Speeding up constrained path solvers with areachability propagator

L uis Quesada, Peter Van Roy, and Yves Deville
Université catholique de Louvain
Place Sainte Barbe, 2, B-1348 Louvain-la-Neuve, Belgium
{luque, pvr, yde}@info.ucl.ac.be

Abstract

Constrained path problems have to do with finding paths in graphs subject to constraints. One way of
constraining the graph is by enforcing reachability on nodes. For instance, it may be required that a node
reaches a particular set of nodes by respecting some restrictions like visiting a particular set of nodes or
edges and using less than a certain amount of resources. The reachability constraints of this paper were
suggested by a practical problem regarding mission planning in the context of an industrial project.

We deal with this problem by using concurrent constraint programming where the problem is solved
by interleaving Propagation and Labeling. In this paper, we define a propagator which we call Reacha-
bility that implements a generalized reachability constraint on a directed graph g. Given a source node
source in g, we can identify three parts in the Reachability constraint: (1) the relation between each
node of g and the set of nodes that it reaches, (2) the association of each pair of nodes (source,) with
its set of cut nodes, and (3) the association of each pair of nodes (source,) with its set of bridges.

We show the effectiveness of our Reachability propagator by applying it to the Simple Path problem
with mandatory nodes. We do an experimental evaluation of Reachability that shows that it provides
strong pruning, obtaining solutions with very little search. Furthermore, we show that Reachability is
also useful for defining a good labeling strategy and dealing with ordering constraints among manda-
tory nodes. These experimental results give evidence that Reachability is a useful primitive for solving
constrained path problems over graphs.

1 Introduction

Constrained path problems have to do with finding paths in graphs subject to constraints. One way of
constraining the graph is by enforcing reachability on nodes. For instance, it may be required that a node
reaches a particular set of nodes by respecting some restrictions like visiting a particular set of nodes or
edges and using less than a certain amount of resources. We have instances of this problem in Vehicle
routing [14, 4, 9] and Bioinformatics[7].

An approach to solve this problem is by using Concurrent Constraint Programming (CCP) [18, 13]. In
CCP, we solve the problem by interleaving two processes: propagation and labeling. In Propagation, we
are interested in filtering the domains of a set of finite domain variables according to the semantics of the
constraints that have to be respected. In Labeling, we are interested in specifying which alternative should
be selected when searching for the solution.

Our goal is to implement so-called Constrained Path Propagators (CPPs) for achieving global consis-
tency [6]. In this paper, we define a propagator which we call Reachability that implements a generalized
reachability constraint on a directed graph g. Given a source node source in g, we can identify three parts
in the Reachability constraint: (1) the relation between each node of ¢ and the set of nodes that it reaches,
(2) the association of each pair of nodes (source, i) with its set of cut nodes, and (3) the association of each
pair of nodes (source, i) with its set of bridges.

NS

Figure 1: Relaxing Simple Path with mandatory nodes by eliminating the optional nodes

Our contribution is a propagator that is suitable for solving the Simple Path problem with mandatory
nodes [19, 3]. This problem consists in finding a simple path in a directed graph containing a set of manda-
tory nodes. A simple path is a path where each node is visited once. Certainly, this problem can be trivially
solved if the graph has no cycles since in that case there is only one order in which we can visit the manda-
tory nodes [19]. However, if the graph has cycles the problem is NP complete since we can easily reduce
the Hamiltonian Path problem [10, 5] to this problem.

Notice however that we can not trivially reduce Simple Path with mandatory nodes to Hamiltonian
path. One could think that optional nodes (i.e. nodes that are not mandatory) can be eliminated in favor
of new edges as a preprocessing step, which finds a path between each pair of mandatory nodes. However,
the problem is that the paths that are precomputed may share nodes. This may lead to violations of the
requirement that a node should be visited only once.

In figure 1, we illustrate this situation. Mandatory nodes are in solid lines. In the second graph we have
eliminated the optional nodes by connecting each pair of mandatory nodes depending on whether there is
a path between them. However, we observe that the second graph has a simple path going from node 1 to
node 4 (visiting all the mandatory nodes) while the first one does not. Indeed, the simple path in the second
graph is not a valid solution to the original problem since it implies that node 3 is visited twice.

The other reason that makes the elimination of optional nodes difficult is that finding & pairwise disjoint
paths between & pairs of nodes (s, d1),(s2, d2),...,(sk, di) is NP complete [20].

