
2nd Workshop on Object-Oriented Language Engineering
for the Post-Java Era: Back to Dynamicity

The Unavoidable Failure of Class-Based Languages
in the Processor Cloud Era

Sebastían Gonźalez2, Wolfgang De Meuter1

Kim Mens2, Theo D’Hondt1

1. Programming Technology Lab
Vrije Universiteit Brussel, Belgium

{wdmeuter,tjdhondt }@vub.ac.be

2. Département d’inǵenierie informatique
Universit́e catholique de Louvain, Belgium
{sgm,kim.mens }@info.ucl.ac.be

April 20, 2004

Abstract

Classes are problematic in pervasive computing — systems we call “processor clouds” — where
computers appear and disappear dynamically in a network. Problems with classes are mainly due to
the dynamically distributed nature of these systems. The root cause of the problems is that the class-
instance relationship is implicit. Two main manifestations are: state sharing vs. distribution conflicts,
and inefficiencies caused by the binding of classes and their transitive closure to objects. The latter is
worse in the case of statically typed languages.

1 Introduction
More than a decade ago, the combination of wireless networks and miniaturisation started buzzing peo-
ple’s minds with the possibility of interconnecting heterogeneous computers and embedding them in the
human habitat, such that they would assist human activities by interacting in the most intricate ways.
This attractive vision for the future of computing has received many names, each one with its own nu-
ances:ubiquitous computing[Wei91], pervasive computing[Sat01], the latest (European) termambient
intelligence[Sha03], and more.

We are still expecting the paradigm shift from semi-isolated computers (e.g. client-server models
using static networks), to heterogeneous devices interacting in dynamic networks. The enthusiasm has
stood this many years as technology seems to converge more and more to the point of making pervasive
computing possible. On the software side, we observe progress on the development of platform infras-
tructure: service discovery, checkpointing, migration, replication, etc., i.e. progress on middleware. Yet
not a lot of effort has been invested on programming technology and software engineering: program-
ming languages and composition mechanisms for the new computing environments, which we like to
call “processor clouds” — hence the title of the paper.

Currently we are researching the application of object-based programming [Weg87] to processor
clouds. This family of paradigms has members such as the actor-based, prototype-based and class-based
paradigms. The least common denominator in the family is naturally the concept ofobject, i.e.

encapsulated state + message passing

1



In the encapsulation metaphor, state is “covered by a capsule” (aninterface). Two objects differing in
their internal representation but having a common interface look the same from the outside, and are thus
interchangeable (polymorphic).

Object-based programming, in this broad sense, is considered to be well suited to the programming
of processor clouds, for the following reason:

Objects help abstracting semantically coherent software units by merging state and be-
haviour, the two essential ingredients in computer alchemy. Objects are easy to think about,
and thanks to encapsulation and polymorphism are prepared for highly dynamic environ-
ments where emphasis is put on unanticipated interaction.

We agree on using object-based programming as a possible approach to processor cloud programming,
but we see a major pitfall in attempting to use the class-based sub-paradigm exclusively. Our bet is that
classlessobject-based technologies will make a programmer’s life easier. A second hypothesis is that, in
the spectrum of possibilities, dynamic typing will play a central role as well, but here we will treat this
hypothesis tangentially. Our goal is to explain why we believe that class-based programming is doomed
to fail in the context of processor clouds.

2 The Fundamental Problem
“Distribution transparency is impossible to achieve in practice, and precisely because of

that impossibility, it is dangerous to provide the illusion of transparency.” [GF99]

The main problem with class-based languages for OO distributed programming is the implicit, un-
avoidableclass-instancerelationship, which becomes explicit under distribution. The kind of distribution
we consider here isdynamic distribution, meaning that

• the distribution of objects among nodes can change, i.e. objects may migrate, and

• the network composition varies randomly, i.e. network nodes may appear and disappear.

The cost of keeping the class-instance relationship consistent (and thus implicit) behind the scenes in
a dynamic distributed system is prohibitive. Furthermore, the programmer has to deal with the conse-
quences of such relationships all the time, yet she has no way to control and manipulate them, or to avoid
their use in specific situations.

The following sections show concrete incarnations of the problem.

3 Sharing vs. Distribution
Classes have many roles in class-based languages [BL92]. Among others,

• modelling of domain concepts (Scandinavian school),

• hierarchical organisation of these concepts (classification),

• instance description and creation,

• typing, and

• static, implicit sharing mechanism of state and behaviour[SLU89].

