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Abstract— Requirements completeness is among the most
critical and difficult software engineering challerges. Missing
requirements often result from poor risk analysis &
requirements engineering time. Obstacle analysis ia goal-
oriented form of risk analysis aimed at anticipatirg exceptional
conditions in which the software should behave adegtely. In
the identify-assess-control cycles of such analysis, the
assessment step is not well supported by currentdeniques.
This step is concerned with evaluating how likelyhte obstacles
to goals are and how likely and severe their consagnces are.
Those key factors drive the selection of most apppoiate
countermeasures to be integrated in the system goalodel for
increased completeness. Moreover, obstacles to padiilistic
goals are currently not supported; such goals presibe that
some corresponding target property should be satigfd in at
leastX% of the cases.

The paper presents a probabilistic framework for gal
specification and obstacle assessment. The spedfion
language for goals and obstacles is extended with a
probabilistic layer where probabilities have a preése semantics
grounded on system-specific phenomena. The probaityl of a
root obstacle to a goal is thereby computed by uprppagation
of probabilities of finer-grained obstacles throughthe obstacle
refinement tree. The probability and severity of olstacle
consequences is in turn computed by up-propagatiofiom the
obstructed leaf goals through the goal refinementrgph. The
paper shows how the computed information can be udeto
prioritize obstacles for countermeasure selectionotvards a
more complete and robust goal model. The frameworkis
evaluated on a non-trivial carpooling support syste.

Keywords — Obstacle analysis, risk assessment, gidistic
goals, requirements completeness, goal-oriented urements
engineering, risk analysis, quantitative reasoning.

l. INTRODUCTION

Missing requirements and assumptions are reporsed e\

has a likelihood of occurrence if the risk occurs.
consequence has severityin terms of degree of loss of
satisfaction of the corresponding objective. Dejramndn the
category of objective being obstructed, risks maryespond
to safety hazards [26, 27], security threats [2, BAccuracy
conditions on software input/output variables witspect to
their environment counterpart [21], and so forth.

Risks must be identified, assessed against liketirend
severity, and controlled through appropriate couméasures
[7, 17, 23, 28]. At requirements engineering timgks can
be systematicallydentified from prescriptive requirements
and descriptive domain properties [21]. For @slsessment
we can use qualitative scales to support quick rbugh
estimates of likelihood and severity [12] (e.g.onfr
‘unlikely’ to ‘very likely’ and from ‘low’ to ‘highly critical’,
respectively), possibly in relation with a requikams model
[4]. Alternatively, quantitative scales can be usedaapture
such estimates more precisely [6, 13], possiblyeiation
with a requirements model [31]. For rigskntrol, we may
explore alternative countermeasures and select effestive
ones [13]; such exploration may be driven by ristuction
tactics such asreduce risk likelihood, avoid risk, reduce
consequence likelihood, avoid risk consequence, O mitigate risk
consequence [23].

In goal-oriented modeling frameworks, obstaclesewer
introduced as a natural abstraction for risk amgli’, 20].
An obstacle to a goal is a precondition for the non-
satisfaction of this goal. Obstacle analysis [2i}sists of (a)
identifyingas many obstacles as possible to every leaf goal i
the goal refinement graph from relevant domain erogs;
(b) assessinghe likelihood and severity of each obstacle;
and (c)resolvinglikely and critical obstacles by systematic
model transformations encoding the preceding réskiction
tactics in order to integrate appropriate count@suees in
he goal model. Obstacle analysis has been suatgased

one of the major causes of software failure [23].1 a variety of mission-critical systems, see, 29, 11].

Incompleteness often results from a lack of argigigm of

The risk/obstacle assessment step is obviouslyatrior

unexpected conditions under which the software Ilshou focusing the resolution step on those risks thag ar

behave adequately. A natural inclination to coneever-

determined to be likely and have likely and severe

ideal systems prevents adverse conditions from gbeinconseguences. No systematic techniques are aesitadate

properly identified and, when likely and criticaksolved
through appropriate countermeasures.

to support this step.
To fill this gap, the paper presents a simple yitctve

Risk analysis should thus be at the heart of théechnique for quantitative risk assessment. Tladhrtigjue is

requirements engineering process [21, 13, 23, §,AR8isk

is commonly defined as an uncertain factor whose *

occurrence may result in some loss of satisfaatibeome
corresponding objective. A risk has Bkelihood of
occurrence and one or several undesiraldensequences
associated with it. Each consequence is uncertainedi; it

intended to meet the following objectives.

Formal semantics for statements to be asseddelike

[13, 4, 28], the specification of goals and riskewdd
have a clear, precise semantics in terms of
desirable/undesirable system behaviors. Such samant
enables their precise interpretation and the iategr

Proc. RE'2012 : 20th IEEE International Confererme Requirements Engineering, Chicago, Septembet 201



of risk assessment with other techniques for rislobstacle combinations to be

generation [21, 1], countermeasure derivation E1id
goal model analysis [23], including
refinement/operationalization checking or
model synthesis.

* Measurable statements: Unlike the

[13, 4],

specification of goals and risks should be grounoied

resolved, based on a
prioritization of obstacles according to the sedyedf their

goal consequences. Section VI summarizes our evaluafidhe
behaviortechnique on a carpooling support system. Sectidh V

discusses related work.

1. BACKGROUND

application-specific phenomena that are measuriable Goal-Oriented System Modeling goal is a prescriptive
the environment of the software-to-be; this attéesia statement of intent to be satisfied by the agemtsiing the
the common problems with subjective estimations. FOsystem. The wordsystem refers to the software-to-be
the importance of making requirements measurabe, s tggether with its environment, including pre-existi

[30].

software, devices such as sensors and actuatanslepetc.

* Model-based assessmehinlike [13], the assessment yyplike goals,domain propertiesare descriptive statements

process should take advantage of the refineme

structure provided by the goal/obstacle model kowal
for more accurate estimation of probabilities cdrser-
grained statements from finer-grained ones.

« Probabilistic requirementstnlike existing techniques,

requirements that prescribe some property to holat i

least X% of the cases should be handled within th

same assessment framework.

