
Delving (Smalltalk) Source Code

Dr. Tom Tourwé

SEN / CWI

Pr. Kim Mens

INGI / UCL

Monday, September 6, 2004

with Formal Concept Analysis

September 6, 2004 ESUG 2004 Research Track 2

Overview

! Research goal

! A crash course on formal concept analysis

! Delving Smalltalk source code with FCA

! Experiments

! Results

! Conclusion

September 6, 2004 ESUG 2004 Research Track 3

Research Goal

! A lightweight source-code mining tool

– get “initial understanding” of structure of software system

– detect recurring patterns in the source code

! Formal concept analysis (FCA)

– A mathematical technique

– Known applications in data analysis and knowledge processing

! Can we use FCA to delve code for indications of patterns?

– Coding conventions

– Programming idioms and design patterns

– Opportunities for refactoring

– Relevant domain concepts

September 6, 2004 ESUG 2004 Research Track 4

object-

oriented
functional logic

static

typing

dynamic

typing

C++

Find relevant taxonomy of

programming languages

based on their common properties

Java

Smalltalk

Scheme

Prolog

A crash course on FCA — example

September 6, 2004 ESUG 2004 Research Track 5

A crash course on FCA — theory

A. Starts from

– a set of elements

– a set of properties of those elements

– incidence table

B. Determines concepts

– Maximal groups of elements and properties

– Group:

• Every element of the concept has those properties

• Every property of the concept holds for those elements

– Maximal

• No other element (outside the concept) has those same properties

• No other property (outside the concept) is shared by all elements

C. Organizes these concepts in a lattice structure

September 6, 2004 ESUG 2004 Research Track 6

object-

oriented
functional logic

static

typing

dynamic

typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

A. Incidence table

September 6, 2004 ESUG 2004 Research Track 7

object-

oriented
functional logic

static

typing

dynamic

typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

B. Concept 1

September 6, 2004 ESUG 2004 Research Track 8

object-

oriented
functional logic

static

typing

dynamic

typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

B. Concept 2

September 6, 2004 ESUG 2004 Research Track 9

object-

oriented
functional logic

static

typing

dynamic

typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

B. Concept 3

September 6, 2004 ESUG 2004 Research Track 10

object-

oriented
functional logic

static

typing

dynamic

typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

B. More concepts …

September 6, 2004 ESUG 2004 Research Track 11

object-

oriented
functional logic

static

typing

dynamic

typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

B. More concepts …

September 6, 2004 ESUG 2004 Research Track 12

object-

oriented
functional logic

static

typing

dynamic

typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

B. More concepts …

September 6, 2004 ESUG 2004 Research Track 13

object-

oriented
functional logic

static

typing

dynamic

typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

B. Concepts

September 6, 2004 ESUG 2004 Research Track 14

C. Concept Lattice

September 6, 2004 ESUG 2004 Research Track 15

Delving ST source code with FCA

! Elements : classes, methods, argument names

! Properties : substrings of classes, methods, …

Foo Zork

import: aFoo

Bar

asFoo: anObject

The “Foo” concept

September 6, 2004 ESUG 2004 Research Track 16

Delving source code

1. Generate the formal context
• Elements, properties & incidence relation

2. Concept Analysis
• Calculate the formal concepts

• Organize them into a concept lattice

3. Filtering
• Remove irrelevant concepts (false positives, noise,

useless, …)

4. Classify, combine and annotate concepts
• In a way that is more easy for a software engineer to

interpret

Foo Zork

import: aFoo

Bar

asFoo: anObject

September 6, 2004 ESUG 2004 Research Track 17

DelfSTof, our Code Delving Tool

September 6, 2004 ESUG 2004 Research Track 18

1. Generate formal context

! We want to group elements that share a substring

! As elements we collect

– all classes, methods and parameters

– in some package(s) of interest

! As properties : “relevant” substrings of element names

– Normalisation :

• extract terms based on where uppercases occur

• convert to lower case and remove special characters like ‘:’

