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Abstract— Requirements completeness is among the most 
critical and difficult software engineering challenges. Missing 
requirements often result from poor risk analysis at 
requirements engineering time. Obstacle analysis is a goal-
oriented form of risk analysis aimed at anticipating exceptional 
conditions in which the software should behave adequately. In 
the identify-assess-control cycles of such analysis, the 
assessment step is not well supported by current techniques. 
This step is concerned with evaluating how likely the obstacles 
to goals are and how likely and severe their consequences are. 
Those key factors drive the selection of most appropriate 
countermeasures to be integrated in the system goal model for 
increased completeness. Moreover, obstacles to probabilistic 
goals are currently not supported; such goals prescribe that 
some corresponding target property should be satisfied in at 
least X% of the cases. 
The paper presents a probabilistic framework for goal 
specification and obstacle assessment. The specification 
language for goals and obstacles is extended with a 
probabilistic layer where probabilities have a precise semantics 
grounded on system-specific phenomena. The probability of a 
root obstacle to a goal is thereby computed by up-propagation 
of probabilities of finer-grained obstacles through the obstacle 
refinement tree. The probability and severity of obstacle 
consequences is in turn computed by up-propagation from the 
obstructed leaf goals through the goal refinement graph. The 
paper shows how the computed information can be used to 
prioritize obstacles for countermeasure selection towards a 
more complete and robust goal model. The framework is 
evaluated on a non-trivial carpooling support system. 

Keywords — Obstacle analysis, risk assessment, probabilistic 
goals, requirements completeness, goal-oriented requirements 
engineering, risk analysis, quantitative reasoning. 

I.  INTRODUCTION 

Missing requirements and assumptions are reported as 
one of the major causes of software failure [23]. 
Incompleteness often results from a lack of anticipation of 
unexpected conditions under which the software should 
behave adequately. A natural inclination to conceive over-
ideal systems prevents adverse conditions from being 
properly identified and, when likely and critical, resolved 
through appropriate countermeasures.  

Risk analysis should thus be at the heart of the 
requirements engineering process [21, 13, 23, 4, 28]. A risk 
is commonly defined as an uncertain factor whose 
occurrence may result in some loss of satisfaction of some 
corresponding objective. A risk has a likelihood of 
occurrence, and one or several undesirable consequences 
associated with it. Each consequence is uncertain as well; it 

has a likelihood of occurrence if the risk occurs. A 
consequence has a severity in terms of degree of loss of 
satisfaction of the corresponding objective. Depending on the 
category of objective being obstructed, risks may correspond 
to safety hazards [26, 27], security threats [2, 22], inaccuracy 
conditions on software input/output variables with respect to 
their environment counterpart [21], and so forth. 

Risks must be identified, assessed against likelihood and 
severity, and controlled through appropriate countermeasures 
[7, 17, 23, 28]. At requirements engineering time, risks can 
be systematically identified from prescriptive requirements 
and descriptive domain properties [21]. For risk assessment, 
we can use qualitative scales to support quick but rough 
estimates of likelihood and severity [12] (e.g., from 
‘unlikely’ to ‘very likely’ and from ‘low’ to ‘highly critical’, 
respectively), possibly in relation with a requirements model 
[4]. Alternatively, quantitative scales can be used to capture 
such estimates more precisely [6, 13], possibly in relation 
with a requirements model [31]. For risk control, we may 
explore alternative countermeasures and select most effective 
ones [13]; such exploration may be driven by risk-reduction 
tactics such as reduce risk likelihood, avoid risk, reduce 
consequence likelihood, avoid risk consequence, or mitigate risk 
consequence [23]. 

In goal-oriented modeling frameworks, obstacles were 
introduced as a natural abstraction for risk analysis [3, 20]. 
An obstacle to a goal is a precondition for the non-
satisfaction of this goal. Obstacle analysis [21] consists of (a) 
identifying as many obstacles as possible to every leaf goal in 
the goal refinement graph from relevant domain properties; 
(b) assessing the likelihood and severity of each obstacle; 
and (c) resolving likely and critical obstacles by systematic 
model transformations encoding the preceding risk-reduction 
tactics in order to integrate appropriate countermeasures in 
the goal model. Obstacle analysis has been successfully used 
in a variety of mission-critical systems, see, e.g., [29, 11]. 

The risk/obstacle assessment step is obviously crucial for 
focusing the resolution step on those risks that are 
determined to be likely and have likely and severe 
consequences. No systematic techniques are available to date 
to support this step. 

To fill this gap, the paper presents a simple yet effective 
technique for quantitative risk assessment. This technique is 
intended to meet the following objectives. 

• Formal semantics for statements to be assessed: Unlike 
[13, 4, 28], the specification of goals and risks should 
have a clear, precise semantics in terms of 
desirable/undesirable system behaviors. Such semantics 
enables their precise interpretation and the integration 
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of risk assessment with other techniques for risk 
generation [21, 1], countermeasure derivation [21] and 
goal model analysis [23], including goal 
refinement/operationalization checking or behavior 
model synthesis. 

• Measurable statements: Unlike [13, 4], the 
specification of goals and risks should be grounded on 
application-specific phenomena that are measurable in 
the environment of the software-to-be; this attenuates 
the common problems with subjective estimations. For 
the importance of making requirements measurable, see 
[30]. 

• Model-based assessment: Unlike [13], the assessment 
process should take advantage of the refinement 
structure provided by the goal/obstacle model to allow 
for more accurate estimation of probabilities of coarser-
grained statements from finer-grained ones. 

• Probabilistic requirements: Unlike existing techniques, 
requirements that prescribe some property to hold in at 
least X% of the cases should be handled within the 
same assessment framework. 

Partially satisfied goals were introduced in [25] for 
evaluating alternative system options. The degree of 
satisfaction of such goals is modeled there by objective 
functions on quality variables they refer to. The goals are 
specified formally and interpreted in terms of application-
specific measures. Their associated quality variables are 
refined according to the refinement structure of the goal 
model. Degrees of satisfaction are determined bottom-up by 
computing the probability density function of higher-level 
quality variables from the probability density functions of 
lower-level ones. This results in accurate estimations at the 
price of fairly complex computations. Bayesian networks 
might also be used for making predictions about partially 
satisfied assertions [14]; their construction and validation 
however does not take advantage of the available goal 
structure, and turn to be very difficult for complex systems.  