Partially satisfied goals were introduced in [25}r f
evaluating alternative system options. The degrde
satisfaction of such goals is modeled there by aivie
functions on quality variables they refer to. Thaalg are
specified formally and interpreted in terms of agggion-
specific measures. Their associated quality vasmldre
refined according to the refinement structure of thoal
model. Degrees of satisfaction are determined botip by
computing the probability density function of higHevel
quality variables from the probability density ftions of
lower-level ones. This results in accurate estiomatiat the
price of fairly complex computations. Bayesian nmtis
might also be used for making predictions aboutigibr
satisfied assertions [14]; their construction aradidation

Mhout the problem world (such as physical laws).

A goal may bebehavioralor softdependent on whether
it can be satisfied in a clear-cut sense or nothéncontext
of risk analysis, this paper focuses on behavigoals.

A behavioral goal captures a maximal set of intende
ebehaviors declaratively and implicitly; aehavior is a
sequence of system state transitions. A behavios th
violates a goal if it is not among those prescrilbydthe
0formal specification of the goal [21].

Linear temporal logic (LTL) may be used for
formalizing behavioral goals to enable their analy3he
goals then take the general form

C=>0T

where O represents a LTL operator such &s:(in the next
state) ¢ (sometimes in the futuref <4 (Sometimes in the future
before deadline d)I] (always in the future)l<q4 (always in the
future up to deadline d)W (always in the future unlessJ
(always in the future until)Jand wheré® = Q means] (P —
Q). The following standard logical connectives aredis]
(and) ( (or), = (not), — (implies), «> (equivalent)

A behavioral goal can be of typeichieve or

however does not take advantage of the availabl gomMaintain/Avoid The specification pattern for afchieve

structure, and turn to be very difficult for compkgystems.

Our technique for determining the probability of

obstacles and
consequences is intended to be simpler as it dxptbe
goal/obstacle refinement structure and
probabilities directly along that structure.

the probability and severity of their

propaga

goal is 'if C then sooner-or-later T", that is,c =0T, whereC
. denotes aurrent condition andT a target condition, with
obvious particularizations ttmmediate AchieyeBounded

eéchieveand Unbounded Achievgoals. The pattern for a

Maintain (resp.Avoid) goal is fif C then] always G" (resp.

As a result, obstacles get prioritized by degree oflif C then] never B", that is,[C=] 0G (resp.[C=] [J-B),

criticality. Such prioritization can then be usext fuiding
the selection among alternative countermeasuretifiée
through risk-reduction tactics [21]. We therebyadbtmore
evidence-based answers to questions such asywbaf are
the most critical obstacles to be resolved in vigwhe high-
level, safety-critical goal stating that ‘ambulance shall be on
the incident scene within 14 minutes in 95% of cases’?

The paper is organized as follows. Section Il idtrces
some necessary background on goal-oriented modatidg
obstacle analysis. Section Il introduces our mdreied
probabilistic framework for goals, obstacles, arttkirt
refinements. Section IV shows how obstacle proliggsilare
up-propagated through obstacle refinement trees havd
obstacle consequences are up-propagated througbotie
model. Section V discusses the identification oitical

where G and B denote agood and bad condition,
respectively.

A behavioral goal must obviously be consistent vaith
known domain properties, that is,

{G, Dom} ¥ false (domain-consistency)

A goal modelis an AND/OR graph showing how goals
contribute positively or negatively to each oth&o,[ 15,
23]. Parent goals are obtained by abstraction veisechild
goals are obtained by refinement. In a goal mddef,goals
are assigned to single system agents; theyeapgirements
or assumptionglependent on whether they are assigned to
the software-to-be or to an environment agent,aetbely.

Refinement patterns are available to help buildjogl
models, e.g., theMilestone-Driven Case-Driven Guard-
Introduction Unmonitorability-Driven  Uncontrollability-



/ Achieve [Ambulance On Scene In obstacles are single, fine-grained obstacles whikaléghood

Time When Incident Reported] can be easily estimated.
T Y Y] Each sub-obstacle in an OR-Refinement must eritail t
chieve |Ambulance On .
Achieve [Ambulance Allocated Scene When Allocated] / paren;gbséade O f Il SO; il
When Incident Reported] {SCi, Dom} = ora i (entailment)
~chiove AU OR-Refinements should ideally be domain-completd an
C! ieve [Ambulance Achieve [Ambulance On disioint:
Mobilized When Allocated]/ | 'Scane When Mobilized] Joint.
{=S04, ..., 7SOn, Dom} £ =O (domain-completeness)
/Achieve [Allocated Ambulance/ _mbulance il {SOi, SO;, Dom} = false  for SO; # SO;  (disjointness)
Mobilized WhenOnRoad] / Achieve [Allocated Ambulance / Formal and heuristic techniques are available far t
Mobilized WhenAtStati . e i
oblized WhenAtStation] identification of obstacles [21, 1] and for the ggeation of
/Achieve [Mobilized By Fax Mobilized When Mob”ized\ alternative countermeasures [21]. In particular, Achieve
When Allocated] By Fax Or By Phone and Maintain/Avoid goals, specific domain properties are
/Achieve [Mobilized By worth eliciting. They take the formf"r then N" or "if G then
Phone When Allocated] N", that is,T = N or G = N, whereN denotes anecessary
Fig. 1. Partial goal model for an ambulance disfiay system condition for the target conditiom or good conditionG.