In general, we can say that the set of optional nodes that can be used when going from a mandatory node
a 10 a mandatory node b depends on the path that has been traversed before reaching a. This is because the
optional nodes used in the path going from the source to @ can not be used in the path going from a to b.

From our experimental measurements in Section 4, we observe that the suitability of Reachability for
dealing with Simple Path with mandatory nodes is based on the following aspects:

e The strong pruning that Reachability performs. Due to the computation of cut nodes and bridges (i.e.,
nodes and edges that are present in all the paths going from a given node to another), Reachability is
able to discover non-viable successors early on.

e The information that Reachability provides for implementing smart labeling strategies. By labeling
strategy we mean the way the search tree is created, i.e., which constraint is used for branching.
Reachability associates each node with the set of nodes that it reaches. This information can be used
to guide the search in a smart way. For instance, one of our observations is that, when choosing first
the node i that reaches the most nodes and selecting as a successor of ¢ first a node that ¢ reaches, we
obtain paths that minimize the use of optional nodes.

An additional feature of Reachability is its suitability for imposing ordering constraints among manda-
tory nodes (which is a common issue in routing problems). In fact, it might be the case that we have to visit
the nodes of the graph in a particular (partial) order. Taking into account that a node a reaches a node b if

there is a path going from node a to node b, we force a node ¢ to be visited before a node j by imposing that
i reaches j and j does not reach i. We have performed experiments that show that Reachability takes the
most advantage of this information to avoid branches in the search tree with no solution.

The structure of the paper is as follows: first, we introduce Reachability by presenting its semantics and
deriving pruning rules in a systematic way. Then, we show how we can model Simple Path with mandatory
nodes in terms of Reachability. Finally, we show examples that demonstrate the performance of Reachability
for this type of problem, and elaborate on some works that are related to our approach.

2 Thereachability propagator

2.1 Reachability constraint

The Reachability Constraint is defined as follows:

rn(i) = Reach(g, i)\
Reachability(g, source,rn,cn,be) = Vien. cn(i) = CutNodes(g, source, i)\ (1)
be(i) = Bridges(g, source, 1)

Where:

e g isagraph whose set of nodes is a subset of V.

e source is anode of g.

e rn(i) is the set of nodes that i reaches.

e cn (i) is the set of nodes appearing in all paths going from source to i.
e be(i) is the set of edges appearing in all paths going from source to i.

e Reach, Paths, CutNodes and Bridges are functions that can be formally defined as follows:

J € Reach(g,1) < 3p.p € Paths(g,1,j))

p=(ki,....kp) € nodes(g)" Nky =i ANk, = jA

€ Paths(g,1i,] ’
p (959) = oty kpan) € edges(g) ¥
k € CutNodes(g,i,7) < Vpcpaths(gij)-k € nodes(p) 4)

e € Bridges(g,i,j) < VpePaths(g,i,j)-€ € €dges(p) ©

The above definition of Reachability implies the following properties which are crucial for the pruning
that Reachability performs. These properties define relations between the functions rn, cn, be, nodes and
edges. These relations can then be used for pruning, as we show in section 2.2.

1. If (i, 7) is an edge of g, then 7 reaches j.

V(ij)eedges(g)-J € T(7) (6)

2. If i reaches j, then i reaches all the nodes that j reaches.

Vijken-j € rn(i) Nk € rn(j) — k € rn(i) @)

3. If source reaches i and j is a cut node between source and 7 in g, then j is reached from source and
j reaches i:

Vijen.i € rn(source) A\ j € cn(i) — j € rn(source) Ni € rn(j) (8)

4. Reached nodes, cut nodes and bridges are nodes and edges of g:

Vien.rn(i) C nodes(g) (9) Vien.cn(i) € nodes(g) (10) Vien.be(i) C edges(g) (11)

2.2 Pruningrules

We implement the constraint in Equation 1 with the propagator

Reachability(G, Source, RN,CN, BE) (12)

In this propagator we have that:

e (5 is a graph variable (i.e., a variable whose domain is a set of graphs [8]). The upper bound of G
(max(G)) is the greatest graph to which G can be instantiated, and its lower bound (min(G)) is
the smallest graph to which G can be instantiated. So, ¢ € nodes(G) means i € nodes(min(G))
and i ¢ nodes(G) means i ¢ nodes(max(G)) (the same applies for edges). In what follows,
{(N1, E1)#(No, E5)} will denote a graph variable whose lower bound is (N, E7) and upper bound
is (Na, E»). le., if g = (n, e) is the graph that G approximates, then Ny Cn C Nyand By C e C Ej.

