Declarative Laziness in a
Concurrent Constraint Language

Alfred Spiessens, Raphaél Collet, and Peter Van Roy

Université Catholique de Louvain,
Place Sainte-Barbe, 2, B-1348 Louvain-la-Neuve, Belgium
{fsp,raph,pvr}@info.ucl.ac.be

Abstract. This paper explains how to design and implement an ex-
tension for by-need synchronization for a confluent (subset of a) multi-
paradigm concurrent constraint language, while keeping the extended
language confluent. It reveals the subtleties and pitfalls that can easily
lead to the loss of confluence, especially in languages with a powerful
unification operator. The authors report on their own experiences, and
provide guidelines for similar projects, based on considerations regard-
ing the monotonicity of the constraint store. This paper also explores the
boundaries of confluent extensibility for such languages.

1 Introduction

Confluence, or deterministic concurrency, has many advantages for application
design and analysis, for security, but also for pedagogical purposes. As Oz is
a multi-paradigm language, used for concept-based teaching of programming
skills [8], and at the same time as an instrument for research, it was conceived
to be very important to have a well-defined deterministic concurrent subset of
the language that can guarantee the confluence of all programs written in it. As
an initial construct for by-need synchronization turned out to be not confluent,
an investigation was done to find the reasons for the loss of confluence and,
if possible, also find the cure. We succeeded in both goals, and we report on
our most important experiences and conclusions from this investigation in this
paper.

The paper is organized as follows. Section 2 defines a concurrent constraint
language that is confluent. Sections 3 and 4 give two diflerent language exten-
sions for by-need synchronization. The first is shown non-confluent, while the
second respects confluence. Section 5 compares our results with another lan-
guage, namely Curry. Section 6 then proposes a way to implement our ideas.

2 A Concurrent Language with Unification

This section defines a small concurrent language £, with logic variables and
unification on rational trees. A program in £ consists of a set of threads that
modify a shared constraint store. The computation model of £ is very close to
Saraswat’s concurrent constraints [6]. The language £ is a declarative subset of
the multiparadigm programming language Oz [4,7].

store gu=¢1 A Ay
constraint ¢ == z=y | z=v| £ : proc {$ X;---X,} Send
partial value v u=1(z1---2,) | &

Fig. 1. Abstract syntax of constraint stores

2.1 The Constraint Store

The syntax of constraint stores and partial values is given in Fig. 1. A constraint
store o consists of a conjunction of elementary constraints ¢; over store entities.
The empty store, i.e., without constraint, is written T. The main constraint in
our system is equality between logic variables z,y, 2, or between a variable and a
partial value v. A value is either a name £ (see below), or a record l(xy - - - x,,) with
n > 0, where | denotes a literal. A record is also called a partial value because
its contained variables z; may be not constrained. The third kind of constraint
is an association between a name £ and a closure proe (s X;---X, } Send. Such
associations are always unique. A name is an internal store value without a
representation in a program, while a closure represents an abstraction of a state-
ment S.

A store ¢ entails a given constraint ¢ if ¢ is logically implied by the store
constraints. We write this as o |= ¢. Two stores o and o’ that entail each other
are said to be equivalent, which is written o = ¢’. A variable £ bound by equality
to a value v is said to be determined. We write this as o |= det(z).

A store is consistent if there exists a valuation of the variables that satisfies
all its constraints, otherwise it is inconsistent. The constraints ¢ are chosen so
that the consistency of a store is a decidable property. An inconsistent store is
written L.

Two operations exist on constraint stores: ask and tell. Asking a constraint ¢
is waiting until the store entails or disentails ¢, i.e., o = ¢ or ¢ = =¢. Telling a
constraint ¢ to a store o is updating the store to o A @. A program fails when it
tells a constraint that makes the store inconsistent. In that situation, the whole
program stops and the store becomes L. A practical language such as Oz actually
does not tell constraints that makes the store inconsistent, but rather uses an
exception mechanism. We did not include such a mechanism in our language,
because in the presence of concurrency it leads to nondeterminism.