Driven, or Divide-and-Conquerpatterns [10, 23]. Fig. 1 They result in obstacles taking the forgodner-or-later[C
illustrates two milestone-driven refinements’(tapr)e case- 2andlneverN" or “sooner-or-later[Cand] sooner-or-later not N",
driven refinement (middle) and one refinement gtino  that is, ¢ ([C D LI=N) or O ([C [J 0= N), respectively. For
SpeC'ﬂC pattern (bottom) For example, the topl @a example, consider the goaﬁkchleve [AmbulanceOnScene

IncidentReported = 0<14 minAmbulanceOnScene WhenMobilized] in Fig. 1:

lts two subgoals are obtained by application of the  AmbulanceMobilized=0<1; minAmbulanceOnScene
Milestone-Driven refinement pattern witimbulanceAllocated ~ Negating this goal yields the root obstacle:
as milestone condition: ¢ (AmbulanceMobilized (.11 it AmbulanceOnScene)

IncidentReported=> <1 minAmbulanceAllocated The necessary conditions for the target includdahewing:

AmbulanceAllocated= 0<13 minAmbulanceOnScene AmbulanceOnScene = - AmbulancelnTrafficJam

AND-refinement links in a goal model should ideallg  This yields the bottom left sub-obstacle in Figna@mely:
complete, consistent and minimal. A refinementamplete

if the satisfaction of all subgoals is sufficienr fthe ¢ (AmbulanceMobilized L[ 11 min AmbulancelnTrafficlam)

satisfaction of the parent goal in view of knownndin - —
. Achieve [Mobilized
properties: Ambulance On Scene]
{SG4, ..., SGy, Dom} = G (complete refinement)
A refinement isconsistentif no subgoal contradicts other \MobilizedAmbuIarjce Not
sub-goals in the domain: ® On Scene In Time
{SGi, ..., SGn, Dom} i false  (consistent refinement) &_\Ambulance\ \ Ambulance \
A refinement isminimalif all the subgoals are needed for the In Traffic Jam Lost Broken Down
satisfaction of the parent goal: \ Ambulance Not \ '}) { GPS Not \
for alli: {SG, ...,SGi1, SGiu1, ... SGn, Dom} # G n Familiar Area Working
The partial goal model in Fig. 1 shows four commlet Fig. 2. Partial obstacle model for ambulance didpag system
consistent and minimal AND-refinements.
Obstacle analysisAn obstacleto a goal is a domain- . A MODEL-BASED FRAMEWORK FORCAPTURING
satisfiable precondition for the non-satisfactidrttos goal PROBABILISTIC GOALS AND OBSTACLES
[21]: The probability of satisfaction of a goal depends the
p 9 p
{0, Dom} = - G (obstruction) probability of occurrence of obstacles obstructingThe
{0, Dom}  false (domain consistency) severity of the consequences of an obstacle depandise

difference between thgrescribeddegree of satisfaction for
the obstructed goals and thestimated probability of
satisfaction of these goals in view of their obstian. This
section defines these various notions more pracisel

Similarly to goals, obstacles can be AND/OR refinetb
sub-obstacles, resulting in a goal-anchored formiséftree.
In such tree, the root obstacle is the negationthef
associated leaf goal in the goal model; an ANDrefient
captures a combination of sub-obstacles entailiegparent A. Probabilistic Goals

obstacle; an OR-refinement captures alternative swaly As seen before, a (non-probabilistic) goal defirees
entailing the parent obstacle —and, recursively, ofmaximal set of intended behaviors. The probabiitygoal

obstructing the corresponding leaf goal; the leab-s



satisfaction is defined in terms of the probabilibf
observing one of those behaviors.

being not responsive, the ambulance being not réadihe
next mission, communication failing, etc. Due tb slch

~ For a behavioral goat = OT, we are obviously interested obstacles, there is a probability of this goal eaing
in non-vacuous satisfactipteaving aside those trivial cases satisfied.

where the goal is satisfied becase false. We therefore
focus our attention on behaviors where the goacauent
is satisfied.

Definition 1. The probability of satisfaction of a goas the
proportion between (a) the number of possible biehsav
satisfying the goal's antecedéhtaind conseque®T and (b)
the number of possible behaviors satisfying theditiam C.
A goal is thudully satisfiedif its probability of satisfaction is
equal to 1.
Consider the goalchieve [AmbulanceMobilizedWhenAllocated] in
Fig. 1. Its probability of satisfaction is definad:

Nr. of behaviors where allocated ambulance is mobilized

Nr. of behaviors where ambulance is allocated

Assuming there are 3 possible behaviors where lanatéd
ambulance is mobilized out of 4 possible behavighere
the ambulance is allocated, the probability ofs$atition for
that goal is 75%.
Note that the set of behaviors satisfying this gp@ds not
necessarily satisfy or deny the goathieve [Ambulance
AllocatedWhenincidentReported];  whether an  allocated
ambulance is mobilized or not does not depend ogthveln
an ambulance is allocated or not. On another haedgoals
Achieve [AmbulanceMobilizedWhenAllocated] and Achieve
[AllocatedAmbulanceMobilizedWhenOnRoad] are not independent
as the set of behaviors satisfying the latter aksisfies the
former.

Definition 2. Two goals ar&ependenif the set of behaviors
non-vacuously satisfying one of them is also nocuaaisly
satisfying or denying the other.

Two goals are independent if they are not dependient
terms of conditional probabilities, this amounts saying
that:

P(Gl| Gz) = P(Gl| _le) = P(Gl),

P(Gzl Gl) = P(G2| _lGl) = P(Gz),
whereP(G) denotes the probability of satisfaction®fand
P(G|H) denotes the probability of satisfaction @fover all
behaviors satisfying property.

The EPSfor a goal G will be denoteB(G) in the sequel;
P(G,, G) will denote theEPSof G, and G in combination.

Definition 4. Therequired degree of satisfactigRDS for a
goal is the minimal probability of satisfaction adsible for
this goal. It is imposed by elicited requiremerggjsting
regulations or standards, and the like.

For example, ORCON standards requit@ulances to be on
the incident scene within 14 minutes in 95% of cases [24]. This
will be captured by annotating the goadhieve[Ambulance
OnScenelnTimeWhenincidentReported] with aRDSof 0.95.

Note that the previous situation of (non-probatid)s
goals recalled in Section Il is generalized havestich goals
we haveRDS(G) = 1.

Annotating a behavioral goal = OT in a goal model with
its RDS amounts to specifying it in a probabiligéenporal

logic [18] through an assertion of for= Pr.rps[OT].
Definition 5. A goalG is probabilisticif 0 <RDS(G) < 1.