e Source is an integer representing the source in the graph.

e RN(1) is a Finite Integer Set (FS) [11] variable associated with the set of nodes that can be reached
from node 4. The upper bound of this variable (max(RN())) is the set of nodes that could be reached
from node i (i.e., nodes that are not in the upper bound are nodes that are known to be unreachable
from). The lower bound (min (RN (7))) is the set of nodes that are known to be reachable from node
i. In what follows {S1#5S2} will denote a FS variable whose lower bound is the set S; and upper
bound is the set S5.

e C'N(7) is a FS variable associated with the set of nodes that are included in every path going from
Source t0 1.

e BFE(7) is a FS variable associated with the set of edges that are included in every path going from
Source to .

The definition of Reachability and its derived properties give place to a set of propagation rules. We
show here the most representative ones. The others are given in [16]. A propagation rule is defined as %
where C'is a condition and A is an action. If C'is true, the pruning defined by A can be performed.

o From (6) V; jycedges(q)-J € Tn(i) We obtain:

(i,7) € edges(min(G))
Jj € min(RN (7))

(13)

From (7) V; j ken-J € mn(i) Ak € rn(j) — k € rn(i) we obtain:

j € min(RN(i)) N k € min(RN(j))
k € min(RN(i))

From (8)V; jen.i € rn(source) A j € cn(i) — j € rn(source) A i € rn(j) we obtain:

i € min(RN (Source)) A j € min(CN(i))
j € min(RN (Source))

i € min(RN (Source)) A j € min(CN(i))
i € min(RN(j))

From (1)V;en.rn(i) = Reach(g,:) we obtain:

Jj & Reach(maz(G),1)
J & max(RN(i))

From (1)Vicrn(source)-cn(i) = CutNodes(g, source, i) we obtain:

j € CutNodes(max(G), Source, i)
j € min(CN(i))

From (D)Vic,n(source)-be(i) = Bridges(g, source, i) we obtain:

e € Bridges(max(G), Source,)
e € min(BE(7))

(14)

(15)

(16)

17

(18)

(19)

From (9) Vien.rn(i) C nodes(g), (10)V;en.cn(i) C nodes(g) and (11)V;en.be(i) C edges(g) we

obtain:

k € min(RN (i) k € min(CN(i))

(20) (21)

k € nodes(min(G)) k € nodes(min(G))

I mplementation of Reachability

In our pruning rules we have three functions:
e Reach that is O(/V + E) since it is basically a call to DFS [5].

e CutNodes whose algorithm is based on the following definition:

k € CutNodes(g,i,j) < j & Reach(RemoveNode(g,k),1)

e € min(BE(i)
e € edges(min(Q))

(22)

Reachability has been implemented using a message passing approach [21] on top of the multi-paradigm
programming language Oz [12]. In [15], we discuss the implementation of Reachability in detail. In this
section we will simply refer to some of the functions that are used in the implementatin of Reachability:

(23)

So, checking whether a node is a cut node is O(N + E). Notice that we assume that RemoveN ode

returns the same graph when &k & nodes(g).

e Bridges whose algorithm is based on the following definition:
e € Bridges(g,i,j) < j & Reach(RemoveEdge(g,e),1) (24)

So, checking whether an edge is a bridge is O(N + E). Notice that we assume that RemoveEdge
returns the same graph when e ¢ edges(g).

The computation of cut nodes and bridges in each propagation step implies running DFS per each po-
tential cut node and per each potential bridge. However, we take advantage of the fact that the cut nodes
and the bridges are part of the tree returned by DFS (assuming that the destination node is reached from the
source). In fact, this means that both the computation of cut nodes and the computation of bridges have the
same complexity since the number of edges in the DFS tree is proportional to the number of nodes. l.e.,
updating CN /BE after removing a set of edges from the upper bound of G is O(N * (N + E)) 1.

As explained in [15], we do not compute cut nodes and bridges each time an edge is removed since this
certainly leads to a considerably amount of unnecessary computation. This is due to the fact that the set of
cut nodes/bridges evolves monotonically. What we actually do is to consider all the removals at once and
make one computation of cut nodes and bridges per set of edges removed.