2.2 The Language £

The syntax of statements S is given in Fig. 2. The letters X, Y, P denote iden-
tifiers, and ¢ denotes a term. The lexical scope of an identifier X is restricted
by

— a variable declaration (1ocal X in...end),
— a case statement (case...of [(...X...) then...end),
— a procedure definition (proec {P...X...}...end).

statement S ;= skip (empty statement)
| 518 (sequence)
| thread S end (thread creation)
| local X in § end (variable declaration)
| X=t (unification)
| case X of I(Y1---Y3) (

then §; else S; end
| proe {P X;---X.} Send (procedure creation)
| (P Xy X} (procedure application)

term tu=Y [I(Y1---Y])

pattern matching)

Fig. 2. Syntax of the language £

A small-step operational semantics of £ is given in Fig. 3. It defines transition
rules between configurations, which are applicable when a certain condition is
satisfied. A configuration 7 /o consists of a multiset 7 of threads (T})1<i<a’,
together with a constraint store o. A thread is a stack of semantic statements. A
semantic statement is a statement S where every free identifier has been replaced
by a store variable. An abstract syntax for threads is

T == QST ,

where S denotes a semantic statement. The statement in front of a thread is the
next statement to execute. A transition between configurations 7 /o and T’ /o’

is written
1
LHL, condition .
oo

Rules (1) state that threads execute with an interleaving semantics. A thread
with no statement is terminated, it eventually disappears. When the store be-
comes inconsistent, all threads may disappear. Rules (2) define the semantics
for the empty statement, the sequence, and thread creation. In (3), a new vari-
able z is introduced by replacing all the occurrences of the declared identifier X
in its lexical scope by . The substitution function is noted {X—a}. With (4), a
unification simply tells a constraint in the constraint store; u is either a variable
or a partial value. The store might become inconsistent. Rules (5) and (6) make
the case statement block until the variable £ becomes determined. The state-
ment then reduces to the first statement if the value of & matches the pattern
[(Y1---Y,), or the second statement otherwise. In (7), the statement proe cre-
ates a closure in the store, with a fresh name £, then reduces to an unification.
In (8), applying a procedure consists in taking the closure associated to p in the
store, and substituting the arguments in the statement S.

! For the sake of simplicity, we denote 7 as a sequence T} ...T,, the order being
irrelevant in this context.

il
2

- I
8 G A F)
(skipT) [T ($1 S T)||[(S1 (S T (thread S end T)|T (S () |,
o e L o G
{local X J;n Send T) H S{X:m}) z fresh variable (3)
(x:: n H - Afl;:u if ¢ A z=u is consistent <$:: D n otherwise (4)

case z of [(Y1---Y})
< then 5) else 5; end T> H (Si{imy, ., Yoroyn} T) if o = a=l(y1 - yn)

o o
(5)
<casewof (Y1---Yy) >H(S2)
then S; else Sy end T otherwise (6)
o | o
proc {p X;---Xnt SendT p=¢T
(o >Ha/\§:proc({$X1-)--Xn}S’end § fresh name (7)

({p &1z} T) [{(S{X1@1,..., Xnran} T) if 0 | p=tA (8)
o || o ¢ :proc{$X;---Xn} Send

Fig. 3. Small-step semantics of the language £

We assume that the execution is fair, i.e., a thread cannot be kept runnable
without being executed. The reader can easily check {rom the rules that a
runnable thread stays runnable until execution.

2.3 The Confluence of £

The concurrent nature of £ is such that the language is confluent, which means
that the “result” of a program (i.e., its final configuration) is always the same,
whatever the order of thread reduction. In other words, every program is deter-
ministic.

Some transition rules introduce fresh symbols, namely variables in (3) and
names in (7). The confluence should not depend on the choice of those symbols.
We thus define an equivalence between configurations as follows. Let 7 /o and
T’ /o’ be configurations, and V be a set of variables. The configurations are said
to be equivalent modulo V, which we write T /o = T'/o’ (V), il there exists a
bijection r such that

— r maps variables to variables, and names to names;

— 1 is the identity function on V;

— r(T) =T and r(o) = o', where r is used as a replacement on statements
and stores.