Our technique for determining the probability of 
obstacles and the probability and severity of their 
consequences is intended to be simpler as it exploits the 
goal/obstacle refinement structure and propagates 
probabilities directly along that structure. 

As a result, obstacles get prioritized by degree of 
criticality. Such prioritization can then be used for guiding 
the selection among alternative countermeasures identified 
through risk-reduction tactics [21]. We thereby obtain more 
evidence-based answers to questions such as, e.g., what are 
the most critical obstacles to be resolved in view of the high-
level, safety-critical goal stating that ‘an ambulance shall be on 
the incident scene within 14 minutes in 95% of cases’? 

The paper is organized as follows. Section II introduces 
some necessary background on goal-oriented modeling and 
obstacle analysis. Section III introduces our model-based 
probabilistic framework for goals, obstacles, and their 
refinements. Section IV shows how obstacle probabilities are 
up-propagated through obstacle refinement trees and how 
obstacle consequences are up-propagated through the goal 
model. Section V discusses the identification of critical 

obstacle combinations to be resolved, based on a 
prioritization of obstacles according to the severity of their 
consequences. Section VI summarizes our evaluation of the 
technique on a carpooling support system. Section VII 
discusses related work. 

II. BACKGROUND 

Goal-Oriented System Modeling. A goal is a prescriptive 
statement of intent to be satisfied by the agents forming the 
system. The word system refers to the software-to-be 
together with its environment, including pre-existing 
software, devices such as sensors and actuators, people, etc. 
Unlike goals, domain properties are descriptive statements 
about the problem world (such as physical laws).  

A goal may be behavioral or soft dependent on whether 
it can be satisfied in a clear-cut sense or not. In the context 
of risk analysis, this paper focuses on behavioral goals.  

A behavioral goal captures a maximal set of intended 
behaviors declaratively and implicitly; a behavior is a 
sequence of system state transitions. A behavior thus 
violates a goal if it is not among those prescribed by the 
formal specification of the goal [21].  

Linear temporal logic (LTL) may be used for 
formalizing behavioral goals to enable their analysis. The 
goals then take the general form  

C ⇒ Θ T 
where Θ represents a LTL operator such as: ○ (in the next 
state), ◊ (sometimes in the future), ◊≤d (sometimes in the future 
before deadline d), □ (always in the future), □≤d (always in the 
future up to deadline d), W (always in the future unless), U 
(always in the future until), and where P ⇒ Q means □ (P → 
Q). The following standard logical connectives are used: ∋ 
(and), ( (or), ¬ (not), → (implies), ↔ (equivalent). 

A behavioral goal can be of type Achieve or 
Maintain/Avoid. The specification pattern for an Achieve 
goal is "if C then sooner-or-later T", that is, C ⇒◊ T, where C 
denotes a current condition and T a target condition, with 
obvious particularizations to Immediate Achieve, Bounded 
Achieve and Unbounded Achieve goals. The pattern for a 
Maintain (resp. Avoid) goal is "[if C then] always G" (resp. 
"[if C then] never B", that is, [C⇒] □G (resp. [C⇒] □¬B), 
where G and B denote a good and bad condition, 
respectively. 

A behavioral goal must obviously be consistent with all 
known domain properties, that is, 

  {G, Dom} ⊭ false         (domain-consistency) 
A goal model is an AND/OR graph showing how goals 

contribute positively or negatively to each other [10, 15, 
23]. Parent goals are obtained by abstraction whereas child 
goals are obtained by refinement. In a goal model, leaf goals 
are assigned to single system agents; they are requirements 
or assumptions dependent on whether they are assigned to 
the software-to-be or to an environment agent, respectively. 

Refinement patterns are available to help building goal 
models, e.g., the Milestone-Driven, Case-Driven, Guard-
Introduction, Unmonitorability-Driven, Uncontrollability-



Driven, or Divide-and-Conquer patterns [10, 23]. Fig. 1 
illustrates two milestone-driven refinements (top), one case-
driven refinement (middle) and one refinement fitting no 
specific pattern (bottom). For example, the top goal is: 

IncidentReported⇒◊≤14 min AmbulanceOnScene 
Its two subgoals are obtained by application of the 
Milestone-Driven refinement pattern with AmbulanceAllocated 
as milestone  condition: 

IncidentReported⇒◊≤1 min AmbulanceAllocated 
AmbulanceAllocated⇒◊≤13 min AmbulanceOnScene 

AND-refinement links in a goal model should ideally be 
complete, consistent and minimal. A refinement is complete 
if the satisfaction of all subgoals is sufficient for the 
satisfaction of the parent goal in view of known domain 
properties: 
 {SG1, …, SGn, Dom} ⊨ G       (complete refinement) 
A refinement is consistent if no subgoal contradicts other 
sub-goals in the domain: 
 {SG1, …, SGn, Dom} ⊭ false     (consistent refinement) 
A refinement is minimal if all the subgoals are needed for the 
satisfaction of the parent goal: 

for all i:  {SG1, …,SGi-1, SGi+1, … SGn, Dom} ⊭ G 

The partial goal model in Fig. 1 shows four complete, 
consistent and minimal AND-refinements. 

Obstacle analysis. An obstacle to a goal is a domain-
satisfiable precondition for the non-satisfaction of this goal 
[21]: 
 {O, Dom} ⊨ ¬ G  (obstruction) 
 {O, Dom} ⊭ false  (domain consistency) 

Similarly to goals, obstacles can be AND/OR refined into 
sub-obstacles, resulting in a goal-anchored form of risk tree. 
In such tree, the root obstacle is the negation of the 
associated leaf goal in the goal model; an AND-refinement 
captures a combination of sub-obstacles entailing the parent 
obstacle; an OR-refinement captures alternative ways of 
entailing the parent obstacle —and, recursively, of 
obstructing the corresponding leaf goal; the leaf sub-

obstacles are single, fine-grained obstacles whose likelihood 
can be easily estimated. 

