
Kim.Mens@info.ucl.ac.be,
Johan.Brichau@vub.ac.b
e

1April 25, 2002

Logic Metaprogramming
in SOUL

Prof. Kim Mens

INGI — UCL

Belgium

Johan Brichau

PROG — VUB

Belgium

Kim.Mens@info.ucl.ac.be, Johan.Brichau@vub.ac.be 2

Why logic metaprogramming?
 Need for more sophisticated tools that support a

variety of software development activities
– co-evolution among implementation and information in

earlier life-cycle phases:
• Code mining, conformance checking, synchronization, code

generation

– advanced software engineering techniques:
• Code optimization, refactoring, change propagation, software

metrics, aspect-oriented programming, guiding reuse

 Logic metaprogramming is a unifying approach for
building a wide variety of such tools

Kim.Mens@info.ucl.ac.be, Johan.Brichau@vub.ac.be 3

What is logic metaprogramming?

 A kind of hybrid language symbiosis
 Combines a declarative language at meta-level with

an object-oriented base language
– base-level programs are expressed as logic terms, facts and

rules at the meta level
– meta-level programs can manipulate and reason about the

structure of the base-level programs

 We use
– Smalltalk as base language
– a Prolog-derivative as

meta language: SOUL

Kim.Mens@info.ucl.ac.be, Johan.Brichau@vub.ac.be 4

Logic Metaprogramming

 We use a Prolog-like programming language
– Logic programs are good at

• metaprogramming, language processing, (multi-way)
reasoning about knowledge, unification, backtracking

– Focuses on “what” not on “how”
– Maybe not best choice…but most people know it

• Other declarative languages: (e.g. Gofer,…)

 Or rather, our Prolog-dialect “SOUL”
– Slightly different syntax
– With extra features to reason about and

manipulate Smalltalk program structures

Kim.Mens@info.ucl.ac.be, Johan.Brichau@vub.ac.be 5

Comment

Fact

A SOUL Program
SOUL syntax differs only slightly from Prolog syntax
(note the different syntax for variables and for lists too)

“ List is the concatenation of L1 and L2
 append(?L1,?L2,?List) “

append(<>,?Lst,?Lst).

append(<?First|?Rest>,?L2,<?First|?Lst>) if
append(?Rest,?L2,?Lst).

if append(<1,2,3>,<4,5>,<1,2,3,4,5>).
if append(<1,2,3>,<4,5>,?List).
if append(?L1,<4,5>,<1,2,3,4,5>).
if append(<1,2,3>,?L2,<1,2,3,4,5>).
if append(?L1,?L2,<1,2,3,4,5>).

Rule

Queries

Kim.Mens@info.ucl.ac.be, Johan.Brichau@vub.ac.be 6

Logic metaprogramming

 We use a logic language…
 …as metalanguage to manipulate and reason about

structure of programs written in the base language
 All relevant constructs in the base language are

“reified” as rules and facts in the logic language
 SOUL = Smalltalk Open Unification Language

– uses Smalltalk as base language
– is a Prolog-dialect
– featuring a strong symbiosis with the underlying Smalltalk

Kim.Mens@info.ucl.ac.be, Johan.Brichau@vub.ac.be 7

SOUL: symbiosis with Smalltalk

 SOUL works directly on the Smalltalk image

 Smalltalk values and expressions can be
used as constants in the logic language

 Logic facts, rules and queries can contain
Smalltalk expressions…

 … that may be parameterised with logic
variables

 And… SOUL is nicely integrated with the
Smalltalk environment (see demo)

Kim.Mens@info.ucl.ac.be, Johan.Brichau@vub.ac.be 8

Using Smalltalk values
in SOUL
 Integers: if factorial([4],?X)

– Shortcut: if factorial(4,?X)

 Symbols: if write([#Symbol])
– Shortcut: if write(Symbol)
– Note: Symbol is not a variable but a constant!

 Strings: if write(['This is a string!'])
– Shortcut: no shortcut for stings (yet)

 Classes: if class([Object])

 Other Smalltalk objects: [some Smalltalk object]

Kim.Mens@info.ucl.ac.be, Johan.Brichau@vub.ac.be 9

Using Smalltalk expressions
as logic terms
 “Smalltalk terms” [some Smalltalk expression]

– “Reify” Smalltalk objects into logic terms
– Can contain any Smalltalk expression

• not only Smalltalk constants
• expression should evaluate to an object
• expression may be parameterized with logic variables which

– are supposed to be bound upon evaluation of the expression
– Are substituted by their value before evaluating the expression

 Examples:
– ST constant: if class([Array])
– ST expression: allClasses([Smalltalk allClasses])
– Parameterized expr.: plus(?x,?y,[?x + ?y])

Kim.Mens@info.ucl.ac.be, Johan.Brichau@vub.ac.be 10

Using Smalltalk expressions
as logic clauses
 Smalltalk clauses [some Smalltalk expression]

– Same syntax and semantics as Smalltalk terms
– Execute parameterized Smalltalk expressions
– Difference in usage:

• Used in the position of logic clauses (instead of logic terms)
• Should always return true or false after evaluation

 Examples:

• write(?text) if
• [Transcript show: (?text asString). true].
•
• smallerThan(?x,?y) if
• atom(?x), atom(?y), [?x < ?y].