Based on a goalEPSandRDS we can measure the gap
between its estimated and prescribed probabilitfeSPS>
RDS, the goal's required satisfaction thresholeé&ched,; if
EPS < RDS, it is not and we have a problem. Thig ga
should be as low as possible. The difference allog/do
measure how severe the goal violation is.

Definition 6. Theseverity of violatiorof a goalG is defined
by:
SV(G) = RDS(G) - P(G).

The domain-consistencgondition introduced in Section
Il is generalized accordingly; it now states thagre is a
chance to observe a behavior at least that satitiie goal
and the domain properties:

P(G|Dom) >0

In our generalized setting for goals with a partiagree
of satisfaction, we need to state what desirablal go
refinements are. The completeness, consistency and
minimality conditions in Section Il are thereforengralized

Our behavioral goals are structured in an AND/ORaccordingly.

refinement graph [23]. It can then be shown that:

A refinement of goat into subgoal$G, ...,SG, is now

» two goals are dependent if one of them is a child osaid to becompletaf:

descendant of the other, or if it conflicts dirgctr
indirectly with the other;

* in a minimal and consistent goal refinement, tHegsals
are independent.

In our probabilistic framework, goals will be anatsd
with an estimatedprobability of satisfaction and required
degree of satisfaction.

Definition 3. Theestimated probability of satisfactiqeP9
for a goal is the probability of satisfaction ofsttgoal in
view of its possible obstructions. It is computedni the
goal/obstacle models.

In our running example, an allocated ambulance trigt
be mobilized for various reasons, e.g., the amivalarew

P(G | SGy, ..., SGy, Dom) >0 (complete refinement)

Note that this condition is weaker than the congpiess
condition in Section Il as it accounts for parsatisfaction;
it covers in particular the case of full satisfanti equivalent
to the completeness condition in Section II:

P(G|SGy, ..., SGy Dom) =1

The refinement isonsistentf:
P(SGy, ..., SGn | Dom) >0
The refinement isninimalif for all i:

P(G|SGy, ..., SGi1, SGis, ..., SGn, Dom)
< P(G|SGy, ..., SGy, Dom)  (minimal refinement)

(consistent refinement)



B. Probabilistic Obstacles

A goal is partially satisfied because obstacleis ¢an occur.
Consider the goalchieve [AmbulanceMobilizedWhenAllocated] in
Fig. 1 whose precise specification is:

AmbulanceAllocated = O<5 minAmbulanceMobilized
There is a domain property stating thategessary condition
for ambulances to be mobilized is that their ambecgacrew
must be responsive:

AmbulanceMobilized = CrewResponsive
By regression [21] of the goal negation througls tiomain
property, we obtain the obstacleambulanceCrewNot
Responsive:

¢ (AmbulanceAllocated [1C1.5 min— CrewResponsive)

This condition captures the situation of an ambcaabeing
sooner or later allocated without subsequent crespanse
for 2 minutes. It will be calletbbstacle condition Such
conditions should hopefully not be satisfied totenf

Definition 7. The probability of an obstacleis the
probability of satisfaction of the obstacle cortiti that is,
the proportion between (a) the number of possiblealiors
satisfying the obstacle condition and (b) the numbg
possible system behaviors.

The probability of an obstacl® will be denoted byP(O).
The probability of O over all behaviors satisfying some
propertyH will be denoted by (O|H).

P (MobilizedAmbulanceNotOnScenelnTime | AmbulanceLost) > 0,
as a mobilized ambulance lost might not be on tic&ént
scene within 11 minutes.
The generalized condition for an OR-refinement & b
domain-completenow states that the parent obstacle cannot
be satisfied through further sub-obstacles:

P(O|-S0;, ..., 7 SOn Dom) =0 (domain completeness)

In our running example, our domain knowledge mijlaw
us to stateit'a mobilized ambulance is not stuck in traffic jam nor
lost nor broken down, it will reach the incident scene within 11
minutes"; in such case we would have:

P (MobilizedAmbulanceNotOnScene | = StuckinTrafficJam,

= AmbulanceLost, -AmbulanceBrokenDown) = 0.

The disjointness condition on sub-obstacles iniGedt

is generalized into an independence condition:

P(SOi| SO) = P(SOi| - SO) = P(S0),

P(SOj| SO) = P(SOj| 7S0) = P(SO)
In our example, the probability of an ambulancengei
broken down does not depend on, e.g., the probabflithe
ambulance being lost or stuck in a traffic jam.

Note that two dependent obstacles can be captured
through three independent obstacles: one wherefitsie
obstacle condition holds but not the second, onerevithe
second obstacle condition holds but not the fiasikl one
where both hold. Each of these can have a different
probability.

The obstruction and domain-consistency conditions

recalled in Section Il must be generalized in fnigbabilistic
setting.

IV. EVALUATING OBSTACLES ANDTHEIR CONSEQUENCES
This section shows how obstacle probabilities are

chance that the obstacle will violate the goal:

P(-G| O, Dom) >0 (obstruction)
Note again that this condition is weaker than thstrction
condition in Section Il as it accounts for partilstruction;
it covers in particular the case of full obstrunti@quivalent
to the obstruction condition in Section II:

P(-G|O,Dom)=1

The domain-consistencgondition states that there is a
chance for the obstacle to occur:

P(O|Dom) >0 (domain consistency)

In our generalized setting, we need to charactevizat
obstacle
refinement introduced in Section Il are therefoeaeyalized
accordingly.

For an AND-refinement, theompletenessconsistency

and minimality conditions are similar to those introduced in

Section Ill.A for probabilistic goals.

For an OR-refinement, the counterpart of dmailment
condition in Section Il now states that if one bé tsub-
obstacles occurs then the parent obstacle may:occur

P(O|SOi)>0 forall SO (entailment)
This condition is again weaker than the entailntamidition
in Section l; it covers the particular case of &atisfaction,
equivalent to the entailment condition in Sectibn |
P(O|SO)=1
For example, for the top OR-Refinement in Fig. 2hage:

probabilities of their consequences are computeth fthe
goal refinement model.