3 Solving Simple Path with mandatory nodes with Reachability

In this section we will elaborate on the important role that Reachability can play in solving Simple Path
with mandatory nodes. This problem consists in finding a simple path in a directed graph containing a set
of mandatory nodes. A simple path is a path where each node is visited once. l.e., given a directed graph g,
a source node source, a destination node dest, and a set of mandatory nodes mandnodes, we want to find
a path in g that goes from source to dest, going through mandnodes and visiting each node only once.

The contribution of Reachability consists in discovering nodes/edges that are part of the path early on.
This information is obtained by computing the cut nodes and bridges in each labeling step. Let us consider
the following two cases 2:

e Consider the graph variable on the left of Figure 2. Assume that node 1 reaches node 9. This infor-
mation is enough to infer that node 5 belongs to the graph, node 1 reaches node 5, and node 5 reaches

node 9.
, 7,

v@\\ /@\ v@\\ /@\

& \/ p \A Cmnolde 7 .~ \‘

O T O B L O

~ P \ o ~ # N ~
«fé\/ ‘ng *@V ‘/i;y
RN(1):{{1,9}#{1.9}} RN(D:{{1,5,9}#{1..9}}
RN(5):{{ 1#15.6.7.8.9}] RN(5):{{5,9}#{5,6,7,8,9} }
RNO):({9}#(9}) RNE:HHEH

Figure 2: Discovering cut nodes

INoticethat the notion of cut node that we have presented does not correspond to the notion of articulation point. An articulation
point is a node whose removal increases the number of strongly connected components. A cut node, in our defi nition, does not
necessarily have this property.

2In Figures 2 and 3, nodes and edges that belong to the lower bound of the graph variable are in solid line. For instance, the
graph variable on the left side of Figure 2 is agraph variable whose lower bound is the graph ({1, 5}, #), and whose upper bound
isthegraph ({1,2,3,4,5,6,7,8,9}, {(1,2), (1,3),(1,4), (2,5), (3,5), (4,5), (5,6), (5, 7), (5, 8), (6,9), (7,9), (8,9) }).

e Consider the graph variable on the left of Figure 3. Assume that node 1 reaches node 5. This infor-
mation is enough to infer that edges (1, 2), (2, 3),(3,4) and (4, 5) are in the graph, which implies that
node 1 reaches nodes 1,2,3,4,5, node 2 at least reaches nodes 2,3,4,5, node 3 at least reaches nodes
3,4,5 and node 4 at least reaches nodes 4,5.

GG 00 QP0-0—0

| |
L __ - —S=--==__4 - zZzZ=Z=Z=—=z=

RN(L):{{1,51#{1..5}} RN(1):{{1..5}#{1..5}}
RN(2):{ {}#{1..5}} RN(2):{{2..5}#{1.5}}
RN():{{}#{1..5}} RN(3):{{3..5}#{1.5}}
RN(4):{{}#{1..5}} RN():{{4,5}#{1..5}}
RN(S):{{5}#{5}} RN(S):{{5}#{5}}

Figure 3: Discovering bridges

Notice that Hamiltonian Path (i.e., the problem where we have to find a simple path between two nodes
containing all the nodes of the graph [10, 5]) can be reduced to Simple Path with mandatory nodes by
defining the set of mandatory nodes as nodes(g) — {source, dest}.

The above definition of Simple Path with mandatory nodes can be formally defined as follows:

p € Paths(g, source, dest)

SPM N (g, source, dest, mandnodes, p) < NoCycle(p)A (25)
mandnodes C nodes(p)

SPM N stands for “Simple Path with mandatory nodes”. NoC'ycle(p) states that p is a simple path
(i.e., a path where no node is visited twice). This definition of Simple Path with mandatory nodes implies
the following property:

Reachability(p, source,rn, cn, be) A dest € rn(source) A en(dest) O mandnodes (26)

This is because the destination is reached by the source and the path contains the mandatory nodes. This
derived property and the fact that we can implement SPM N in terms of the AlIDiff constraint [17] and the
NoCycle constraint [4] suggest the two approaches for Simple Path with mandatory nodes summarized in
Table 1 (which are compared in the next section). In the first approach, we basically consider AlIDiff and
NoCycle. In the second approach we additionally consider Reachability.