We define a transition relation that relates configurations up to equivalence.
We write T /o — T' /o' (V) if there exists a finite execution with the transition
rules of £, with 7 /o as initial configuration, and whose final configuration is
equivalent to 7' /¢’ modulo V. The confluence property is then defined as follows.

Theorem 1 (Confluence). Let T /o, Ti /o1 and Ta/oy de- T/o

note configurations, and V be a set of variables. NN
IfTijo1 «— T]o — T2/02(V), then there exists a configu- TiJor Tafo2
ration T' [0’ such that T1 /o1 — T' o’ <— Ta/o2(V). N

The diagram on the right depicls this property. T |0’

From this property, we can easily characterize the executions of a program.
For instance, if a program fails in one execution, it always fails. In that case,
every execution will reach the final configuration {}/L. Note that this configu-
ration is clearly not equivalent to a program that terminates with some threads
still blocked (not runnable). Such a program can be qualified as partially ter-
minated. This means that if an “external agent” tells some constraints in the
program’s store, the program might execute further, and possibly reach a new
partial termination, which is unique by confluence.

2.4 Functional Programming in £

Our language is expressive enough to reproduce the behavior of functional pro-
grams. The idea is simply to translate a functional program into £, functions
becoming procedures, and expressions being expressed in elementary operations.
The following simple example gives an idea of this translation. The “bar” oper-
ator X|Xr is a simple notation for a record like cons (X xr).

proc {Append Xs Ys Zs}
case Xs of X|Xr then

fun {Append Xs Ys} local 7r in

case Xs of X|Xr then

7Zs=X|7Zr
X| {Append Xr ¥s} {Append Xr Ys Zr}
else Ys end be
end end
else 7s=Ys end

end

3 A Flawed Definition of By-need Synchronization

In this section we present the definition of by-need synchronization described
in [3]. It is implemented in Mozart [4] at least until the current version (1.2.5). We
will show that it does not respect the confluence of the language, and investigate
why.

statement S :u=... (syntax rules defined in Fig. 2)
| {ByNeed P X} (execution of P when X is needed)

Fig. 4. Syntax extension of the language £ with ByNeed

3.1 Naive Definition and Semantics

The ByNeed construct allows a computation to be associated to a logic variable,
which represents the result of the computation. The computation will be per-
formed as soon as its result becomes needed. Figure 4 shows the added statement.

The operational semantics are set up in a way as to assure the following rules
in the computation. We use x and p as the variable and its associated calculation,
respectively.

— {p z} will be calculated as soon as a statement needs the variable « for its
reduction.

— A statement needs z if it cannot reduce without & being determined.

— The unification of z with a determined variable needs z. This will protect
from being unified with a value before p itself has ended. Only the proper
invocation of {p z} will be allowed to bind z.

— The unification of x with another by-need variable needs z. This rule en-
sures that, if {p} would itsell return a by-need variable, the latter would
immediately be calculated before being assigned to z.

— {p z} will be calculated at most once for every application of {ByNeed p z}.

The reader will notice that this definition of ByNeed is indeed inspired by
functional programming. It is modeled after a typical “let” construct [1,2,5]
allowing for the declaration of a value with a predefined expression, and in the
mean time protecting the variable from being overwritten by another value. This
was translated into our programming language, which provides functions as syn-
tactic sugar for procedures with at least one parameter (see Sect. 2.4). However,
most constructs in our language stem from concurrent constraint programming.
It is one of these differences with other multi-paradigm languages [1,2] that
would turn out to be important in unexpected ways.