The estimated probabilities of leaf obstacles aréhé
obtained first. Such estimates are up-propagatexbatacle
refinement trees (Section IV.A); the results areppigated
from root obstacles to leaf goals in the goal md@eiction
IV.B); the results are in turn up-propagated ingbal model
to obtain probabilities of consequences in termsgoél
obstructions at various levels of abstraction.

A. From Leaf Obstacles to Root Obstacles
We first need to rely on domain knowledge to obtain

refinements are. The conditions on olestaclestimated probabilities of leaf obstacles in refieat trees —

typically, through statistical data about pasteysbehaviors
(cf. Definition 7). For the leaf obstacle

O (AmbulanceMobilized [1J = AmbulancelnFamiliarArea)

in Fig. 2, such data might reveal that the situmtiof
mobilized ambulances being in unfamiliar areas xdn
20% of the cases; for the leaf obstacle

O (AmbulanceMobilized 1] = GPSWorking)

we might get from such data that the situatiorhef&PS not
working inside mobilized ambulances occurs in 100the
cases.

Such estimates are to be up-propagated in obdta€ls.
In an AND-refinementa parent obstacle may occur if all its
sub-obstacles occur. The probability of the paodistacle is
therefore the probability that each sub-obstacleurscand



their combined occurrence leads to the satisfaatibthe that such occurrence actually leads to the nosfaation of
parent obstacle: the leaf goal (see thabstructioncondition in Section III.B):

P (0) =P (SO1) x P (SO2) x ... x P (O | SO1, SO, ...) 1-P(LG) =P (RO) x P(-LG |RO)
Back to our example, we thus also need to know from Back to our running example, we can thereby compute
statistical data how often does an ambulance immifir ~ the reduced probability of satisfaction for the flegal
area with non-working GPS get lost — e.g., in 95P4he  Achieve [AmbulanceOnSceneWhenMobilized] in Fig. 1. As the

cases. obstacle  MobilizedAmbulanceNotOnScenelnTime always
In an OR-refinementa parent obstacle may occur if any of OPstructs thg goal, we obtain: -
the sub-obstacles occurs. The probability of theema P (Achieve[AmbulanceOnSceneWhenMobilized]) =

1-0.0428 x 1 =0.957
This means that in more than 95% of cases, a medili
ambulance will arrive on scene within the presatilil
minutes.

obstacle is therefore the probability that any toé tchild
obstacle occurs and leads to the satisfaction efpirent
obstacle. In this case we cannot simply sum thbghilities
of each sub-obstacle occurring and leading to dtisfaction

of the parent obstacle; we would then need to rembe If the leaf goal can be obstructed by more than one
probability of different sub-obstacles occurring in obstacle, it will be satisfied when none of theseus:
combination. To overcome this problem, we consiter P(LG) = (1-P(O1) x P(=LG|Oy))
probability of the parent obstaadet occurring, which equals *x (1-P(02) x P(-LG|Og)) x ...

the probability of no child obstacle occurring thatuld lead ¢, From Obstructed Leaf Goals To Higher-Level Goals
to the satisfaction of the parent obstacle. Fooraptete and The decreased degree of satisfaction of the otiettueaf

disjoint reﬂneme_nt, this leads to: goal must be up-propagated in the goal refinemeaplygin
PO)=1 - (1 - E(ggl) X E(8|§81)) y order to determine all obstacle consequences. fidpility
. (1-P(S02) x P(O]SO)) x ... i of satisfaction of a parent goal depends on théghitities
The preceding formulas for AND- and OR-refinementsof its subgoals. Without loss of generality, thegentation
are recursively applied bottom-up through the sfient i consider refinements in two subgoals for sakelarity.
tree until the probability of the root obstacleigained. As introduced in Section III.A, in the most genecake
Consider our obstacle model in Fig. 2 with the &oV the parent goal is satisfied if the two subgoats satisfied,
statistical data about leaf obstacles, namely, 26% o the satisfaction of the first is sufficient fsatisfying the
mobilized ambulances are sent to unfamiliar ar@@% of  parent, or the satisfaction of the second is sefiic for
GPS inside mobilized ambulances are not workind,96%  satisfying the parent. This leads to the followiggneral
of mobilized ambulances in unfamiliar areas withnno propagation rule for AND-refinements:
working GPS get lost. The propagation rule for AND- P(G) = P(SGy, SG») x P(G|SGy, SG»)

refinements yields the following probability forettparent +P(SGy, - SG2) x P(G | SG1, ~SG2)
obstacleAmbulanceLost: +P(SGy, = SGy) x P(G | SG2, =SGy)
P(AmbulanceLost) = (0.2 x 0.1) x 0.95 = 0.019 + P (= SGy, 7 SG 2) x P(G | ~SGy, =SGy)

Assume now that statistical data tell us that 2% ofn case we focus our attention onsmgle system, no
mobilized ambulances get stuck in traffic jam, 0.5 alternative OR-refinements are to be considerect th
mobilized ambulances break down, and the proportibn probability of satisfyings given that none of the subgoals is
lost, stuck or broken ambulances not reaching ticelént  satisfied is then equal to zero, and the last wisappears.
scene within 11 minutes is 99%, 98%, and 100%Moreover, in case where the refinement meets the no
respectively. The propagation rule for OR-refinetagmelds  probabilistic completeness condition in Sectionwg have
the following probability for the root obstacle thatP (G | SGi, SGy) = 1. The AND-propagation rule then

MobilizedAmbulanceNotOnScenelnTime: reduces to:
P(MobilizedAmbulanceNotOnScenelnTime) —
=1-(1-0.019x0.99) x (1 ~0.02 x 0.98) P@) fl(:’S(CS;‘(l_‘j Sfé)G ) x P(G| SG1, =SGy)
x (1-0.005 x 1) = 0.0429, 1 2 1 2

. e . + P(SGy, =SG,) x P(G|SGs,, =-SG d-
which means that a mobilized ambulance will noivaron (SCe, 1) x P(GISGz, 1) (and-propag)

the incident scene within 11 minutes in 4.29% kesa Depending on the type of refinement and goal, this
propagation rule can be made further specific. &dbgives
B. From Root Obstacles to Obstructed Leaf Goals propagation rules for a sample of common refinement