Each sub-obstacle in an OR-Refinement must entail the 
parent obstacle: 
 {SOi, Dom} ⊨ O   for all SOi (entailment) 

OR-Refinements should ideally be domain-complete and 
disjoint: 
 {¬ SO1, …, ¬ SOn, Dom} ⊨ ¬ O   (domain-completeness) 

 {SOi, SOj, Dom} ⊨ false    for SOi ≠ SOj (disjointness) 

Formal and heuristic techniques are available for the 
identification of obstacles [21, 1] and for the generation of 
alternative countermeasures [21]. In particular, for Achieve 
and Maintain/Avoid goals, specific domain properties are 
worth eliciting. They take the form "if T then N" or "if G then 

N", that is, T ⇒ N or G ⇒ N, where N denotes a necessary 
condition for the target condition T or good condition G. 
They result in obstacles taking the form "sooner-or-later [C 

and] never N" or "sooner-or-later [C and] sooner-or-later  not  N", 
that is, ◊ ( [C ∋] □¬N) or ◊ ( [C ∋]  ◊¬ N), respectively. For 
example, consider the goal Achieve [AmbulanceOnScene 

WhenMobilized] in Fig. 1: 

AmbulanceMobilized⇒◊≤11 min AmbulanceOnScene 
Negating this goal yields the root obstacle: 

◊ (AmbulanceMobilized ∋ □≥11 min¬ AmbulanceOnScene) 
The necessary conditions for the target include the following: 

AmbulanceOnScene ⇒¬ AmbulanceInTrafficJam 

This yields the bottom left sub-obstacle in Fig. 2, namely: 

◊ (AmbulanceMobilized ∋ □≥11 min AmbulanceInTrafficJam) 

 

III.  A MODEL-BASED FRAMEWORK FOR CAPTURING 

PROBABILISTIC GOALS AND OBSTACLES 

The probability of satisfaction of a goal depends on the 
probability of occurrence of obstacles obstructing it. The 
severity of the consequences of an obstacle depends on the 
difference between the prescribed degree of satisfaction for 
the obstructed goals and the estimated probability of 
satisfaction of these goals in view of their obstruction. This 
section defines these various notions more precisely. 

A. Probabilistic Goals 

As seen before, a (non-probabilistic) goal defines a 
maximal set of intended behaviors. The probability of goal 

Achieve [Mobilized
Ambulance On Scene] 

Mobilized Ambulance Not 
On Scene In Time

Ambulance 
Lost

Ambulance 
Broken Down

Ambulance Stuck
In Traffic Jam

Ambulance Not 
in Familiar Area

GPS Not 
Working  

Fig. 2.  Partial obstacle model for ambulance dispatching system 
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Achieve [Ambulance Allocated 
When Incident Reported] 
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Achieve [Ambulance 
Mobilized When Allocated] 

Achieve [Ambulance On 
Scene When Mobilized] 

Achieve [Allocated Ambulance 
Mobilized WhenOnRoad] Achieve [Allocated Ambulance 

Mobilized WhenAtStation] 

Achieve [Mobilized By Fax 
When Allocated] 

Achieve [Mobilized By 
Phone When Allocated] 

Mobilized When Mobilized 
By Fax Or By Phone

Ambulance Staff

 
Fig. 1.  Partial goal model for an ambulance dispatching system 



satisfaction is defined in terms of the probability of 
observing one of those behaviors. 

For a behavioral goal C ⇒ ΘT, we are obviously interested 
in non-vacuous satisfaction, leaving aside those trivial cases 
where the goal is satisfied because C = false. We therefore 
focus our attention on behaviors where the goal antecedent C 
is satisfied.  
Definition 1. The probability of satisfaction of a goal is the 
proportion between (a) the number of possible behaviors 
satisfying the goal's antecedent C and consequent ΘT and (b) 
the number of possible behaviors satisfying the condition C. 
A goal is thus fully satisfied if its probability of satisfaction is 
equal to 1. 
Consider the goal Achieve [AmbulanceMobilizedWhenAllocated] in 
Fig. 1. Its probability of satisfaction is defined as: 

Nr. of behaviors where allocated ambulance is mobilized 
Nr. of behaviors where ambulance is allocated 

Assuming there are 3 possible behaviors where an allocated 
ambulance is mobilized out of 4 possible behaviors where 
the ambulance is allocated, the probability of satisfaction for 
that goal is 75%.   
Note that the set of behaviors satisfying this goal does not 
necessarily satisfy or deny the goal Achieve [Ambulance 
AllocatedWhenIncidentReported]; whether an allocated 
ambulance is mobilized or not does not depend on whether 
an ambulance is allocated or not. On another hand, the goals 
Achieve [AmbulanceMobilizedWhenAllocated] and  Achieve 
[AllocatedAmbulanceMobilizedWhenOnRoad] are not independent 
as the set of behaviors satisfying the latter also satisfies the 
former. 

Definition 2. Two goals are dependent if the set of behaviors 
non-vacuously satisfying one of them is also non-vacuously 
satisfying or denying the other. 

Two goals are independent if they are not dependent. In 
terms of conditional probabilities, this amounts to saying 
that: 

P (G1 | G2) = P (G1 | ¬ G2) = P (G1),  
P (G2 | G1) = P (G2 | ¬ G1) = P (G2), 

where P(G) denotes the probability of satisfaction of G and 
P(G|H) denotes the probability of satisfaction of G over all 
behaviors satisfying property H.  

Our behavioral goals are structured in an AND/OR 
refinement graph [23]. It can then be shown that: 
• two goals are dependent if one of them is a child or 

descendant of the other, or if it conflicts directly or 
indirectly with the other; 

• in a minimal and consistent goal refinement, the subgoals 
are independent.  

In our probabilistic framework, goals will be annotated 
with an estimated probability of satisfaction and a required 
degree of satisfaction.  

Definition 3. The estimated probability of satisfaction (EPS) 
for a goal is the probability of satisfaction of this goal in 
view of its possible obstructions. It is computed from the 
goal/obstacle models. 

In our running example, an allocated ambulance might not 
be mobilized for various reasons, e.g., the ambulance crew 

being not responsive, the ambulance being not ready for the 
next mission, communication failing, etc. Due to all such 
obstacles, there is a probability of this goal not being 
satisfied. 

The EPS for a goal G will be denoted P(G) in the sequel; 
P(G1, G2) will denote the EPS of G1 and G2 in combination. 

Definition 4. The required degree of satisfaction (RDS) for a 
goal is the minimal probability of satisfaction admissible for 
this goal. It is imposed by elicited requirements, existing 
regulations or standards, and the like. 

