
A Probabilistic Framework for Goal-Oriented Risk Analysis

Antoine Cailliau and Axel van Lamsweerde

Département d’Ingénierie Informatique
Université catholique de Louvain

Louvain-la-Neuve, Belgium
{antoine.cailliau, axel.vanlamsweerde}@uclouvain.be

Abstract— Requirements completeness is among the most
critical and difficult software engineering challenges. Missing
requirements often result from poor risk analysis at
requirements engineering time. Obstacle analysis is a goal-
oriented form of risk analysis aimed at anticipating exceptional
conditions in which the software should behave adequately. In
the identify-assess-control cycles of such analysis, the
assessment step is not well supported by current techniques.
This step is concerned with evaluating how likely the obstacles
to goals are and how likely and severe their consequences are.
Those key factors drive the selection of most appropriate
countermeasures to be integrated in the system goal model for
increased completeness. Moreover, obstacles to probabilistic
goals are currently not supported; such goals prescribe that
some corresponding target property should be satisfied in at
least X% of the cases.
The paper presents a probabilistic framework for goal
specification and obstacle assessment. The specification
language for goals and obstacles is extended with a
probabilistic layer where probabilities have a precise semantics
grounded on system-specific phenomena. The probability of a
root obstacle to a goal is thereby computed by up-propagation
of probabilities of finer-grained obstacles through the obstacle
refinement tree. The probability and severity of obstacle
consequences is in turn computed by up-propagation from the
obstructed leaf goals through the goal refinement graph. The
paper shows how the computed information can be used to
prioritize obstacles for countermeasure selection towards a
more complete and robust goal model. The framework is
evaluated on a non-trivial carpooling support system.

Keywords — Obstacle analysis, risk assessment, probabilistic
goals, requirements completeness, goal-oriented requirements
engineering, risk analysis, quantitative reasoning.

I. INTRODUCTION

Missing requirements and assumptions are reported as
one of the major causes of software failure [23].
Incompleteness often results from a lack of anticipation of
unexpected conditions under which the software should
behave adequately. A natural inclination to conceive over-
ideal systems prevents adverse conditions from being
properly identified and, when likely and critical, resolved
through appropriate countermeasures.

Risk analysis should thus be at the heart of the
requirements engineering process [21, 13, 23, 4, 28]. A risk
is commonly defined as an uncertain factor whose
occurrence may result in some loss of satisfaction of some
corresponding objective. A risk has a likelihood of
occurrence, and one or several undesirable consequences
associated with it. Each consequence is uncertain as well; it

has a likelihood of occurrence if the risk occurs. A
consequence has a severity in terms of degree of loss of
satisfaction of the corresponding objective. Depending on the
category of objective being obstructed, risks may correspond
to safety hazards [26, 27], security threats [2, 22], inaccuracy
conditions on software input/output variables with respect to
their environment counterpart [21], and so forth.

Risks must be identified, assessed against likelihood and
severity, and controlled through appropriate countermeasures
[7, 17, 23, 28]. At requirements engineering time, risks can
be systematically identified from prescriptive requirements
and descriptive domain properties [21]. For risk assessment,
we can use qualitative scales to support quick but rough
estimates of likelihood and severity [12] (e.g., from
‘unlikely’ to ‘very likely’ and from ‘low’ to ‘highly critical’,
respectively), possibly in relation with a requirements model
[4]. Alternatively, quantitative scales can be used to capture
such estimates more precisely [6, 13], possibly in relation
with a requirements model [31]. For risk control, we may
explore alternative countermeasures and select most effective
ones [13]; such exploration may be driven by risk-reduction
tactics such as reduce risk likelihood, avoid risk, reduce
consequence likelihood, avoid risk consequence, or mitigate risk
consequence [23].

In goal-oriented modeling frameworks, obstacles were
introduced as a natural abstraction for risk analysis [3, 20].
An obstacle to a goal is a precondition for the non-
satisfaction of this goal. Obstacle analysis [21] consists of (a)
identifying as many obstacles as possible to every leaf goal in
the goal refinement graph from relevant domain properties;
(b) assessing the likelihood and severity of each obstacle;
and (c) resolving likely and critical obstacles by systematic
model transformations encoding the preceding risk-reduction
tactics in order to integrate appropriate countermeasures in
the goal model. Obstacle analysis has been successfully used
in a variety of mission-critical systems, see, e.g., [29, 11].