In standard risk analysis, a risk consequence psesged in Patterns known to be complete, consistent and raihji0];
terms of degree of loss of satisfaction of the eissed the subgoals there are therefore independent.

objective. This is translated in our framework lyisg that For a milestone-drivenrefinement, for example, the
the consequenceof an obstacle is the lower degree ofsatisfaction of a single milestone-based subgoalnas
satisfaction of the obstructed leaf goal and, rsigaly, of its ~ Sufficient for satisfying the parent goal. The mgation rule

parent and ancestor goals. therefore reduces to
The probability of non-satisfaction of the leaf boa is P(G) = P(SG,) x P(SGy)
given by the probability that the root obstarte occurs and For acase-driverrefinement, the parent goal is satisfied

when one of the subgoals is satisfiedP(CS) denotes the



TABLE I. PROPAGATIONRULES FOR COMMON REFINEMENTS
Pattern Equation
G/c=0T
w2 | re
C=0M M=0T

= P(SGy) x P(SG2)

Milestone-driven
G
SG1 SG2

enes Jdfca-cs
=0T =0T

Case-driven

P(G)
= P(CS) x P(SGY)
+(1-P(CS) x P(SG»)

Refinements are annotated with P(CS)

P(G)
= P(SGy) x P(SG2) x P(SGs)

P(G)
= P(SGy) x P(SG2)

Divide-and-conquer

G
se2

SG1

P(G)
Me=0 L 10ZC MO/ | = P(SGy) x P(SG2)
Unmonitoribility-driven
G/C=0T
w Lew | o
C=0CT CTeT

= P(SGy) x P(SG2)

Uncontrollability-driven

probability of satisfying the case-conditicdBS assuming
two disjoint cases, the propagation rule becomes:

P(G) = P(CS) x P(SG1) + (1 - P(CS)) x P(SG2)

Achieve [AllocatedAmbulanceMobilizedWhenOnRoad]: 0.98

Achieve [MobilizedByFaxWhenAllocated]: 0.90

Achieve [MobilizedByPhoneWhenAllocated]: 0.95

Achieve [MobilizedByFaxOrByPhoneWhenAllocated]: 1

(no obstacle found in the obstacle model)

To obtain the probability for the parent goathieve
[AllocatedAmbulanceMobilizedWhenAtStation], we use the general
and-propagrule as the refinement does not fit any pattern. |
this rule, we have here(G|-SGi, SGj) = 1; for example,
MobilizedWhenAtStation is satisfied given tha#iobilizedByFax is
satisfied. The simplified rule then yields:

P (Achieve [AllocatedAmbulanceMobilizedWhenAtStation]) =
0.9x0.95 +0.10 x 0.95 + 0.05 x 0.9 = 0.995

We can now compute the probability of satisfying th
goal Achieve [AmbulanceMobilizedWhenAllocated]. Its refinement
in Fig. 1 is a case-driven refinement; the corrasjig
simplified propagation rule can therefore be udéte case
condition CS is AllocatedAmbulanceAtStation; Statistical data
tell us that this condition holds in 60% of cad&s therefore

obtain:
P (Achieve [AmbulanceMobilizedWhenAllocated]) =
=0.60 x 0.995 + 0.40 x 0.98 = 0.984

We can then continue the up-propagation and compute
the probability of satisfying the goal Achieve
[AmbulanceOnSceneWhenAllocated] in Fig. 1. Its refinement is a
milestone-driven one; the associated propagatida isl
therefore used. This leads to:

P (Achieve [AmbulanceOnSceneWhenAllocated]) =
0.984 x 0.957 = 0.9466

Finally, we reach the top goal in Fig. 1. Its refiment is
a milestone-driven one as well. The same propagatite
yields:

P (Achieve[AmbulanceOnScenelnTimeWhenincidentReported]) =
0.98 x 0.9466 = 0.9277
The resulting EPS for this goal is thus 92.77%;3y&em as
modelled is thus not able to satisfy the ORCON ddegh

To evaluate obstacles consequences, we can prateedprescribing 95%. The next section discusses hevetitical

two ways:

e Global impact analysisthe computed probabilities for
all obstructed leaf goals are together propagatdibin-
up in the goal graph to see how much the resuiR§
of higher-level goals deviates from their requiRIdS

obstacles can be identified for higher-priorityaleson in a
new version of the model.

V. IDENTIFYING CRITICAL OBSTACLE COMBINATIONS
Countermeasures must be deployed at RE time orstgrs

* Local impact analysisthe consequence of a single leaf runtime in order to resolve probabilistic goal eitibns. Such

goal obstruction is evaluated by up-propagatiorthef
computed probability for this leaf goal, all othleraf
goals being assigned a probability of 1 (meanirgf th
they are all assumed to be fully satisfied).

Let us illustrate such global impact analysis am ittiodel in
Fig. 1. (For lack of space we will use precise goames
instead of their formal specification.) We want kaow

whether this model satisfies the threshold impodsgdhe
ORCON standard; the latter requires the goahieve

[AmbulanceOnScenelnTimeWhenlincidentReported] t0 be satisfied
in at least 95% of cases.

For the leaf goalAchieve[AmbulanceOnSceneWhenMobilized],
the probability of satisfaction computed in SectidhB is
0.956 Similar computations for the other leaf goals ig.Fi
yield:

Achieve [AmbulanceAllocatedWhenincidentReported]: 0.98

countermeasures can be explored according toedhkction
tactics [21, 23]. To select most appropriate oneaadeling
time or at runtime, we need to identify the mosthpematic
leaf obstacles.

There is a multi-criteria optimization problem haswe
are looking for minimal sets of leaf obstacles tmatximize
the severity of goal violations, whesg(G) = RDS(G) — P(G).

To achieve this, we can generate all possibledbafacle
combinations. The violation severigy(G) is then computed
for each obstructed god. If these goals have different
priorities, we can weight differently the computstl (G)
according to their respective priority. The mosttical
combinations are identified by sorting the leaf tabke
combinations by violation severity (possibly weigth).

