su
h a property also holds when the sear
ha
hieves stronger 
onsisten
y in the sear
h tree (PartialLook Ahead, Maintaining Ar
 Con
isten
y, . . . ).Theorem 6 Let (Gp, Gt) be a subgraph monomorphismintan
e, P its asso
iated CSP, and S a state in of
P during the sear
h, where the assigned variables are
x1, · · · , xk with values v1, · · · , vk. Let P ′ be a new CSPof a subgraph monomorphism instan
e (G−

p , G−

t ) with

Fig. 8 � Example of 
onditional lo
al value symmetry.The dashed squares show the new subgraph monomor-phism instan
e for CSP P
′ .additional 
onstraints x

′

k+1 = D(x1), · · · , x
′

n = D(xn).Then :1. Ea
h σ ∈ Aut(G−

t ) is a value symmetry of P
′ .2. Assuming we have the FC property, we have

((x1, v1), · · · , (xn, vn)) ∈ Sol(S)i�
((xk+1, vk+1), · · · , (xn, vn)) ∈ Sol(P

′

).The theorem states that value symmetries of the lo-
al CSP P ′ 
an be obtained by 
omputing Aut(G+
t ), andthat these symmetries 
an be exploited without loosingor adding solutions to the initial mat
hing problem.It is important to noti
e that the value symmetriesof P ′ are not 
onditional symmetries of P . It is notpossible to add 
onstraints to P to generate P ′. As theCSP P ′ is a lo
al CSP asso
iated to a state S, thesevalue symmetries are 
alled lo
al value symmetries.The 
omputation of G−

t 
an be easily performedthanks to graph variables. If T is the target graph vari-able over initial domain [∅, · · · , Gt], then during the
omputation G−

t is lub(T ) \ glb(T ).Consider the subgraph monomorphism instan
e
(Gp, Gt) in Figure 8. Nodes of the pattern graph arethe variables of the 
orresponding CSP, i.e. node i of
Gp 
orresponds to variable xi. Suppose that x1 has beenassigned to value 1. Be
ause of MC(x1, x3), D(x3) =
{4, 6, 7}. Moreover, be
ause of alldi�(x1, · · · , xn),value 1 is deleted from all domains D(xi) (i 6=

1). The new CSP P
′ 
onsistd of the subgraph of

G−

p = ({2, 3, 4, 5}, {(2, 3), (3, 2), (3, 5), (5, 3), (4, 5),
(5, 4), (2, 4), (4, 2)}) and G−

t = ({2, 3, 4, 5},{(2, 3),
(3, 2), (3, 5), (5, 3), (4, 5), (5, 4), (2, 4), (4, 2)}). Thedomains of the variables of P

′ are : D(x3) =
{4, 6, 7} = {4}, D(x2) = {2, 5, 6, 7} = {2, 5}, D(x5)= {2, 5, 6, 7} = {2, 5}, D(x3) = {3, 4, 6, 7} = {3, 4}.The automorphisms of G−

t are D4. For the state S,
Sol(S) = {(1, 5, 4, 3, 2), (1, 2, 4, 3, 5)} and BSol(S) =

{(1, 2, 4, 3, 5)}. For the subproblem P
′ , Sol(P

′

) =

{(5, 4, 3, 2), (2, 4, 3, 5)} and BSol(P
′

) = {(2, 4, 3, 5)}.The partial assignment (x1, 1) in state S together withthe solutions of P
′ equals Sol(S).



8 8 EXPERIMENTAL RESULTS7.2 BreakingBreaking lo
al value symmetries is equivalent tobreaking value symmetries on the subproblem P ′.Puget's method and the dynami
 GE-Tree method 
anthus be applied to the lo
al CSP P ′8 Experimental resultsThe CSP model for subgraph monomorphism hasbeen implemented in Ge
ode (http ://www.ge
ode.org),using CP(Graph) and CP(Map) [8℄ [7℄ . CP(Graph)provides graph domain variables and CP(Map) povidesfun
tion domain variables. All the software was im-plemented in C++. The standard implementation ofNAUTY algorithm was used. We also implementedS
hreierSims algorithm. The 
omputation of the 
on-straints for breaking inje
tive problems was imple-mented, and GE-Tree method was also in
orporated.We have evaluated variable symmetry dete
tion andbreaking, value symmetry dete
tion and breaking, andvariable and value symmetry breaking.The data graphs used to generate instan
es are fromthe GraphBase database 
ontaining di�erent topologiesand has been used in [15℄. There is a dire
ted and anundire
ted set of graphs. We took the �rst 30 graphsand the �rst 50 graphs from GraphBase. The dire
tedset 
ontains graphs ranging from 10 nodes to 462 nodes.The undire
ted set 
ontains graphs ranging from 10nodes to 138 nodes. Using those graphs, there are 405 in-stan
es for dire
ted graphs and 1225 instan
es for undi-re
ted graphs. All runs were performed on a dual Intel(R)Xeon(TM) CPU 2.66GHz with 2 Go of RAM.A main 
on
ern is how mu
h time it takes to pre-pro
ess the graphs. NAUTY pro
essed ea
h undire
tedgraph in less than 0.02 se
ond. For dire
ted graphs, ea
hgraph was pro
essed in less than 0.01 se
ond ex
ept oneof them whi
h terminate in 0.8 se
ond and 4 of themwhi
h did not terminate in �ve minutes. Note that wedid not tune NAUTY. For the S
hreierSims algorithm,ea
h dire
ted graph was pro
essed in less than one se
-ond ex
ept for 3 of them whi
h terminate in 0.5 se
ond,1 of them in 1.5 se
onds, and 1 of them in 3.1 se
-onds. All undire
ted graphs were pro
essed in less thanone se
ond, ex
ept two of them, with 4 se
onds and 8se
onds.In our tests, we look for all solutions. A run is solvedif it �nishes under 5 minutes, unsolved otherwise. Weapplied the basi
 CSP model, the model where breakingvariable symmetries with generators (Gen.) are posted,and �nally the full variable symmetry (FVS) that breaksall variable symmetries. Results are shown in Table 1 and2. In those runs, the prepro
essing time has not been
onsidered. The total time 
olumn shows the total timeneeded for the solved instan
es. The mean time 
olumnshows the mean time for the solved instan
es.Thanks to variable symmetry breaking 
onstraintsmore instan
es are solved, either for the dire
ted graphsor for the undire
ted graphs. Moreover, the time for