• QuotedCodeConstant ! { quoted, code, constant }

– Elimination of stopwords : with, do, object

– Stemming : reduce words to their root

! Incidence relation : An element has a certain property if

– It has the substring in its name

Foo Zork

import: aFoo

Bar

asFoo: anObject

September 6, 2004 ESUG 2004 Research Track 19

…

X

-

-

-

variable

…

X

-

X

functor

…

-

-

X

-

messageunify index env source …

Object>>unifyWithObject: inEnv:

myIndex: hisIndex: inSource:
X X X X …

Variable>>unifyWithMessageFunctor:

inEnv: myIndex: hisIndex: inSource:
X X X X …

AbstractTerm>>unifyWith: inEnv:

myIndex: hisIndex: inSource:
X X X X …

AbstractTerm>>unifyWithVariable:

inEnv: myIndex: hisIndex: inSource:
X X X X …

… X X X X …

2. Concept Analysis

Foo Zork

import: aFoo

Bar

asFoo: anObject

September 6, 2004 ESUG 2004 Research Track 20

…

X

-

-

-

variable

…

X

-

X

functor

…

-

-

X

-

messageunify index env source …

Object>>unifyWithObject: inEnv:

myIndex: hisIndex: inSource:
X X X X …

Variable>>unifyWithMessageFunctor:

inEnv: myIndex: hisIndex: inSource:
X X X X …

AbstractTerm>>unifyWith: inEnv:

myIndex: hisIndex: inSource:
X X X X …

AbstractTerm>>unifyWithVariable:

inEnv: myIndex: hisIndex: inSource:
X X X X …

… X X X X …

2. Concept Analysis

Foo Zork

import: aFoo

Bar

asFoo: anObject

September 6, 2004 ESUG 2004 Research Track 21

3. Filtering

! Preprocessing to filter irrelevant properties :

– with little meaning : “do”, “with”, “for”, “from”, “the”, “ifTrue”, …

– too small (< 3 chars)

– ignore plurals, uppercase and colons

! Extra filtering

– Drop top & bottom concept when empty

– Drop concepts with two elements are less

– Drop concepts that group only classes

! More filtering needed (ongoing work)

– Recombine substrings belonging together

– Require some minimal coverage of element name by properties

– Concepts higher in the lattice may be more relevant (more properties)

– Avoid redundancy in discovered concepts
• Make better use of the lattice structure (Now it is “flattened”)

Foo Zork

import: aFoo

Bar

asFoo: anObject

September 6, 2004 ESUG 2004 Research Track 22

4. Classification,

Combination & Annotation
! Annotate concepts with their properties

– i.e. with the substring(s) shared by their elements

! Classification

– Single class concepts
• Elements are methods (or their parameters) in that class

– Hierarchy concepts
• Group classes, methods and parameters in same class hierarchy

• Annotate concept with root of hierarchy

• Annotate methods with implementing class

– Crosscutting concepts
• When two different class hierarchies are involved

! Combine concepts

– that belong together (subconcept relationship)

! Group methods

– belonging to the same class

Foo Zork

import: aFoo

Bar

asFoo: anObject

September 6, 2004 ESUG 2004 Research Track 23

Quantitative results

! Time to compute = a few seconds / minutes

! " properties " < " elements " is a good sign

! Still too much concepts remain after filtering

Upperlimit: theoretical < 2min(#elements, #properties); experimental < #elements

7115740352731 (52)StarBrowser

5131650247802 (135)DelfSTof

447124342287364834 (271)Ref.Browser

327

284

#filtered

1419

1206

#raw

24

22

time (sec)

4771370 (93)CodeCrawler

4381488 (111)Soul

#properties#elementsCase study

Foo Zork

import: aFoo

Bar

asFoo: anObject

September 6, 2004 ESUG 2004 Research Track 24

! Code duplication

! Design patterns

– Visitor, Abstract Factory, Builder, Observer

! Programming idioms

– Accessing methods, chained messages, delegating methods,

polymorphism

! Relevant domain concepts

– Correspond to frequently occurring properties

– “Unification”, “Bindings”, “Horn clauses”, “resolution”

! Opportunities for refactoring

! Some crosscutting concerns

Discovered “indications”

of patterns

Foo Zork

import: aFoo

Bar

asFoo: anObject

September 6, 2004 ESUG 2004 Research Track 25

Conclusion

! Current status : feasibility study

– Approach produced relevant results

– Efficiency is acceptable

– Tool needs refinement

• More advanced filtering ; extra checking a posteriori

! Future work : applying FCA to delve source code for

– aspects and crosscutting concerns

• based on “generic parse trees”

• by using an incidence relation that represents “message sends”

– refactoring opportunities

– Both Smalltalk and Java source code