The risk/obstacle assessment step is obviously crucial for
focusing the resolution step on those risks that are
determined to be likely and have likely and severe
consequences. No systematic techniques are available to date
to support this step.

To fill this gap, the paper presents a simple yet effective
technique for quantitative risk assessment. This technique is
intended to meet the following objectives.

• Formal semantics for statements to be assessed: Unlike
[13, 4, 28], the specification of goals and risks should
have a clear, precise semantics in terms of
desirable/undesirable system behaviors. Such semantics
enables their precise interpretation and the integration

Proc. RE’2012 : 20th IEEE International Conference on Requirements Engineering, Chicago, September 2012

of risk assessment with other techniques for risk
generation [21, 1], countermeasure derivation [21] and
goal model analysis [23], including goal
refinement/operationalization checking or behavior
model synthesis.

• Measurable statements: Unlike [13, 4], the
specification of goals and risks should be grounded on
application-specific phenomena that are measurable in
the environment of the software-to-be; this attenuates
the common problems with subjective estimations. For
the importance of making requirements measurable, see
[30].

• Model-based assessment: Unlike [13], the assessment
process should take advantage of the refinement
structure provided by the goal/obstacle model to allow
for more accurate estimation of probabilities of coarser-
grained statements from finer-grained ones.

• Probabilistic requirements: Unlike existing techniques,
requirements that prescribe some property to hold in at
least X% of the cases should be handled within the
same assessment framework.

Partially satisfied goals were introduced in [25] for
evaluating alternative system options. The degree of
satisfaction of such goals is modeled there by objective
functions on quality variables they refer to. The goals are
specified formally and interpreted in terms of application-
specific measures. Their associated quality variables are
refined according to the refinement structure of the goal
model. Degrees of satisfaction are determined bottom-up by
computing the probability density function of higher-level
quality variables from the probability density functions of
lower-level ones. This results in accurate estimations at the
price of fairly complex computations. Bayesian networks
might also be used for making predictions about partially
satisfied assertions [14]; their construction and validation
however does not take advantage of the available goal
structure, and turn to be very difficult for complex systems.

Our technique for determining the probability of
obstacles and the probability and severity of their
consequences is intended to be simpler as it exploits the
goal/obstacle refinement structure and propagates
probabilities directly along that structure.

As a result, obstacles get prioritized by degree of
criticality. Such prioritization can then be used for guiding
the selection among alternative countermeasures identified
through risk-reduction tactics [21]. We thereby obtain more
evidence-based answers to questions such as, e.g., what are
the most critical obstacles to be resolved in view of the high-
level, safety-critical goal stating that ‘an ambulance shall be on
the incident scene within 14 minutes in 95% of cases’?

The paper is organized as follows. Section II introduces
some necessary background on goal-oriented modeling and
obstacle analysis. Section III introduces our model-based
probabilistic framework for goals, obstacles, and their
refinements. Section IV shows how obstacle probabilities are
up-propagated through obstacle refinement trees and how
obstacle consequences are up-propagated through the goal
model. Section V discusses the identification of critical

obstacle combinations to be resolved, based on a
prioritization of obstacles according to the severity of their
consequences. Section VI summarizes our evaluation of the
technique on a carpooling support system. Section VII
discusses related work.

II. BACKGROUND

Goal-Oriented System Modeling. A goal is a prescriptive
statement of intent to be satisfied by the agents forming the
system. The word system refers to the software-to-be
together with its environment, including pre-existing
software, devices such as sensors and actuators, people, etc.
Unlike goals, domain properties are descriptive statements
about the problem world (such as physical laws).

A goal may be behavioral or soft dependent on whether
it can be satisfied in a clear-cut sense or not. In the context
of risk analysis, this paper focuses on behavioral goals.

A behavioral goal captures a maximal set of intended
behaviors declaratively and implicitly; a behavior is a
sequence of system state transitions. A behavior thus
violates a goal if it is not among those prescribed by the
formal specification of the goal [21].

Linear temporal logic (LTL) may be used for
formalizing behavioral goals to enable their analysis. The
goals then take the general form

C ⇒ Θ T
where Θ represents a LTL operator such as: ○ (in the next
state), ◊ (sometimes in the future), ◊≤d (sometimes in the future
before deadline d), □ (always in the future), □≤d (always in the
future up to deadline d), W (always in the future unless), U
(always in the future until), and where P ⇒ Q means □ (P →
Q). The following standard logical connectives are used: ∋
(and), ((or), ¬ (not), → (implies), ↔ (equivalent).