For example, ORCON standards require ambulances to be on 
the incident scene within 14 minutes in 95% of cases [24]. This 
will be captured by annotating the goal Achieve[Ambulance 
OnSceneInTimeWhenIncidentReported] with a RDS of 0.95. 

Note that the previous situation of (non-probabilistic) 
goals recalled in Section II is generalized here; for such goals 
we have RDS (G) = 1. 

Annotating a behavioral goal C ⇒ ΘT in a goal model with 
its RDS amounts to specifying it in a probabilistic temporal 
logic [18] through an assertion of form C ⇒ Pr ≥RDS [ΘT]. 

Definition 5. A goal G is probabilistic if 0 < RDS (G) < 1. 

Based on a goal's EPS and RDS, we can measure the gap 
between its estimated and prescribed probabilities. If EPS ≥ 
RDS, the goal's required satisfaction threshold is reached; if 
EPS < RDS, it is not and we have a problem. This gap 
should be as low as possible. The difference allows us to 
measure how severe the goal violation is. 

Definition 6. The severity of violation of a goal G is defined 
by:  

SV (G) =  RDS (G) – P (G). 

The domain-consistency condition introduced in Section 
II is generalized accordingly; it now states that there is a 
chance to observe a behavior at least that satisfies the goal 
and the domain properties:  

P (G | Dom) > 0 

In our generalized setting for goals with a partial degree 
of satisfaction, we need to state what desirable goal 
refinements are. The completeness, consistency and 
minimality conditions in Section II are therefore generalized 
accordingly. 

A refinement of goal G into subgoals SG1, ..., SGn is now 
said to be complete if: 
 P (G | SG1, …, SGn, Dom) > 0    (complete refinement) 

Note that this condition is weaker than the completeness 
condition in Section II as it accounts for partial satisfaction; 
it covers in particular the case of full satisfaction, equivalent 
to the completeness condition in Section II: 

P (G | SG1, …, SGn, Dom) = 1 

The refinement is consistent if: 

 P (SG1, …, SGn | Dom) > 0      (consistent refinement)   

The refinement is minimal if for all i: 
   P (G | SG1, …, SGi-1, SGi+1, ...,  SGn, Dom)  
  <   P (G | SG1, …, SGn, Dom)      (minimal refinement) 



B. Probabilistic Obstacles 

A goal is partially satisfied because obstacles to it can occur. 
Consider the goal Achieve [AmbulanceMobilizedWhenAllocated] in 
Fig. 1 whose precise specification is: 

AmbulanceAllocated ⇒ ◊≤2 min AmbulanceMobilized 
There is a domain property stating that a necessary condition 
for ambulances to be mobilized is that their ambulance crew 
must be responsive: 

AmbulanceMobilized ⇒ CrewResponsive 
By regression [21] of the goal negation through this domain 
property, we obtain the obstacle AmbulanceCrewNot 
Responsive: 

◊ (AmbulanceAllocated ∋ □≥2 min ¬ CrewResponsive) 
This condition captures the situation of an ambulance being 
sooner or later allocated without subsequent crew response 
for 2 minutes. It will be called obstacle condition. Such 
conditions should hopefully not be satisfied too often.  

Definition 7. The probability of an obstacle is the 
probability of satisfaction of the obstacle condition, that is, 
the proportion between (a) the number of possible behaviors 
satisfying the obstacle condition and (b) the number of 
possible system behaviors. 

The probability of an obstacle O will be denoted by P(O). 
The probability of O over all behaviors satisfying some 
property H will be denoted by P(O |H). 

The obstruction and domain-consistency conditions 
recalled in Section II must be generalized in this probabilistic 
setting.  

The obstruction condition now states that there is a 
chance that the obstacle will violate the goal: 
 P (¬ G | O, Dom) > 0     (obstruction) 

Note again that this condition is weaker than the obstruction 
condition in Section II as it accounts for partial obstruction; 
it covers in particular the case of full obstruction, equivalent 
to the obstruction condition in Section II:  
 P (¬ G | O, Dom) = 1 

The domain-consistency condition states that there is a 
chance for the obstacle to occur:  
 P (O | Dom) > 0  (domain consistency) 

In our generalized setting, we need to characterize what 
obstacle refinements are. The conditions on obstacle 
refinement introduced in Section II are therefore generalized 
accordingly. 

For an AND-refinement, the completeness, consistency 
and minimality conditions are similar to those introduced in 
Section III.A for probabilistic goals. 

For an OR-refinement, the counterpart of the entailment 
condition in Section II now states that if one of the sub-
obstacles occurs then the parent obstacle may occur: 

 P (O | SOi) > 0   for all SOi       (entailment) 
This condition is again weaker than the entailment condition 
in Section II; it covers the particular case of full satisfaction, 
equivalent to the entailment condition in Section II: 
 P (O | SOi) = 1 

For example, for the top OR-Refinement in Fig. 2 we have:  

P (MobilizedAmbulanceNotOnSceneInTime | AmbulanceLost) > 0, 

as a mobilized ambulance lost might not be on the incident 
scene within 11 minutes. 

The generalized condition for an OR-refinement to be 
domain-complete now states that the parent obstacle cannot 
be satisfied through further sub-obstacles: 
 P (O | ¬  SO1, …, ¬  SOn, Dom) = 0   (domain completeness) 

In our running example, our domain knowledge might allow 
us to state "if a mobilized ambulance is not stuck in traffic jam nor 
lost nor broken down, it will reach the incident scene within 11 
minutes"; in such case we would have: 

P (MobilizedAmbulanceNotOnScene | ¬ StuckInTrafficJam,  
¬ AmbulanceLost, ¬ AmbulanceBrokenDown) = 0.  

The disjointness condition on sub-obstacles in Section II 
is generalized into an independence condition: 
 P (SOi | SOj) = P (SOi | ¬ SOj) = P (SOi),  
 P (SOj | SOi) = P (SOj | ¬ SOi) = P (SOj) 

In our example, the probability of an ambulance being 
broken down does not depend on, e.g., the probability of the 
ambulance being lost or stuck in a traffic jam. 

Note that two dependent obstacles can be captured 
through three independent obstacles: one where the first 
obstacle condition holds but not the second, one where the 
second obstacle condition holds but not the first, and one 
where both hold. Each of these can have a different 
probability.  