Notice that, even though the computation of bridges plays a crucial role in the pruning that Reachability
performs, we do not use the be argument in the second approach. In fact be can play an important role in
solving Constrained Euler Path problems (i.e., problems where the objective is to find a path visiting a set
of edges by respecting some additional constraints).

Approach 1 Approach 2

SPM N (g, source,dest, mandnodes,p) | SPMN (g, source,dest, mandnodes,p)
Reachability(p, source, rn, cn, be)

dest € rn(source)

en(dest) O mandnodes

Table 1: Two approaches for solving Simple Path with mandatory nodes

4 Experimental results

In this section we present a set of experiments that show that Reachability is suitable for Simple Path
with mandatory nodes. l.e., in our experiments Approach 2 (in Table 1) outperforms Approach 1. These
experiments also show that Simple Path with mandatory nodes tends to be harder when the number of
optional nodes increases if they are uniformly distributed in the graph. We have also observed that the
labeling strategy that we implement with Reachability tends to minimize the use of optional nodes (which
is a common need when the resources are limited).

In Table 2, we define the instances on which we made the tests of Table 4. The id of the destination is
also the size of the graph. The column Order is true for the instances whose mandatory nodes are visited in
the order given. Notice that SPMN _52Q0rder_b has no solution. The time, in Table 4, is measured in seconds.
The number of failures means the number of failed alternatives tried before getting the solution.

Figure 4: SPMN_22:A path from 1 to 22 visiting 4 7 Figure 5: SPMN_22full:A path from 1 to 22 visiting
101618 21 all the nodes

49

2 9
f 6 f 26 * 36 46
3 * 10 20 23 ‘ 30 33 » 40 43 50

f 7 17 27 37 47
4 14 21 31 34 41 44 S1

\ 8 18 28 38 48

Figure 6: SPMN_52a:A path from 1 to 52 visiting 11 13 24 39 45

In our experiments, we have made five types of tests: using SPMN without Reachability (column
“SPMN”), using SPMN and Reachability but without computing cut nodes nor bridges (column “SPMN+R”),
using SPMN and Reachability but without computing bridges (column “SPMN+R+CN”), using SPMN and
Reachability but without computing cut nodes (column “SPMN+R+BE”), and using SPMN and Reachability
(column “SPMN+R+CN+BE”).

As it can be observed in Table 4, we were not able to get a solution for SPMN 22 in less than 30 minutes

5) 13 25 3 a
(2)) ® 2 3
&
) 3
[¥ @
® 1)) 3D & 4] @2 5]
29) 39) 48

Figure 7: SPMN_52full: A path from 1 to 52 visiting all the nodes

i . Opt. Nodes Failures Time

Name Figure Source Destination Mand. Nodes Order

5 30 89
SPMN_22 4 1 22 4710161821 fase

10 42 129
SPMN_22full 5 1 22 al false

15 158 514
SPMN_52a 6 1 52 1113243945 fase

20 210 693
SPMN_52b 6 1 52 45713161922 fase

25 330 1152

2429333639444549

32 101 399
SPMN_52full 7 1 52 all false

37 100 402
SPMN_520rder_a 6 1 52 4539241311 true

42 731 3518
SPMN_520rder b 6 1 52 1113243945 true

47 598 3046

Table 2: Simple Path with mandatory nodes instances Table 3: Performance
with respect to optional
nodes

without using Reachability. In fact, we did not even try to solve SPMN_52b without it. However, even
though the number of failures is still inferior, the use of Reachability does not save too much time when
dealing with mandatory nodes only. This is due to the fact that we are basing our implementation of SPMN
on two things: the use AlIDiff [17] (that lets us efficiently remove branches when there is no possibility of
associating different successors to the nodes) and the use NoCycle [4] (that avoids re-visiting nodes).

The reason why SPMN does not perform well with optional nodes is because we are no longer able to
impose the global AlIDiff constrain on the successors of the nodes since we do not know a priori which
nodes are going to be used. In fact, one thing that we observed is that the problem tends to be harder to solve
when the number of optional nodes increases. In Table 3, all the tests were performed using Reachability on
the graph of 52 nodes.

Even though, in SPMN_22, the benefit caused by the computation of bridges is not that significant, we
were not able to obtain a solution for SPMN 52b in less than 30 minutes, while we obtained a solution in 402
seconds by computing bridges. So, even though the computation of bridges is costly, that computation pays
off in most of the cases. Nevertheless, cut nodes should be computed in order to profit from the computation
of bridges.