3.2 Counterexample for Confluence

We found a counterexample that proved ByNeed to introduce non-confluence in
the language, when we examined the following procedure and its applications.

proc {ReadOnly X Y} % make Y a read-only version of X
Y={ByNeed proc {$ Z} {Wait X} Z=X end}
end

Since every attempt to unify v to a value (or another read-only variable) will start
the computation, and synchronize on x becoming bound, this was an obvious
application for the ByNeed function. The following application defies confluence.

local X Y Z in

thread X=Y end

thread Y=2 end

thread X=1 end

thread X={ReadOnly 7} end
end

Depending on the order of execution, this example will fail or succeed. Let us
look at it in detail:

1. Suppose these concurrent statements are executed in the order of their defi-
nition. First both free variables x and Y are unified. This statement just adds
the equality constraint to the store. Then vy=2 unifies v with the constant 2,
resulting in both x and v having the value 2. The next statement x=1 will
then fail because it would introduce inconsistency into the store. The last
statement will not be executed due to the failure.

2. When the concurrent statements are executed in the reverse order, something
different happens. First x becomes a by-need variable, to be bound to the
eventual value of z. Next x=1 triggers the computation of the value of x,
causing an indefinite waiting for z to become determined. The statement
v=2 binds v to 2. At last, x=v waits indefinitely for x to become determined
via z. Since 7z is local within leecal ... end, no constraint can be added
to the store afterwards, that would bind 2 to a value. This means that both
executions are not confluent.

The fact that ByNeed can be used to make unification block was quickly
generalized to the following observation: Any language construct that can make
our unification operator block, will introduce non-confluence in the language.
This is shown in the following generalized example in pseudo-code.

local X Y Z in
thread setup X and 7 to make X=7 block end
thread x=Y tell C1 end
thread v=7 tell C2 end

end

The execution of the first thread prevents the unification of x and z to reduce.
Therefore the second thread can still tell its constraint C1, but the third thread
blocks. Changing the order of execution of the threads results in either CZ, or
C?2, or both to be told to the store. If C1 and €2 are chosen to be incompatible,
the computation can also fail due to inconsistency. In Sect. 5 we explain why
this observation cannot be done in the subset of Curry, described in [2].

Our unification operator is constraint-oriented. That means that the unifi-
cation of free variables z and y adds the constraint =y to the constraint store,
and does not have to wait for or y to become determined. It is also a very rich
and powerful monotonic unification operator, that unifies partial values into the
union of the information they carry. It causes a failure if the partial values z
and y are incompatible.

3.3 The Reason for the Loss of Confluence

The deep reason for the loss of confluence is the loss of monotonicity. This is
best understood in the context of the ask and tell operators of CCP (see [6]
and Sect. 2.1). Before the introduction of ByNeed, unification was a simple tell
operation, adding the equality constraint to the store and never blocking. ByNeed
seems to have somehow turned unification into an ask operation, since it now
can block. The unification of a by-need variable 2 with a needed variable y (or a
partial value) transfers the need to z and triggers the evaluation of the expression
associated with z. But in a monotonic setting, an operation should not block
with a constraint store with more information available than in another store it
does not block with.

To ensure confluence, monotonicity is to be kept in all the state transitions
from a free to a determined variable. Since unification (now an ask operation)
blocks for by-need variables, it should also block for free variables.

4 A Good Definition of By-need Synchronization

In this section we give the revised definition and semantics of by-need syn-
chronization, and give its interpretation in terms of constraints, to show that
confluence is indeed respected this time.

4.1 Revised Definition and Semantics

We use a new constraint, need(x), to express that the determinacy of x is needed
by the program, together with a primitive statement {waitNeed z} to ask that
constraint. Figure 5 gives the syntax extension for this new primitive, and its op-
erational semantics. The relation need, (S, z) defines when a statement S needs
a variable z in the store o. We assume that this relation is stable as defined in
Def. 1 below. With this primitive we build a confluent by-need construct, that
we call onDemand to avoid confusion with the previous one.

proc {OnDemand P X}
thread {WaitNeed X} {P X} end
end

A by-need computation is now simply a thread that waits for a variable to be
needed. In order to ensure monotonicity, determined variables are always needed,
ie., det(x) = need(z). The need constraint allows to define three possible states
for a variable, namely free, needed and determined. Those three states are pre-
sented in Fig. 6.