IV.  EVALUATING OBSTACLES AND THEIR CONSEQUENCES 

This section shows how obstacle probabilities are 
computed from the obstacle refinement model and how the 
probabilities of their consequences are computed from the 
goal refinement model.  

The estimated probabilities of leaf obstacles are to be 
obtained first. Such estimates are up-propagated in obstacle 
refinement trees (Section IV.A); the results are propagated 
from root obstacles to leaf goals in the goal model (Section 
IV.B); the results are in turn up-propagated in the goal model 
to obtain probabilities of consequences in terms of goal 
obstructions at various levels of abstraction. 

A. From Leaf Obstacles to Root Obstacles 

We first need to rely on domain knowledge to obtain 
estimated probabilities of leaf obstacles in refinement trees –
typically, through statistical data about past system behaviors 
(cf. Definition 7).  For the leaf obstacle 

◊ (AmbulanceMobilized ∋□ ¬ AmbulanceInFamiliarArea) 
in Fig. 2, such data might reveal that the situation of 
mobilized ambulances being in unfamiliar areas occurs in 
20% of the cases; for the leaf obstacle 

◊ (AmbulanceMobilized ∋ □ ¬ GPSWorking) 

we might get from such data that the situation of the GPS not 
working inside mobilized ambulances occurs in 10% of the 
cases.  

Such estimates are to be up-propagated in obstacle trees. 
In an AND-refinement, a parent obstacle may occur if all its 
sub-obstacles occur. The probability of the parent obstacle is 
therefore the probability that each sub-obstacle occurs and 



their combined occurrence leads to the satisfaction of the 
parent obstacle: 

P (O) = P (SO1) × P (SO2) × ... × P (O | SO1, SO2, ...) 
Back to our example, we thus also need to know from 
statistical data how often does an ambulance in unfamiliar 
area with non-working GPS get lost – e.g., in 95% of the 
cases.  

In an OR-refinement, a parent obstacle may occur if any of 
the sub-obstacles occurs. The probability of the parent 
obstacle is therefore the probability that any of the child 
obstacle occurs and leads to the satisfaction of the parent 
obstacle. In this case we cannot simply sum the probabilities 
of each sub-obstacle occurring and leading to the satisfaction 
of the parent obstacle; we would then need to remove the 
probability of different sub-obstacles occurring in 
combination. To overcome this problem, we consider the 
probability of the parent obstacle not occurring, which equals 
the probability of no child obstacle occurring that would lead 
to the satisfaction of the parent obstacle. For a complete and 
disjoint refinement, this leads to: 

P (O) = 1 – (1 – P (SO1) × P (O | SO1))  
                       × (1 – P (SO2) × P (O | SO2)) × … 

The preceding formulas for AND- and OR-refinements 
are recursively applied bottom-up through the refinement 
tree until the probability of the root obstacle is obtained. 

Consider our obstacle model in Fig. 2 with the above 
statistical data about leaf obstacles, namely, 20% of 
mobilized ambulances are sent to unfamiliar areas, 10% of 
GPS inside mobilized ambulances are not working, and 95% 
of mobilized ambulances in unfamiliar areas with non-
working GPS get lost. The propagation rule for AND-
refinements yields the following probability for the parent 
obstacle AmbulanceLost: 

P (AmbulanceLost) =  (0.2 × 0.1) × 0.95 =  0.019 

Assume now that statistical data tell us that 2% of 
mobilized ambulances get stuck in traffic jam, 0.5% of 
mobilized ambulances break down, and the proportion of 
lost, stuck or broken ambulances not reaching the incident 
scene within 11 minutes is 99%, 98%, and 100%, 
respectively. The propagation rule for OR-refinements yields 
the following probability for the root obstacle 
MobilizedAmbulanceNotOnSceneInTime: 
 P(MobilizedAmbulanceNotOnSceneInTime)  
             = 1 – (1 – 0.019 × 0.99) × (1 – 0.02 × 0.98)  
  × (1 – 0.005 × 1) =  0.0429, 
which means that a mobilized ambulance will not arrive on 
the incident scene within 11 minutes in 4.29% of cases. 

B. From Root Obstacles to Obstructed Leaf Goals 

In standard risk analysis, a risk consequence is expressed in 
terms of degree of loss of satisfaction of the associated 
objective. This is translated in our framework by saying that 
the consequence of an obstacle is the lower degree of 
satisfaction of the obstructed leaf goal and, recursively, of its 
parent and ancestor goals. 

The probability of non-satisfaction of the leaf goal LG is 
given by the probability that the root obstacle RO occurs and 

that such occurrence actually leads to the non-satisfaction of 
the leaf goal (see the obstruction condition in Section III.B): 

1 - P (LG) = P (RO) × P (¬ LG  | RO) 
Back to our running example, we can thereby compute 

the reduced probability of satisfaction for the leaf goal 
Achieve [AmbulanceOnSceneWhenMobilized] in Fig. 1. As the 
obstacle MobilizedAmbulanceNotOnSceneInTime always 
obstructs the goal, we obtain: 

P (Achieve [AmbulanceOnSceneWhenMobilized]) = 
1 - 0.0428 × 1 = 0.957 

This means that in more than 95% of cases, a mobilized 
ambulance will arrive on scene within the prescribed 11 
minutes. 

If the leaf goal can be obstructed by more than one 
obstacle, it will be satisfied when none of these occurs: 

P (LG) = (1 - P (O1) × P (¬  LG | O1))  
                       × (1 - P (O2) × P (¬  LG | O2)) × … 

C. From Obstructed Leaf Goals To Higher-Level Goals 

The decreased degree of satisfaction of the obstructed leaf 
goal must be up-propagated in the goal refinement graph in 
order to determine all obstacle consequences. The probability 
of satisfaction of a parent goal depends on the probabilities 
of its subgoals. Without loss of generality, the presentation 
will consider refinements in two subgoals for sake of clarity.  