Consider the obstacles in Fig. 2. There are 4 leaf
obstacles and 8 possible combinations (as twodkestiacles



are involved in an AND-Refinement). Table Il shote
computed SVs for all these combinations; a value(tdsp.

"0") indicates that the corresponding obstaclegsy. is not)
in the combination. Fig. 3 visualizes the computiedation
severitySV corresponding to each combination. The square

represent leaf obstacle combinations that diffesiie; the

black ones indicate the most critical combinatifimsa given
size.As we can see there, two combined leaf obstackes

sufficient for falling under the goal's RDS; a degbstacle

cannot obstruct the goal enough. From Table 2 wentake

the following further observations.

» The possibility of an ambulance being lost or stirck
traffic jam is sufficient for severe obstruction tife
goal; this is the pair to resolve first.

» The two other pairs cause a significantly smatksslin
satisfaction of our top-level goal.

The set of black squares in Fig. 3 defines a Pdretu;
efficient algorithms for generating them are audéq19, 8].
Our generation of leaf obstacle combinations anelir th
ranking by severity can thereby be optimized ineortb
scale up for larger systems.

VI.  VALIDATION

The techniques in this paper were also used faratglysis
of a carpooling support system. A brief descripfioiiows.

The system should act as a marketplace for drivers to offer
empty seats in real time and travellers to use them under agreed
conditions. A driver is matched in real time with anyone
searching for a ride along a common route. Effective carpooling
may critically depend on marketplace size; the system should
therefore be attractive to drivers, in particular by not
overconstraining them. Drivers are assumed to have a GPS-
based navigation device and a PDA/iPhone-like touch screen.

Our goal model for this system includes 32 goals, 1
refinements up to 7 levels. A variety of refinengepatterns
were used [23]. The obstacle model includes 75actest,
among which 42 leaf obstacles. The complete reporthe
case study can be found at [9]. For lack of spageonly
present fragments of our study together with soessdns
learnt; precise goal names are used here agagadsf their
formal specification

A top behavioral goal for this system ischieve
[NeedForRideServed]; it prescribes that atleast 95% of
passengers making a request for a ride will arrive at destination
within the specified time constraints”. This high-level goal is
refined in three subgoals:Achieve[RideRequestEncoded],
Achieve[AdequateDriverFoundWhenRequestEncoded], and Achieve
[PassengerAtDestinationWhenDriverFound]. Each of these is
refined towards assignable requirements or assangptFor
example, the leaf goalachieve [DropPointReachedwWhen
PassengerinCar] states thata' passenger of a planned ride inside
the driver's car shall arrive at the drop point"; the leaf goakchieve
[RidePlannedWhenProposalSelected] states that a' ride shall
eventually be planned when passenger has selected a proposal'”.
Obstacles to such leaf goals were generated amuedef
Here is a sample of refinements in textual fornogfether
with their probability - estimated for leaf goalsdacomputed
for non-leaf goals.

Drop Point Not Reached When Passenger In Car 12,4%

TABLE 1. Violation severity for
Achieve [AmbulanceOnScenelnTimeWhenIncidentReported]
Amb. Amb.
?_rgsbt' Stuck In | Broken EPS RDS sv
S Traffic Down
1 1 1 92,77% 2,23%
1 1 0 93,20% 1,80%
0 1 1 94,54% 0,46%
1 0 1 94,61% 0,39%
95%
0 1 0 95,02% -0,02%
1 0 0 95,10% -0,10%
0 0 1 96,44% -1,44%
0 0 0 96,92% -1,92%
. 3%
£ 2% - L
Y -
P 1%o
v 0% —————.——————.- —————
g 1%
g 2% .
S 3% - : : :
- 0 1 2 3
Numb er of obstacles

Fig. 3. Obstacle combination ranking by violati@verity

3,8%
3,4%
0,1%
0,2%
0,1%
8,6%
0,5%
3%
0,1%
2%
3%
4,55%
1,95%
1%
0,95%
2,67%
0,7%
0,7%
0,7%
0,7%
1,2%
0,6%
0,2%
0,2%
0,6%

Drop Point Not Reached In Time
Car Stuck In Traffic Jam
Driver Has Wrong Instructions
Detour From Planned Road
Other Passenger Late
Drop Point Never Reached
Car Broken Down
Driver Gets Lost
Driver Has Wrong Instructions
Driver At Other Drop Point
Drop Point Inaccessible
Ride Not Planned While Proposal Selected
Ride Canceled
Cancelled By Driver
Cancelled By Passenger
No Pickup Or Drop Point Found
No Pickup Point Found
No Pickup Point Accessible To Riders
No Drop Point Found
No Drop Point Accessible To Riders
No Pickup Or Drop Time Found
No Pickup Time Found
Pickup Time Incompatible With Other Pickups
Journey Longer Than Proposed Time
No Drop Time Found

The estimates for leaf obstacles are grounded en th
domain; they can be elicited from experienced users
statistical data or runtime measures from exisnffjware
applications. For example, the probability of teaflobstacle
DriverForgetsToGoToPickupPoint was estimated to 1% (10 rides
out of 1000). The probability of the leaf obstacle
RidersDoNotRecognizeEachOther was estimated to 0,9%
whereas the probability of the more frequent Iclastacle
WrongContactinformation was estimated to 6%

Combinations involving a large number of obstacles
causing the high-level goal to fall under its RD8revnot



felt really helpful in identifying the obstacles focus on.
Some of the singletons and obstacle pairs we fouek
potentially causing significant goal violations esldy. For
example, the obstacle wrongContactinformation ~ with at various levels of granularity.
probability 6% produced a SV of 1% (meaning thalyon The TROPOS goal-oriented framework is also closely
94% of passengers would have a successful rideg Thelated to our efforts. It puts more focus on mugekoft
obstaclepriverGetsLost with probability 3% produced a SV of goals and reasoning qualitatively about their dbations.
0.91%. The obstacle PassengerLateAtPickupPoint with ~ TROPOS has been extended to support some form of
probability 5,5% produced a SV of 0.5%. quantitative reasoning [15], risk assessment [4hd a
Among the 904 pairs of leaf obstacles identified asvaluation of system performance indicators [5]4ln goals
critical (out of 1722 pairs), the 3 most criticahifs not are called assets and are related to external swbat
including the previous obstacles were: influence positively or negatively goal satisfaatior denial,
* (PassengerGetsLost, RideCancelledByPassenger), SV = 4.78%); respectively. Influences and degrees of satisfactoe
* (PassengerGetsLost, DriverLateAtPickupPoint), SV = 4.75%); assessed quantitatively or qualitatively. The qtztite