Problem SPMN SPMN+R SPMN+R+CN SPMN+R+BE SPMN+R+CN+BE
Instance Figure Failures Time Failures [Time Failures Time Failures [Time Failures | Time
SPMN_22 4 +130000 | +1800 | 91 6.81 40 6.55 70 1376 13 4.45
SPMN_22full 5 213 1.44 19 0.95 0 0.42 19 276 0 122
SPMN_52b - - - +900 +1800 +700 +1800 +1000 +1800 100 402
SPMN_52full 7 3012 143 774 765 3 851 +700 1800 3 45.03
SPMN_520rder-a 6 +12000 +1800 51 46.33 55 81 27 97 16 57.07
SPMN_520rder_b - +12000 +1800 | +1500 +1800 | 81 157 +400 +1800 | 41 117

Table 4: Simple Path with mandatory nodes tests

4.1 Labeling strategy

Reachability provides interesting information for implementing smart labeling strategies due to the fact that
it associates each node with the set of nodes that it reaches. This information can be used to guide the search
in a smart way. For instance, we observed that, when choosing first the node that reaches the most nodes,
we obtain paths that minimize the use of optional nodes (as it can be observed in 6).

4.2 Imposing order on nodes

An additional feature of Reachability is the suitability for imposing dependencies on nodes (which is a
common issue in routing problems). In fact, it might be the case that we have to visit the nodes of the graph
in a particular (partial) order.

Our way of forcing a node 4 to be visited before a node j is by imposing that 4 reaches j and j does not
reach 7. The tests on the instances SPMN_520rder_a and SPMN _520rder_b show that Reachability takes
the most advantage of this information to avoid branches in the search tree with no solution. Notice that
we are able to solve SPMN_520rder_a (which is an extension of SPMN_52a) in 57.07 seconds. We are also
able to detect the inconsistency of SPMN 520rder b in 117 seconds.

5 Reated work

e The cycle constraint of CHIP [1, 2] cycle(N, [S1, ..., Sn]) models the problem of finding IV distinct
circuits in a directed graph in such a way that each node is visited exactly once. Certainly, Hamiltonian
Path can be implemented using this constraint. In fact, [2] shows how this constraint can be used to
deal with the Euler knight problem (which is an application of Hamiltonian Path). However, this
constraint only covers the case where we are to visit all the nodes of the graph, which is a specific
case of Simple Path with mandatory nodes.

e [19] suggests some algorithms for discovering mandatory nodes and non-viable edges in directed
acyclic graphs. These algorithms are extended by [3] in order to address directed graphs in general
with the notion of strongly connected components and condensed graphs. Nevertheless, examples
like SPMN_52a represent tough scenarios for this approach since almost all the nodes are in the same
strongly connected component.

e CP(Graph) introduces a new computation domain focussed on graphs including a new type of vari-
able, graph domain variables, as well as constraints over these variables and their propagators [7,
8]. CP(Graph) also introduces node variables and edge variables, and is integrated with the finite

10

domain and finite set computation domain. Consistency techniques have been developed, graph
constraints have been built over the kernel constraints and global constraints have been proposed.
Path(p, s,d, maxlength) is one of these global constraints. This constraint is satisfied if p is a sim-
ple path from s to d of length at most maxiength. Certainly, Simple Path with mandatory nodes can
be implemented in terms of Path. However, we still have to compare the performance of Reachability
with respect to this approach.

6 Conclusion and future work

We presented Reachability: a constrained path propagator that can be used for speeding up constrained path
solver. After introducing its semantics and pruning rules, we showed how the use of Reachability can speed
up a standard approach for dealing with Simple Path with mandatory nodes.

Our experiments show that the gain is increased with the presence of optional nodes. This is basically
because we are no longer able to apply the global AlIDiff since we do not know a priori which nodes
participate in the path.

From our observations, we infer that the suitability of Reachability is based on the strong pruning that
it performs and the information that it provides for implementing smart labeling strategies. We also found
that Reachability is appropriate for imposing dependencies on nodes. Certainly, we still have to see whether
our conclusions apply to other types of graphs.