As introduced in Section III.A, in the most general case 
the parent goal is satisfied if the two subgoals are satisfied, 
or the satisfaction of the first is sufficient for satisfying the 
parent, or the satisfaction of the second is sufficient for 
satisfying the parent. This leads to the following general 
propagation rule for AND-refinements: 

P (G) = P (SG1, SG2) × P(G | SG1, SG2) 
+ P (SG1, ¬  SG2) × P (G | SG1, ¬  SG2)  

 + P (SG2, ¬  SG1) × P (G | SG2, ¬  SG1)  
+ P (¬  SG1, ¬  SG 2) × P (G | ¬ SG1, ¬  SG2) 

In case we focus our attention on a single system, no 
alternative OR-refinements are to be considered; the 
probability of satisfying G given that none of the subgoals is 
satisfied is then equal to zero, and the last term disappears. 
Moreover, in case where the refinement meets the non-
probabilistic completeness condition in Section II, we have 
that P (G | SG1, SG2) = 1. The AND-propagation rule then 
reduces to: 

P (G) = P (SG1, SG2)    
+ P (SG1, ¬  SG2) × P (G | SG1, ¬ SG2)  
+ P (SG2, ¬  SG1) × P (G | SG2, ¬ SG1)      (and-propag) 

Depending on the type of refinement and goal, this 
propagation rule can be made further specific. Table 1 gives 
propagation rules for a sample of common refinement 
patterns known to be complete, consistent and minimal [10]; 
the subgoals there are therefore independent. 

For a milestone-driven refinement, for example, the 
satisfaction of a single milestone-based subgoal is not 
sufficient for satisfying the parent goal. The propagation rule 
therefore reduces to  

P(G) = P(SG1) × P(SG2) 
For a case-driven refinement, the parent goal is satisfied 

when one of the subgoals is satisfied. If P (CS) denotes the 



probability of satisfying the case-condition CS, assuming 
two disjoint cases, the propagation rule becomes:  

P(G) = P(CS) × P(SG1) + (1 - P(CS)) × P(SG2)  

To evaluate obstacles consequences, we can proceed in 
two ways: 
• Global impact analysis: the computed probabilities for 

all obstructed leaf goals are together propagated bottom-
up in the goal graph to see how much the resulting EPS 
of higher-level goals deviates from their required RDS. 

• Local impact analysis: the consequence of a single leaf 
goal obstruction is evaluated by up-propagation of the 
computed probability for this leaf goal, all other leaf 
goals being assigned a probability of 1 (meaning that 
they are all assumed to be fully satisfied).  

Let us illustrate such global impact analysis on the model in 
Fig. 1. (For lack of space we will use precise goal names 
instead of their formal specification.) We want to know 
whether this model satisfies the threshold imposed by the 
ORCON standard; the latter requires the goal Achieve 
[AmbulanceOnSceneInTimeWhenIncidentReported] to be satisfied 
in at least 95% of cases. 

For the leaf goal Achieve[AmbulanceOnSceneWhenMobilized], 
the probability of satisfaction computed in Section IV.B is 
0.956. Similar computations for the other leaf goals in Fig.1 
yield:  

Achieve [AmbulanceAllocatedWhenIncidentReported]:   0.98,  

Achieve [AllocatedAmbulanceMobilizedWhenOnRoad]:  0.98,  
Achieve [MobilizedByFaxWhenAllocated]:  0.90,  
Achieve [MobilizedByPhoneWhenAllocated]:  0.95,  
Achieve [MobilizedByFaxOrByPhoneWhenAllocated]:  1  
                     (no obstacle found in the obstacle model). 

To obtain the probability for the parent goal Achieve 
[AllocatedAmbulanceMobilizedWhenAtStation], we use the general 
and-propag rule as the refinement does not fit any pattern. In 
this rule, we have here P (G | ¬ SGi, SGj) = 1; for example, 
MobilizedWhenAtStation is satisfied given that MobilizedByFax is 
satisfied. The simplified rule then yields: 

P (Achieve [AllocatedAmbulanceMobilizedWhenAtStation]) =  
0.9 × 0.95  + 0.10 × 0.95 + 0.05 × 0.9  =  0.995 

We can now compute the probability of satisfying the 
goal Achieve [AmbulanceMobilizedWhenAllocated]. Its refinement 
in Fig. 1 is a case-driven refinement; the corresponding 
simplified propagation rule can therefore be used. The case 
condition CS is AllocatedAmbulanceAtStation; statistical data 
tell us that this condition holds in 60% of cases. We therefore 
obtain:  

P (Achieve [AmbulanceMobilizedWhenAllocated]) = 
= 0.60 × 0.995 + 0.40 × 0.98 =  0.984 

We can then continue the up-propagation and compute 
the probability of satisfying the goal Achieve 
[AmbulanceOnSceneWhenAllocated] in Fig. 1. Its refinement is a 
milestone-driven one; the associated propagation rule is 
therefore used. This leads to: 

P (Achieve [AmbulanceOnSceneWhenAllocated]) = 
0.984 × 0.957 = 0.9466 

Finally, we reach the top goal in Fig. 1. Its refinement is 
a milestone-driven one as well. The same propagation rule 
yields: 
   P (Achieve[AmbulanceOnSceneInTimeWhenIncidentReported]) = 
    0.98 × 0.9466 = 0.9277 

The resulting EPS for this goal is thus 92.77%; the system as 
modelled is thus not able to satisfy the ORCON standard 
prescribing 95%.  The next section discusses how the critical 
obstacles can be identified for higher-priority resolution in a 
new version of the model.  

V. IDENTIFYING CRITICAL OBSTACLE COMBINATIONS 

Countermeasures must be deployed at RE time or at system 
runtime in order to resolve probabilistic goal violations. Such 
countermeasures can be explored according to risk reduction 
tactics [21, 23]. To select most appropriate ones at modeling 
time or at runtime, we need to identify the most problematic 
leaf obstacles.  

There is a multi-criteria optimization problem here as we 
are looking for minimal sets of leaf obstacles that maximize 
the severity of goal violations, where SV (G) = RDS(G) – P(G). 

To achieve this, we can generate all possible leaf obstacle 
combinations. The violation severity SV (G) is then computed 
for each obstructed goal G. If these goals have different 
priorities, we can weight differently the computed SV (G) 
according to their respective priority. The most critical 
combinations are identified by sorting the leaf obstacle 
combinations by violation severity (possibly weighted).  