* (DriverLateAtPickupPoint, RideCancelledByPassenger), SV = approach in [15] on Whif_lh [4] and [5] are based atdies on
4.74% model-based propagation rules. However, the coreide

These three obstacle combinations should thus hiyreer  goals and risks have no precise semantics in tefregstem
priority for resolution. behaviors; they are not measurable. The probasiliti
Some of the leaf obstacles appeared to have mottberefore cannot be grounded on behavioral sensantic
importance than others, even if they have a smabigbility. ~ Moreover, the propagations do not take advantagpetific
For example, the obstacleassengerCancelsRide, with a  types of refinement. There seems to be no ABID/OR-

probability of 0,85%, was seen to potentially obstrmany refinement structure for propagating probabilitiesn fine-

leaf goals, e.g.PassengerAtPickupPointWheninstructionsKnown, gralr_led_ risks t.h.at are easier to estimate n teofis
_ , , application-specific phenomena. Lastly, probatidigoals
RidelnstructionsReadWhenSent, ProposalSelectedFromSuggestions,

. . are not supported in terms of estimated vs. reduire
ProposalRemainsMatchinglfSelected, etc. Even if the estimated

S ; > probabilities of satisfaction.
probability is low, the obstacle might be criticakor In [31], KAOS goal models are extended with
example, if the probability ofPassengerCancelsRide is

probabilities and propagation rules for technology
changed from 0,85% to 0.95%, the violation severityqualification. Their rules appear different; they dot take
increases from -0.10% to 0.57%. advantage of different refinement types. For examieir

To sum up, the large number of obstacles madeitié qu AND-propagation rule does not apply to case-drigemon-
difficult to identify what most critical obstacleshould be  minimal refinements; their OR-propagation rule dbistacles
considered first for selecting resolutions. Theogitized list can be made simpler thanks to obstacle disjointness
of obstacles produced by our technique helpedfaignily =~ Probabilistic goals as defined in our work are intbduced
in that direction. in [31]; they seem not relevant to their context.

In [25], goals are annotated with random varialbhesy
refer to and associated objective functions; swtakles are
bound by equations that are tailored to correspandi
refinements. Probability density functions are pggted
bottom-up to assess alternative goal refinementsis T
technique is more precise and finer-grained, butremo
heavyweight. It is targeted at selecting alterratbptions
rather than prioritizing obstacles by criticality.

precise semantics for probabilities grounded orliegaon-
specific phenomena, and a model-based refinemerttste
for propagating probabilities through risks andsEquences

VIl. RELATED WORK

Probabilistic fault trees are sometimes used falyaing
undesirable events in safety-critical systems [&6,Low-
level events are annotated with probabilities tlsae
propagated by use of ad hoc rules. As they arerrEband
not model-based, such trees provide little supgdort
identifying root events, refining trees incremelytahnd
reasoning in terms of higher-level objectives.

CORAS is a UML-based risk modeling methodology that Vil

CONCLUSION

relates assets and risks annotated with likelihaodsipport
guantitative reasoning in thdentify-assess-contralycle of
risk analysis [28]. Such likelihoods and their ednitions
however remain fairly vague from a semantic stamtpo

The quantitative risk assessment technique presentée
paper is model-based and anchored on an existidr go
oriented framework for requirements engineering.e Th
framework is extended with a probabilistic layeloaing

DDP is a lightweight, tool-supported technique forbehavioral goals to be characterized in terms dfirth

quantitative risk analysis [13]. Goals, obstaclead a
countermeasures are called requirements, failuemand
PACTs, respectively. Each goal is decorated withiegght
representing its importance. Failure modes are tatew
with likelihoods. Countermeasures are decorated \ait
effectiveness defined as the proportion of riskuotidn.
Criticality and loss of objective are then chardztsl as
arithmetic combinations on these annotations. &cinriique
builds on DDP by adding formality to specificatip@smore

estimated and required degrees of satisfaction. The
specification of such goals and their obstaclesehfmrmal
semantics in terms of system behaviors, allowing
probabilities to be grounded on measurable, appita
specific phenomena. The severity of obstacle caresszps
in terms of degree of goal violation is determined
quantitatively and systematically by probabilityppagations
through the obstacle and goal models. The mosicalrit
obstacle combinations are then determined in order



prioritize obstacles and guide the exploration mrapriate
countermeasures against the more critical obstaakag

available techniques [21], to increase requirementglz]

completeness.

Our technique was successfully applied to two mieat
mission-critical systems for ambulance dispatchiagd
carpooling, respectively.

Foundations for Software QualjtyTrondheim (Norway),

LNCS 4542, Springer-Verlag, 2007.

US Department of Defens@rocedures for Performing a

Failure Mode Effect and Criticality AnalysiStandard MIL-

STD-1629A, November 1980.

[13] M.S. Feather and S.L. Cornford, “QuantitatiRésk-Based
Requirements ReasoningReq. Eng. Journal8(4), 2003,
248-265.

The use of Markov chains as semantic models ofl4] N. Fenton and M. Neil, "Making Decisions: bigi Bayesian

goal/obstacle specifications is currently beingestigated to
improve the accuracy of probability estimations.dRated
tool support is also under development to replacecarrent
spreadsheet calculations and integrate them in-femal

[23] and formal [1] goal-oriented RE environmenihe

transposition of our framework from behavioral goab

measurable soft goals is also worth considering.

A next step concerns the assessment of the co
effectiveness of countermeasures and their integrat the
goal model. The handling of uncertainty over proli#s is
another issue. Domain experts tend to provide marfge
estimating probabilities; measurements can containss;
knowledge about certain probabilities might be migs
Such uncertainty needs to be integrated as well.
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