4.2 The Revised Definition Respects the Confluence of the
Language

Let us analyze the new rules for by-need synchronization, in terms of constraints.

statement S :=...
| {WaitNeed X}

syntax rules defined in Fig. 2)
wait for X to be needed)

constraint ¢ u=... syntax rule defined in Fig. 1)

(
(
(
(

| need(z) variable z is needed)
{{WaitNeed ¢} T) ||T if o |= need(z))
o [
s 5 .
if need, (S,) and o [~ need(z) (10)

o || ¢ A need{z)

Fig. 5. Syntax and operational semantics of Wa i tNeed and need()

1. {(WaitNeed z} is a simple ask operation, just waiting for the constraint
need(z) to be entailed by the store.

2. A statement S needing z to become determined for its reduction, will simply
tell need(z). (Remember that once z is needed, it stays needed forever.)

Here the rules of the operational semantics no longer imply that a statement
should block in order to trigger the on-demand computation associated with
a variable. This is indeed the crucial difference with the previous version, and
it is enabled by the introduction of a monotonic “needed” state for variables,
visualized in Fig. 6. The unification of a needed variable with a free variable can
now make the free variable needed, (performing its “monotonic” duty) without
having to block for this transfer of need to be assured. The rReadonly function
from the example in Sect. 3.2 can no longer make unification block.

Statement causing the value
to become needed

Free Needed Determined

Statement causing determination of the variable

Fig. 6. State transitions of a variable, with the need constraint

The confluence of the language is ensured if the relation need, (S, z) is stable.

Definition 1 (Stable need). We say that the need relation need, (S, x) is sta-
ble if, for every two stores o, ¢' such that o' | o,

need, (S,z) and o [~ need(x) implies —reduce, (S) (11)
need, (S, z) implies need, (S,z) or o E need(z) (12)

This property of the relation guarantee that a statement that needs a variable
cannot reduce before need(x) is in store (11), even when the store is evolving
monotonically (12). A simple case-analysis of all semantic rules, by checking
the conditions for reduction, now reveals that every statement in the language
respects confluence.

The following need relation, defined as in [8], is an example of a stable need
relation, but others are possible.

need, (S, z) iff —reduce,(S)
and 3o’ : o' |F o and reduce,(S)
and Yo' : o' = o and reduce, (S) implies o |= det z

4.3 A Few More Remarks

Need-Triggered Execution. In contrast with “function-oriented” multi-pa-
radigm languages, by-need synchronization unifies the variable to its eventual
value inside the procedure it was associated with by the application of onpemand.
But of course the decision to unify its parameter to a value is up to the pro-
cedure. This provides a more general mechanism for any kind of computation
synchronizing on the need of a variable.

Efficient Implementation. The fact that onDemand itsell does not tell any
information to the store before asking for the need(x) condition, indicates that
there is no need for an “on-demand” state in this new definition. No difference
is detectable in the store before and after the application of onbemand. This
observation drastically simplifies the implementation of onDemand, as described
in Sect. 6.

The Definitive Loss of a Confluent Read-Only. The operation 0nDemand
can no longer be used to build read-only variables that cause unification to block.
A “read-only” variable build as in Sect. 3.2 will be forced to become determined
upon unification with a value. In fact it becomes clear that our language will
never be able to protect variables by causing their unification to block, while
respecting confluence.

5 Related work

The language Curry [1,2] is a good example to compare to. Curry is an integrated
{unctional logic language. It combines features from functional programming
(nested expressions, higher-order functions, lazy evaluation), logic programming
(logical variables, partial data structures, built-in search), and concurrent pro-
gramming (concurrent evaluation of expressions with synchronization on logical
variables). Curry is confluent.

The definitions of laziness and unification in Curry are a bit different from
our language. In order to show those differences, we can compare the Curry
constraint on the left with the Oz constraint on the right:

local X Y in

let x = <expri> X={OnDemand proc {$ Z} Z=<exprl> end}
y = <expr2> Y={OnDemand proc {$ Z} Z=<expr2> end}
in x ==y X=Y
end

Though they look similar, they behave differently. The Curry constraint x =:= y
forces both expressions to be evaluated, then it checks for the satisfiability of the
equality. The Oz constraint x=v does not force the by-need computations, since
both x and v are simply free. Both will be forced only when x (or v) becomes
needed.