It is important to remark that both the computation of cut nodes and the computation of bridges play
an essential role in the performance of Reachability. The reason is that each one is able to prune when the
other can not. Notice that Figure 2 is a context where the computation of bridges cannot infer anything since
there is no bridge. Similarly, Figure 3 represents a context where the computation of bridges discovers more
information than the computation of cut nodes.

A drawback of our approach is that each time we compute cut nodes and bridges from scratch, so one
of our next tasks is to overcome this limitation. l.e., given a graph g, how can we use the fact that the set
of cut nodes between 4 and j is s for recomputing the set of cut nodes between 4 and j after the removal of
some edges? We believe that a dynamic algorithm for computing cut nodes and bridges will improve our
performance in a radical way.

As mentioned before, the implementation of Reachability was suggested by a practical problem re-
garding mission planning in the context of an industrial project. Our future work will concentrate on
making propagators like Reachability suitable for non-monotonic environments (i.e., environments where
constraints can be removed). Instead of starting from scratch when such changes take place, the pruning
previously performed can be used to repair the current pruning.

References

[1] N. Beldiceanu and E. Contejean. Introducing global constraints in chip, 1994.

[2] E. Bourreau. Traitement de contraintes sur les graphes en programmation par contraintes. Doctoral
dissertation, Université Paris, Paris, France, 1999.

[3] H. Cambazard and E. Bourreau. Conception d’une contrainte globale de chemin. In 10e Journées
nationales sur la résolution pratique de problémes NP-complets (JNPC’04), pages 107-121, Angers,
France, June 2004.

[4] Y. Caseau and F. Laburthe. Solving small TSPs with constraints. In International Conference on Logic
Programming, pages 316-330, 1997.

11

[5] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT Press, 1990.
[6] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[7] G. Dooms, Y. Deville, and P. Dupont. Constrained path finding in biochemical networks. In 5emes
Journées Ouvertes Biologie Informatiqgue Mathématiques, 2004.

[8] G. Dooms, Y. Deville, and P. Dupont. CP(Graph):introducing a graph computation domain in con-
straint programming. In CP2005 Proceedings, 2005.

[9] F. Focacci, A. Lodi, and M. Milano. Solving tsp with time windows with constraints. In CLP’99
International Conference on Logic Programming Proceedings, 1999.

[10] M. Garey and D. Johnson. Computers and Intractability: A Guide to the The Theory of NP-
Completeness. W. H. Freeman and Company, 1979.

[11] C. Gervet. Interval propagation to reason about sets: Definition and implementation of a practical
language. CONSTRAINTS journal, 1(3):191-244, 1997.

[12] Mozart Consortium. The Mozart Programming System, version 1.3.0, 2004. Available at
http://www.mozart-0z.org/.

[13] T. Miiller. Constraint Propagation in Mozart. Doctoral dissertation, Universitdt des Saarlandes,
Naturwissenschaftlich-Technische Fakultét I, Fachrichtung Informatik, Saarbriicken, Germany, 2001.

[14] G. Pesant, M. Gendreau, J. Potvin, and J. Rousseau. An exact constraint logic programming algorithm
for the travelling salesman with time windows, 1996.

[15] L. Quesada, P. Van Roy, and Y. Deville. Reachability: a constrained path propagator implemented as
a multi-agent system. In CLEI2005 Proceedings, 2005.

[16] L. Quesada, P. Van Roy, and Y. Deville. The reachability propagator. Research Report INFO-2005-07,
Université catholique de Louvain, Louvain-la-Neuve, Belgium, 2005.

[17] J. C. Régin. A filtering algorithm for constraints of difference in csps. In In Proceedings of the Twelfth
National Conference on Artificial Intelligence, pages 362-367, 1994.

[18] C. Schulte. Programming Constraint Services. Doctoral dissertation, Universitat des Saarlandes,
Naturwissenschaftlich-Technische Fakultét I, Fachrichtung Informatik, Saarbriicken, Germany, 2000.

[19] M. Sellmann. Reduction Techniques in Constraint Programming and Combinatorial Optimization.
Doctoral dissertation, University of Paderborn, Paderborn, Germany, 2002.

[20] Y. Shiloach and Y. Perl. Finding two disjoint paths between two pairs of vertices in a graph. Journal
of the ACM, 1978.

[21] P. Van Roy and S. Haridi. Concepts, Techniques, and Models of Computer Programming. The MIT
Press, 2004.

12