Tab. 1 � Comparison over GraphBase undire
tedgraphs. All solutions 5 min.solved unsol total time mean timeCSP 58% 42% 70 min. 5.95 se
.Gen. 60,5% 39,5% 172 min. 13.95 se
.FVS 61.8% 38.2% 101 min. 8 se
.Tab. 2 � Comparison over GraphBase dire
ted graphs.All solutions 5 min.solved unsol total time mean timeCSP 67% 33% 21 min. 4.31 se
.Gen. 74% 26% 47 min. 8.87 se
.FVS 74% 26% 40 min. 7.64 se
.solved instan
es was in
reased be
ause of the vari-able symmetry breaking 
onstraints. Regarding the meantime, the full variable symmetry breaking 
onstraint hasa 
lear advantage. This mean time in
rease is an aston-ishing behaviour that should be investigated.Value symmetry breaking was evaluated on the set ofdire
ted graphs. Table 3 shows that only one per
ent wasgained. This may be due to the fa
t that there are lesssymmetries in dire
ted graph than in undire
ted graphs.For variable and value symmetries, a total of 233undire
ted random instan
es were treated. We evalu-ated variable and values symmetries separately and thentogether in Table 4. This table shows that, as expe
ted,value symmetries and variable symmetries ea
h in
reasethe number of solved instan
es. Noti
e here that valuesymmetry breaking with GE-Tree leads to new solvedinstan
es and better performan
e, redu
ing mean timeon solved instan
es. Full variable symmetry te
hniquemakes new instan
es solved, but does not signi�
ativelyredu
e mean time on solved instan
es. Moreover, the
ombination of value symmetry breaking and variablesymmetry breaking do not 
ombine the power of thetwo te
hniques. In fa
t the GE-Tree upper bound of thenumber of the solved solutions is not in
reased by usingfull variable symmetry te
hnique, and its mean time iseven in
reased.From these experiments, we 
on
lude that althoughvariable and value symmetry gives better performan
esand make new instan
es solved, they are not su�
ientto make a signi�
ative higher per
entage of instan
essolved. This 
alls for 
onditional and lo
al symmetry de-te
tion and breaking.Tab. 3 � Comparison over GraphBase dire
ted graphsfor value symmetries.All solutions 5 min.solved unsol total time mean timeGE-Tree 68% 32% 21 min. 4.39 se
.



RÉFÉRENCES 9Tab. 4 � Comparison over GraphBase undire
tedgraphs for variable and value symmetries.All solutions 5 min.solved unsol total time mean timeCSP 53,6% 46,3 % 31 min. 20.1 se
.GE-Tree 55,3% 45,7 % 6 min. 3.21 se
.FVS 54,9 % 45,1% 31 min. 19 se
.GE-Tree and FVS 55,3 % 44,7% 26 min. 8.68 se
.9 Con
lusionIn this paper, we presented te
hniques for symme-try breaking in graph mat
hing. Spe
i�
 dete
tion te
h-niques were �rst developped for the 
lassi
al variablessymmetries and value symmetries. We show that vari-able symmetries and value symmetries 
an be dete
tedby 
omputing the set of automorphisms on the patterngraph and on the target graph. We also showed that 
on-ditional value symmetries 
an be dete
ted by 
omputingthe set of automorphisms on various subgraphs of thetarget graph, 
alled dynami
 target graphs. The GE-Treemethod has been extended to handle these 
onditionalsymmetries. We introdu
ed the 
on
ept of lo
al valuesymmetries, that is symmetries on a subproblem. It wasshown how su
h new symmetries 
an be 
omputed andexploited using standard methods su
h GE-Tree. Exper-imental results analysed the enhan
ement a
hieved byvariables symmetries and value symmetries. It showedthat symmetry breaking is an e�e
tive way to in
reasethe number of tra
table instan
es of the graph mat
hingproblem.Future work in
ludes more experiments on 
ondi-tional symmetries and lo
al value symmetries, and thedevelopment of heuristi
s for the integration of thesesymmetries on suitable sear
h states. An interesting re-sear
h dire
tion is the automati
 dete
tion of symmetriesin graph domain variable. Finally, an open issue is theability to handle lo
al variable symmetries.Référen
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