Kim.Mens@info.ucl.ac.be, Johan.Brichau@vub.ac.be 11

Using Smalltalk expressions
to generate multiple results
 Logic queries can return multiple results
 Smalltalk expressions produce unique answers
 (How) can we use Smalltalk terms to write logic rules

that produce multiple results?
 Answer: use generate/2 predicate

– First argument is unbound logic variable
– Second argument is ST term returning a ST collection
– All elements of the collection are unified one by one with the

variable thus producing multiple results
 Example:

class(?C) if
 generate(?C,[SOULExplicitMLI current allClasses])

Kim.Mens@info.ucl.ac.be, Johan.Brichau@vub.ac.be 12

Quasi-quoting

 Quasiquoted Code Term
– Enclosed between ‘{‘ and ‘}’
– Can contain logic variables
– Is not executed by SOUL

 Examples
– {Array at: 1 put: ?x}
– {boolean ifTrue:[?trueC] ifFalse:[?falseC]}
– {<html> ?htmlheader ?htmlbody </html>}

 compileMethod(?class,?code) if
[?class compile: ?code. true]

Kim.Mens@info.ucl.ac.be, Johan.Brichau@vub.ac.be 13

Example: Visitor pattern
Visitor

visitElementA: aConcreteElementA
visitElementB: aConcreteElementB

ConcreteVisitorA

visitElementA: aConcreteElementA
visitElementB: aConcreteElementB

ConcreteVisitorB

visitElementA: aConcreteElementA
visitElementB: aConcreteElementB

ConcreteElementA

accept: aVisitor

Element

accept: aVisitor

ConcreteElementB

accept: aVisitor

ObjectStructure

Client

aVisitor visitConcreteElement: selfaVisitor visitConcreteElement: self

Kim.Mens@info.ucl.ac.be, Johan.Brichau@vub.ac.be 14

Example: Visitor pattern
Visitor

visitElementA: aConcreteElementA
visitElementB: aConcreteElementB

ConcreteVisitorA

visitElementA: aConcreteElementA
visitElementB: aConcreteElementB

ConcreteVisitorB

visitElementA: aConcreteElementA
visitElementB: aConcreteElementB

ConcreteElementA

accept: aVisitor

Element

accept: aVisitor

ConcreteElementB

accept: aVisitor

ObjectStructure

Client

aVisitor visitConcreteElement: selfaVisitor visitConcreteElement: selfDem
o tim

e !

Kim.Mens@info.ucl.ac.be, Johan.Brichau@vub.ac.be 15

Conclusion: LMP

 LMP = using a logic metalanguage to reason
about and manipulate programs written in an
(object-oriented) base language

 LMP is
– A unifying approach that combines the research of

a growing group of researchers

– A laboratory for conducting our software
engineering experiments

– A technique to build state-of-the art software
development tools

Kim.Mens@info.ucl.ac.be, Johan.Brichau@vub.ac.be 16

Conclusion: SOUL

 Several LMP tools and environments already
exist:
– SOUL, TyRuBa, C2C, QSOUL
– Most recent tool = SOUL 2.8.x for VW5i.4

 SOUL
– Is free : http://prog.vub.ac.be/research/DMP
– Is getting quite stable and efficient
– Is well-integrated with the Smalltalk IDE
– Has a growing user community
– Is being documented (automatically…)

Kim.Mens@info.ucl.ac.be, Johan.Brichau@vub.ac.be 17

Conclusion: Usability

 During a 4-day course on DMP, the students
successfully solved following assignments:
– Detect violations of the law of Demeter
– Verify & detect occurrences of Adapter and Bridge pattern
– Find all valid/invalid constructor/initializer pairs in ST

programs
– Provide support for SOUL testing conventions
– Extend the Smalltalk type inferencer
– Calculate some software metrics
– Detect code duplication in ST programs
– Verify & detect occurrences of Decorator and Proxy pattern

 The (Master level) students had no prior knowledge
of SOUL nor of Prolog

Kim.Mens@info.ucl.ac.be, Johan.Brichau@vub.ac.be 18

Future work

 Other reasoning engines, e.g.
– Regular expressions
– Forward chaining
– Constraint languages

 Other base languages, e.g. Java
 Reasoning about dynamic aspects
 Enhance language symbiosis

– Make use of SOUL from within Smalltalk more
transparent

– Towards meta-circularity and linguistic symbiosis

Kim.Mens@info.ucl.ac.be, Johan.Brichau@vub.ac.be 19

Some technicalities:
“Up-down” mechanism of SOUL
 Meta-language: SOUL

 Base-language: Smalltalk

 Symbiosis
– Smalltalk values can be used in SOUL

• ‘up’ of ST-values: explicit wrapper for objects defines the
unification on ST-objects.

– SOUL values can be used in Smalltalk
• ‘down’ of ‘upped ST-values’: ST-value.

• But: ‘down’ of SOUL-values: ongoing research…

“down” “up”

Kim.Mens@info.ucl.ac.be, Johan.Brichau@vub.ac.be 20

Some technicalities:
example of up-down mechanism

Smalltalk

SOUL [SOULExplicitMLI current isClass: ?class]

false

[false]

 “up”“down”

[:env | (SOULExplicitMLI current
isClass: (env at: 1) soulDown) soulUp]