This role overloading makes classes conceptually less clear and difficult to manage. But the main prob-
lem concerning their use in distributed systems is the last one, i.e. that classes are a resource sharing
mechanism. Their nature calls for the well known conflicts between sharing and distribution:

• When shared data is kept centralised, the node containing the data becomes a bottleneck, and
worse, the entire system is fragile since there is a dependency on that single node — this leads to
partial failure management problems.

• If, on the other hand, the data is replicated among multiple nodes (e.g. to increase robustness), the
system must keep all the copies synchronised — a replica management problem.

Both problems are hard and sometimes unavoidable — but we should not call for them unnecessarily. In
the case of class-based programming, classes must be either centralised or replicated in every node. Both
alternatives harm the operation of a processor cloud.

We do not argue that information sharing can or should be avoided in distributed systems: in fact
it is often essential. Wedo argue that, by using classes, trouble is takena priori — trouble we cannot

2



avoid since instances cannot exist without their classes. Two concrete manifestations of the sharing vs.
distribution conflict in classes are shown next.

3.1 State Sharing: Class Variables
A patent manifestation of the sharing vs. distribution problems is class variables (a.k.a. static variables).
The majority of current class-based systems overlook this problem. The semantics of class variables are
not enforced in the presence of distribution: copying a class containing class variables from one node to
the next does not start an underlying replica management system that would keep all the variable copies
synchronised. The semantics of class variables is thusbroken. Worse, it cannot be fixed since having
an underlying replica management mechanism is impossible in processor clouds: if two devices go out
or reach and they update a class variable with different values and then they rejoin the network, the
inconsistency cannot be solved.

The alternative of centralising classes is also not possible in processor clouds: in these dynamic
networks there cannot be a central authority, e.g. suppose a device goes out of reach; who would be its
central authority? it would have to stop operating until rejoining the network, wich is unacceptable.

One might reply to this state sharing argument by eliminating class variables from class-based pro-
graming, which is feasible. This would fix the problems presented so far. But the problem is in fact the
sharing ofanyresource. As shown next, similar problems arise with code sharing — one of the principal
roles of classes. One can eliminate class variables from class-based programming as suggested before,
but one cannot “fix” the paradigm by overruling methods!

3.2 Code Sharing: Class Methods
Class variables are one part of the shared information in a class. Method implementations are the second
part, they are also shared among class instances.1 The problem of class variables is just the same for
methods. Suppose a node receives the same class along two different paths, but the two versions have a
different implementation for a method... which one is to be considered correct?

In class-based technologies, classes (e.g. class libraries) are often replicated among nodes without an
appropriate replica or version management mechanism. The effects of distribution are somewhat relaxed
by the standardisation of the basic classes (for instance all thejava.* packages in Java). Since a copy of
the basic classes can be assumed to exist in every node, replication consistency is guaranteed. It is clear
though that this is a partial solution only, as any user-written class breaks the replication harmony.

Even for standard libraries, there might be many versions of a same class circulating in the system
(e.g. JRE 1.1 vs. JRE 1.2). This issue can be solved by backwards-compatibility, i.e. by marking
obsolete methods “deprecated” as in Java. This way, given any two versions of the same class, one class
will be a subset of the other (i.e. the newer class will contain all the methods of the older class, some
possibly deprecated). The interference problem is solved then by choosing the newest version, which is
supposed to be compatible with the older one. This solution is weak and ad hoc, as classes would grow
forever, full with deprecated methods, becoming incontrollable entities. And even if only a few methods
are deprecated, sharing this legacy code all the time is inefficient.

3.3 Workarounds
A solution is to make classes constant, so that replicas can be distributed without any synchronisation
issues arising. This not only implies turning class variables into class constants (which is more or less
equivalent to overruling class variables from class-based programming, as suggested before), but also
freezing method implementations, which are also part of the class state. The consequence is thatevery
change in the implementation of a class would forcibly imply the introduction of anew class in the
system. This solution is similar in spirit to the approach used by Microsoft’s COM interfaces. Defining
a new class each time implies making existing instances incompatible with the new version. This again
brings problems.

1Changing a method implementation is analog to changing a class variable value. Either dynamically (e.g. in Smalltalk) or
statically (e.g. by editing source code and recompiling), methods can be modified. The dynamic/static distinction doesn’t add to the
discussion in a distributed setting: the only important point is that nodes might have different definitions of a given class at the same
point in time.