Consider the obstacles in Fig. 2. There are 4 leaf 
obstacles and 8 possible combinations (as two leaf obstacles 

TABLE I.  PROPAGATION RULES FOR COMMON REFINEMENTS  

Pattern Equation 

 
Milestone-driven 

P(G)  
= P(SG1) × P(SG2) 

 
Case-driven 

P(G)  
= P(CS) × P(SG1)  
+ (1 - P (CS) × P(SG2) 
 

Refinements are annotated with P(CS) 

 
Guard-introduction 

P(G)  
= P(SG1) × P(SG2) × P(SG3) 

 
Divide-and-conquer 

P(G)  
= P(SG1) × P(SG2) 

 
Unmonitoribility-driven 

P(G)  
= P(SG1) × P(SG2) 

 
Uncontrollability-driven 

P(G)  
= P(SG1) × P(SG2) 

 



are involved in an AND-Refinement). Table II shows the 
computed SVs for all these combinations; a value "1" (resp. 
"0") indicates that the corresponding obstacle is (resp. is not) 
in the combination. Fig. 3 visualizes the computed violation 
severity SV corresponding to each combination. The squares 
represent leaf obstacle combinations that differ in size; the 
black ones indicate the most critical combinations for a given 
size. As we can see there, two combined leaf obstacles are 
sufficient for falling under the goal's RDS; a single obstacle 
cannot obstruct the goal enough. From Table 2 we can make 
the following further observations. 

• The possibility of an ambulance being lost or stuck in 
traffic jam is sufficient for severe obstruction of the 
goal; this is the pair to resolve first. 

• The two other pairs cause a significantly smaller loss in 
satisfaction of our top-level goal. 

The set of black squares in Fig. 3 defines a Pareto front; 
efficient algorithms for generating them are available [19, 8]. 
Our generation of leaf obstacle combinations and their 
ranking by severity can thereby be optimized in order to 
scale up for larger systems.  

VI.  VALIDATION  

The techniques in this paper were also used for risk analysis 
of a carpooling support system. A brief description follows. 

The system should act as a marketplace for drivers to offer 
empty seats in real time and travellers to use them under agreed 
conditions. A driver is matched in real time with anyone 
searching for a ride along a common route. Effective carpooling 
may critically depend on marketplace size; the system should 
therefore be attractive to drivers, in particular by not 
overconstraining them. Drivers are assumed to have a GPS-
based navigation device and a PDA/iPhone-like touch screen. 

Our goal model for this system includes 32 goals, 15 
refinements up to 7 levels. A variety of refinements patterns 
were used [23]. The obstacle model includes 75 obstacles, 
among which 42 leaf obstacles. The complete report for the 
case study can be found at [9]. For lack of space, we only 
present fragments of our study together with some lessons 
learnt; precise goal names are used here again instead of their 
formal specification. 

A top behavioral goal for this system is Achieve 
[NeedForRideServed]; it prescribes that at "least 95% of 
passengers making a request for a ride will arrive at destination 
within the specified time constraints". This high-level goal is 
refined in three subgoals: Achieve[RideRequestEncoded], 
Achieve[AdequateDriverFoundWhenRequestEncoded], and Achieve 
[PassengerAtDestinationWhenDriverFound]. Each of these is 
refined towards assignable requirements or assumptions. For 
example, the leaf goal Achieve [DropPointReachedWhen 
PassengerInCar] states that "a passenger of a planned ride inside 
the driver’s car shall arrive at the drop point"; the leaf goal Achieve 
[RidePlannedWhenProposalSelected] states that "a ride shall 
eventually be planned when passenger has selected a proposal". 
Obstacles to such leaf goals were generated and refined. 
Here is a sample of refinements in textual format together 
with their probability - estimated for leaf goals and computed 
for non-leaf goals. 

 Drop Point Not Reached When Passenger In Car 12,4% 

  Drop Point Not Reached In Time 3,8% 
   Car Stuck In Traffic Jam 3,4% 
   Driver Has Wrong Instructions 0,1% 
   Detour From Planned Road 0,2% 
   Other Passenger Late 0,1% 
  Drop Point Never Reached 8,6% 
   Car Broken Down 0,5% 
   Driver Gets Lost 3% 
   Driver Has Wrong Instructions 0,1% 
   Driver At Other Drop Point 2% 
   Drop Point Inaccessible 3% 
 Ride Not Planned While Proposal Selected 4,55% 
  Ride Canceled 1,95% 
   Cancelled By Driver 1% 
   Cancelled By Passenger 0,95% 
  No Pickup Or Drop Point Found 2,67% 
   No Pickup Point Found 0,7% 
   No Pickup Point Accessible To Riders 0,7% 
   No Drop Point Found 0,7% 
   No Drop Point Accessible To Riders 0,7% 
  No Pickup Or Drop Time Found 1,2% 
   No Pickup Time Found 0,6% 
   Pickup Time Incompatible With Other Pickups 0,2% 
   Journey Longer Than Proposed Time 0,2% 
  No Drop Time Found 0,6% 
   … 

The estimates for leaf obstacles are grounded on the 
domain; they can be elicited from experienced users, 
statistical data or runtime measures from existing software 
applications. For example, the probability of the leaf obstacle 
DriverForgetsToGoToPickupPoint was estimated to 1% (10 rides 
out of 1000). The probability of the leaf obstacle 
RidersDoNotRecognizeEachOther was estimated to 0,9% 
whereas the probability of the more frequent leaf obstacle 
WrongContactInformation was estimated to 6%. 

Combinations involving a large number of obstacles 
causing the high-level goal to fall under its RDS were not 

TABLE II.  Violation severity for  
Achieve [AmbulanceOnSceneInTimeWhenIncidentReported] 

Amb. 
Lost 

Amb. 
Stuck In 
Traffic 

Amb. 
Broken 
Down 

EPS RDS SV 

1 1 1 92,77% 2,23% 

1 1 0 93,20% 1,80% 

0 1 1 94,54% 0,46% 

1 0 1 94,61% 0,39% 

0 1 0 95,02% -0,02% 

1 0 0 95,10% -0,10% 

0 0 1 96,44% -1,44% 

0 0 0 96,92% 

95% 

-1,92% 

 

 
Fig. 3. Obstacle combination ranking by violation severity 



felt really helpful in identifying the obstacles to focus on. 
Some of the singletons and obstacle pairs we found were 
potentially causing significant goal violations already. For 
example, the obstacle WrongContactInformation with 
probability 6% produced a SV of 1% (meaning that only 
94% of passengers would have a successful ride). The 
obstacle DriverGetsLost with probability 3% produced a SV of 
0.91%. The obstacle PassengerLateAtPickupPoint with 
probability 5,5% produced a SV of 0.5%.  