What makes Curry confluent is the way logic variables relate to “normal”
variables. A variable declared in a let construct is associated to an expression
that is evaluated lazily. So a variable is always declared {ogether with an expres-
sion. A logic variable is a special case, where the associated expression does not
give a value, but rather a black hole. Logic variables are typically declared as in

let x = x in x =:= 42

In Curry a logic variable is a variable whose complete evaluation does not lead
to a value. By the way the language is defined, it is not possible to associate
a lazy computation to a logic variable. This is why unification forces its both
arguments to be evaluated.

6 Implementation

We now describe how to extend an existing implementation of Oz, which our
language £ was a subset of. The constraint store of Oz is implemented as a
graph, where nodes are variables and partial values. Each equivalence class of
variables has a union-find structure, i.e., each variable node (except one) has an
outgoing edge to another variable node in the same equivalence class, and those
nodes form a tree where the edges are directed to the root node. The latter is
the class representative. It may have an outgoing edge to a value node, meaning
that the variable is bound to the given value.

When a thread blocks on a variable (asking for a constraint on that variable),
a reference to the thread is put in a suspension list associated to the class
representative of the variable. When a constraint is put on the variable, all the
threads in the suspension list are woken up, and given to the thread scheduler.
The suspension list allows to synchronize threads on constraints.

We simply extend this suspension list so that it also handles the constraint
need(z). Each class representative now has a needed state that tells whether
the variable is needed or not. When a thread blocks on need, and the variable
is not needed yet, the thread is simply put it the suspension list. As soon as
the variable becomes needed, the threads in the suspension list are woken up.

If a thread blocks on determinacy, we set the variable in the needed state and
schedule the threads in the suspension list. When a variable z is bound to a
value, we simply schedule its suspension list.

The implementation is in progress and will be part of a future release of
Mozart [4].

7 Conclusion

We have tried and succeeded in extending a deterministic (subset of a) multi-
paradigm CCP language with by-need synchronization, while respecting con-
fluence. For constraint-oriented multi-paradigm languages, such an extension
is not straightforward, and should not be based naively on its counterpart in
{unction-oriented multi-paradigm languages. We showed that the semantics of
the unification operator makes a subtle difference that can have an important
influence on the confluence of the extended language. Finally, we gave an exam-
ple of how reasoning from constraints and monotonicity should guide the design
for confluence-preserving extensions of multi-paradigm CCP languages.

Acknowledgements

This research was partly funded by the MILOS project of the Walloon Region
of Belgium (convention 114856).

References

1. M. Hanus. A unified computation model for functional and logic programming. In
Proc. 24st ACM Symposium on Principles of Programming Languages (POPL’97),
pages 80-93, 1997.

2. M. Hanus, H. Kuchen, and J.J. Moreno-Navarro. Curry: A truly functional logic lan-
guage. In Proc. ILPS§’95 Workshop on Visions for the Future of Logic Programming,
pages 95-107, 1995.

3. Michael Mehl, Christian Schulte, and Gert Smolka. Futures and by-need synchro-
nization. Technical report, Programming Systems Lab, DFKI and Universitit des
Saarlandes, May 1998. DRAFT.

4. Mozart Consortium (DFKI, SICS, UCL, UdS). The Mozart programming system
(Oz 3), January 1999. Available at http://www.mozart-oz. org.

5. Simon Peyton Jones, editor. Haskell 98 language and libraries: The revised report.
Cambridge University Press, 2003. Also published as the January 2003 Special Issue
of the Journal of Functional Programming.

6. Vijay A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.

7. Gert Smolka. The Oz programming model. In Computer Science Today, Lecture
Notes in Computer Science, vol. 1000, pages 324-343. Springer-Verlag, Berlin, 1995.

8. Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer
Programming. 2002. Work in progress. Expected publishing date 2003.