3



4 Transitive Closures
Classes have two possible links, the implicitinstance-of link, of which some consequences were men-
tioned in section 3, and thesubclass-of link. Another consequence of theinstance-of link is that, upon
transmitting an instance over the wire, the corresponding class must be sent too. Thesubclass-of link
forces the recursive transmission of all the superclasses as well, for the object wouldn’t be well defined
otherwise (the set of methods and attributes would be incomplete).

In a dynamically typed language (e.g. Smalltalk), the transitive closure problem ends here. But in a
statically typed language, argument-type classes, result-type classes and exception-type classes must be
transmitted also — together with their corresponding transitive closures.

Classless systems do better. Conceptually, objects are transmitted complete, self-contained over the
wire, with their state and behaviour together. Technically, caching mechanisms could be used to avoid
the extra overhead of repeatedly sending the same behaviour. The big difference is that no meta-objects
(e.g. classes) need to be sent, together with a ballast of related classes due to transitive closures and
(depending on the language) static typing.

In one word, regarding mobility, classes are too heavy a drag on objects.

5 Conclusion
In class-based programming, each time one uses an object, two objects are actually involved, the instance
and its class. Thus acquainting an object implies acquainting its class also, and necessarily the entire
superclass chain. In statically typed languages, it implies acquainting also every parameter-type, return-
type and exception-type classes — together with all the associated superclass chains.

People feel that large object-based systems would be very difficult to manage because of the lack
of organisational structure. Advocators of object-based systems reply that all organisational functions
carried out by classes can be accomplished in a simple and natural way by object inheritance in classless
languages, with no need for special mechanisms. An example of such an organisational idiom is traits
[UCCH91]. Traits are objects that contain shared behaviour and state (analogous to class methods and
variables). Objects that want to share this common state and behaviour use the traits as parent objects.
Thus traits objects in a classless language provide the same sharing capability as classes. The immediate
impression that class-based programmers get is that traits are just a reinsertion of classes in the classless
world, thus justifying the need for classes. The point we make is, traits (or any similar organisational
mechanisms) are hidden in classes and in the class-instance implicit relationship. Now, if one moves to
the world of distribution and mobility (where sharing of information becomes a key issue), the implicit
relationship becomes problematic. A class-based programming supporter could argue that one can make
these relationships explicit, e.g. letting an object specify, upon migration, if its class will stay in the
origin node and be invoked via RPC protocols, or it will move also to the destination node; or letting a
class specify whether its superclass will migrate together with it or not (in the latter case a remote-parent
link would be established). But making explicit the relations is actually object-based programming! The
object needs to be aware of its class. Doing all these things “manually” is precisely what object-based
programming promotes. This is consistent with the thesis that distribution cannot be transparent.

The main conclusion would be that, although sometimes group-wide mechanisms such as classes are
useful for reusing, organising and architecting systems, in processor cloud programming some character-
istics of classes render them problematic. It is better to leave the programmer the explicit choice of what
mechanisms to use. The problems do not reach the roots of the paradigm, though: objects (encapsulated
state + message passing) are well suited to the task.

References
[BL92] G. Bracha and G. Lindstrom. Modularity meets inheritance. InProceedings of IEEE Com-

puter Society International Conference on Computer languages, 1992.

[GF99] Rachid Guerraoui and Mohamed E. Fayad. Oo distributed programming isNot distributed
oo programming.Communications of the ACM, 42(4):101–104, 1999.

[Sat01] M. Satyanarayanan. Pervasive computing: Vision and challenges, August 2001.

[Sha03] Nigel Shadbolt. Ambient intelligence.IEEE Intelligent Systems, 18(4):2–3, 2003.

4



[SLU89] Lynn Stein, Henry Lieberman, and David Ungar. A shared view of sharing: The treaty of
orlando. In W. Kim and F. Lochovsky, editors,Object-Oriented Concepts, Databases and
Applications, pages 31–48. ACM Press/Addison-Wesley, Reading (MA), USA, 1989.

[UCCH91] David Ungar, Craig Chambers, Bay-Wei Chang, and Urs Hlzle. Organizing programs with-
out classes.Lisp and Symbolic Computation, 4(3):223–242, 1991.

[Weg87] Peter Wegner. Dimensions of object-based language design. InProceedings on Object-
Oriented Programming Systems, Languages and Applications, pages 168–182. ACM Press,
1987.

[Wei91] Mark Weiser. The computer for the 21st century.Scientific American, 265(30):94–104,
September 1991.

5