Among the 904 pairs of leaf obstacles identified as 
critical (out of 1722 pairs), the 3 most critical pairs not 
including the previous obstacles were: 
• (PassengerGetsLost, RideCancelledByPassenger), SV = 4.78%; 
• (PassengerGetsLost, DriverLateAtPickupPoint), SV = 4.75%; 
• (DriverLateAtPickupPoint, RideCancelledByPassenger), SV = 

4.74% 
These three obstacle combinations should thus have higher 
priority for resolution. 

Some of the leaf obstacles appeared to have more 
importance than others, even if they have a small probability. 
For example, the obstacle PassengerCancelsRide, with a 
probability of 0,85%, was seen to potentially obstruct many 
leaf goals, e.g., PassengerAtPickupPointWhenInstructionsKnown, 

RideInstructionsReadWhenSent, ProposalSelectedFromSuggestions, 

ProposalRemainsMatchingIfSelected, etc. Even if the estimated 
probability is low, the obstacle might be critical. For 
example, if the probability of PassengerCancelsRide is 
changed from 0,85% to 0.95%, the violation severity 
increases from -0.10% to 0.57%.  

To sum up, the large number of obstacles made it quite 
difficult to identify what most critical obstacles should be 
considered first for selecting resolutions. The prioritized list 
of obstacles produced by our technique helped significantly 
in that direction.  

VII.  RELATED WORK 

Probabilistic fault trees are sometimes used for analyzing 
undesirable events in safety-critical systems [26, 6]. Low-
level events are annotated with probabilities that are 
propagated by use of ad hoc rules. As they are informal and 
not model-based, such trees provide little support for 
identifying root events, refining trees incrementally and 
reasoning in terms of higher-level objectives.  

CORAS is a UML-based risk modeling methodology that 
relates assets and risks annotated with likelihoods to support 
quantitative reasoning in the identify-assess-control cycle of 
risk analysis [28]. Such likelihoods and their contributions 
however remain fairly vague from a semantic standpoint. 

DDP is a lightweight, tool-supported technique for 
quantitative risk analysis [13]. Goals, obstacles and 
countermeasures are called requirements, failure modes and 
PACTs, respectively. Each goal is decorated with a weight 
representing its importance. Failure modes are annotated 
with likelihoods. Countermeasures are decorated with an 
effectiveness defined as the proportion of risk reduction. 
Criticality and loss of objective are then characterized as 
arithmetic combinations on these annotations. Our technique 
builds on DDP by adding formality to specifications, a more 

precise semantics for probabilities grounded on application-
specific phenomena, and a model-based refinement structure 
for propagating probabilities through risks and consequences 
at various levels of granularity. 

The TROPOS goal-oriented framework is also closely 
related to our efforts. It puts more focus on modeling soft 
goals and reasoning qualitatively about their contributions. 
TROPOS has been extended to support some form of 
quantitative reasoning [15], risk assessment [4], and 
evaluation of system performance indicators [5]. In [4], goals 
are called assets and are related to external events that 
influence positively or negatively goal satisfaction or denial, 
respectively. Influences and degrees of satisfaction are 
assessed quantitatively or qualitatively. The quantitative 
approach in [15] on which [4] and [5] are based also relies on 
model-based propagation rules. However, the considered 
goals and risks have no precise semantics in terms of system 
behaviors; they are not measurable. The probabilities 
therefore cannot be grounded on behavioral semantics. 
Moreover, the propagations do not take advantage of specific 
types of refinement. There seems to be no risk AND/OR-
refinement structure for propagating probabilities from fine-
grained risks that are easier to estimate in terms of 
application-specific phenomena.  Lastly, probabilistic goals 
are not supported in terms of estimated vs. required 
probabilities of satisfaction. 

In [31], KAOS goal models are extended with 
probabilities and propagation rules for technology 
qualification. Their rules appear different; they do not take 
advantage of different refinement types. For example, their 
AND-propagation rule does not apply to case-driven or non-
minimal refinements; their OR-propagation rule for obstacles 
can be made simpler thanks to obstacle disjointness. 
Probabilistic goals as defined in our work are not introduced 
in [31]; they seem not relevant to their context. 

In [25], goals are annotated with random variables they 
refer to and associated objective functions; such variables are 
bound by equations that are tailored to corresponding 
refinements. Probability density functions are propagated 
bottom-up to assess alternative goal refinements. This 
technique is more precise and finer-grained, but more 
heavyweight. It is targeted at selecting alternative options 
rather than prioritizing obstacles by criticality. 

VIII.  CONCLUSION 

The quantitative risk assessment technique presented in the 
paper is model-based and anchored on an existing goal-
oriented framework for requirements engineering. The 
framework is extended with a probabilistic layer allowing 
behavioral goals to be characterized in terms of their 
estimated and required degrees of satisfaction. The 
specification of such goals and their obstacles has a formal 
semantics in terms of system behaviors, allowing 
probabilities to be grounded on measurable, application-
specific phenomena. The severity of obstacle consequences 
in terms of degree of goal violation is determined 
quantitatively and systematically by probability propagations 
through the obstacle and goal models. The most critical 
obstacle combinations are then determined in order to 



prioritize obstacles and guide the exploration of appropriate 
countermeasures against the more critical obstacles, using 
available techniques [21], to increase requirements 
completeness. 

Our technique was successfully applied to two non-trivial 
mission-critical systems for ambulance dispatching and 
carpooling, respectively.  

The use of Markov chains as semantic models of 
goal/obstacle specifications is currently being investigated to 
improve the accuracy of probability estimations. Dedicated 
tool support is also under development to replace our current 
spreadsheet calculations and integrate them in semi-formal 
[23] and formal [1] goal-oriented RE environments. The 
transposition of our framework from behavioral goals to 
measurable soft goals is also worth considering. 

A next step concerns the assessment of the cost-
effectiveness of countermeasures and their integration in the 
goal model. The handling of uncertainty over probabilities is 
another issue. Domain experts tend to provide ranges for 
estimating probabilities; measurements can contains errors; 
knowledge about certain probabilities might be missing. 
Such uncertainty needs to be integrated as well. 
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