A behavioral goal can be of type Achieve or
Maintain/Avoid. The specification pattern for an Achieve
goal is "if C then sooner-or-later T", that is, C ⇒◊ T, where C
denotes a current condition and T a target condition, with
obvious particularizations to Immediate Achieve, Bounded
Achieve and Unbounded Achieve goals. The pattern for a
Maintain (resp. Avoid) goal is "[if C then] always G" (resp.
"[if C then] never B", that is, [C⇒] □G (resp. [C⇒] □¬B),
where G and B denote a good and bad condition,
respectively.

A behavioral goal must obviously be consistent with all
known domain properties, that is,

 {G, Dom} ⊭ false (domain-consistency)
A goal model is an AND/OR graph showing how goals

contribute positively or negatively to each other [10, 15,
23]. Parent goals are obtained by abstraction whereas child
goals are obtained by refinement. In a goal model, leaf goals
are assigned to single system agents; they are requirements
or assumptions dependent on whether they are assigned to
the software-to-be or to an environment agent, respectively.

Refinement patterns are available to help building goal
models, e.g., the Milestone-Driven, Case-Driven, Guard-
Introduction, Unmonitorability-Driven, Uncontrollability-

Driven, or Divide-and-Conquer patterns [10, 23]. Fig. 1
illustrates two milestone-driven refinements (top), one case-
driven refinement (middle) and one refinement fitting no
specific pattern (bottom). For example, the top goal is:

IncidentReported⇒◊≤14 min AmbulanceOnScene
Its two subgoals are obtained by application of the
Milestone-Driven refinement pattern with AmbulanceAllocated
as milestone condition:

IncidentReported⇒◊≤1 min AmbulanceAllocated
AmbulanceAllocated⇒◊≤13 min AmbulanceOnScene

AND-refinement links in a goal model should ideally be
complete, consistent and minimal. A refinement is complete
if the satisfaction of all subgoals is sufficient for the
satisfaction of the parent goal in view of known domain
properties:
 {SG1, …, SGn, Dom} ⊨ G (complete refinement)
A refinement is consistent if no subgoal contradicts other
sub-goals in the domain:
 {SG1, …, SGn, Dom} ⊭ false (consistent refinement)
A refinement is minimal if all the subgoals are needed for the
satisfaction of the parent goal:

for all i: {SG1, …,SGi-1, SGi+1, … SGn, Dom} ⊭ G

The partial goal model in Fig. 1 shows four complete,
consistent and minimal AND-refinements.

Obstacle analysis. An obstacle to a goal is a domain-
satisfiable precondition for the non-satisfaction of this goal
[21]:
 {O, Dom} ⊨ ¬ G (obstruction)
 {O, Dom} ⊭ false (domain consistency)

Similarly to goals, obstacles can be AND/OR refined into
sub-obstacles, resulting in a goal-anchored form of risk tree.
In such tree, the root obstacle is the negation of the
associated leaf goal in the goal model; an AND-refinement
captures a combination of sub-obstacles entailing the parent
obstacle; an OR-refinement captures alternative ways of
entailing the parent obstacle —and, recursively, of
obstructing the corresponding leaf goal; the leaf sub-

obstacles are single, fine-grained obstacles whose likelihood
can be easily estimated.

Each sub-obstacle in an OR-Refinement must entail the
parent obstacle:
 {SOi, Dom} ⊨ O for all SOi (entailment)

OR-Refinements should ideally be domain-complete and
disjoint:
 {¬ SO1, …, ¬ SOn, Dom} ⊨ ¬ O (domain-completeness)

 {SOi, SOj, Dom} ⊨ false for SOi ≠ SOj (disjointness)

Formal and heuristic techniques are available for the
identification of obstacles [21, 1] and for the generation of
alternative countermeasures [21]. In particular, for Achieve
and Maintain/Avoid goals, specific domain properties are
worth eliciting. They take the form "if T then N" or "if G then

N", that is, T ⇒ N or G ⇒ N, where N denotes a necessary
condition for the target condition T or good condition G.
They result in obstacles taking the form "sooner-or-later [C

and] never N" or "sooner-or-later [C and] sooner-or-later not N",
that is, ◊ ([C ∋] □¬N) or ◊ ([C ∋] ◊¬ N), respectively. For
example, consider the goal Achieve [AmbulanceOnScene

WhenMobilized] in Fig. 1:

AmbulanceMobilized⇒◊≤11 min AmbulanceOnScene
Negating this goal yields the root obstacle:

◊ (AmbulanceMobilized ∋ □≥11 min¬ AmbulanceOnScene)
The necessary conditions for the target include the following:

AmbulanceOnScene ⇒¬ AmbulanceInTrafficJam

This yields the bottom left sub-obstacle in Fig. 2, namely:

◊ (AmbulanceMobilized ∋ □≥11 min AmbulanceInTrafficJam)

III. A MODEL-BASED FRAMEWORK FOR CAPTURING

PROBABILISTIC GOALS AND OBSTACLES

The probability of satisfaction of a goal depends on the
probability of occurrence of obstacles obstructing it. The
severity of the consequences of an obstacle depends on the
difference between the prescribed degree of satisfaction for
the obstructed goals and the estimated probability of
satisfaction of these goals in view of their obstruction. This
section defines these various notions more precisely.

A. Probabilistic Goals

As seen before, a (non-probabilistic) goal defines a
maximal set of intended behaviors. The probability of goal

Achieve [Mobilized
Ambulance On Scene]

Mobilized Ambulance Not
On Scene In Time

Ambulance
Lost

Ambulance
Broken Down

Ambulance Stuck
In Traffic Jam

Ambulance Not
in Familiar Area

GPS Not
Working

Fig. 2. Partial obstacle model for ambulance dispatching system

Achieve [Ambulance On Scene In
Time When Incident Reported]

Achieve [Ambulance Allocated
When Incident Reported]

Achieve [Ambulance On
Scene When Allocated]

Achieve [Ambulance
Mobilized When Allocated]

Achieve [Ambulance On
Scene When Mobilized]

Achieve [Allocated Ambulance
Mobilized WhenOnRoad] Achieve [Allocated Ambulance

Mobilized WhenAtStation]

Achieve [Mobilized By Fax
When Allocated]

Achieve [Mobilized By
Phone When Allocated]

Mobilized When Mobilized
By Fax Or By Phone

Ambulance Staff

Fig. 1. Partial goal model for an ambulance dispatching system

satisfaction is defined in terms of the probability of
observing one of those behaviors.

For a behavioral goal C ⇒ ΘT, we are obviously interested
in non-vacuous satisfaction, leaving aside those trivial cases
where the goal is satisfied because C = false. We therefore
focus our attention on behaviors where the goal antecedent C
is satisfied.
Definition 1. The probability of satisfaction of a goal is the
proportion between (a) the number of possible behaviors
satisfying the goal's antecedent C and consequent ΘT and (b)
the number of possible behaviors satisfying the condition C.
A goal is thus fully satisfied if its probability of satisfaction is
equal to 1.
Consider the goal Achieve [AmbulanceMobilizedWhenAllocated] in
Fig. 1. Its probability of satisfaction is defined as:

Nr. of behaviors where allocated ambulance is mobilized
Nr. of behaviors where ambulance is allocated

Assuming there are 3 possible behaviors where an allocated
ambulance is mobilized out of 4 possible behaviors where
the ambulance is allocated, the probability of satisfaction for
that goal is 75%.
Note that the set of behaviors satisfying this goal does not
necessarily satisfy or deny the goal Achieve [Ambulance
AllocatedWhenIncidentReported]; whether an allocated
ambulance is mobilized or not does not depend on whether
an ambulance is allocated or not. On another hand, the goals
Achieve [AmbulanceMobilizedWhenAllocated] and Achieve
[AllocatedAmbulanceMobilizedWhenOnRoad] are not independent
as the set of behaviors satisfying the latter also satisfies the
former.

Definition 2. Two goals are dependent if the set of behaviors
non-vacuously satisfying one of them is also non-vacuously
satisfying or denying the other.

Two goals are independent if they are not dependent. In
terms of conditional probabilities, this amounts to saying
that:

P (G1 | G2) = P (G1 | ¬ G2) = P (G1),
P (G2 | G1) = P (G2 | ¬ G1) = P (G2),

where P(G) denotes the probability of satisfaction of G and
P(G|H) denotes the probability of satisfaction of G over all
behaviors satisfying property H.

Our behavioral goals are structured in an AND/OR
refinement graph [23]. It can then be shown that:
• two goals are dependent if one of them is a child or

descendant of the other, or if it conflicts directly or
indirectly with the other;

• in a minimal and consistent goal refinement, the subgoals
are independent.

In our probabilistic framework, goals will be annotated
with an estimated probability of satisfaction and a required
degree of satisfaction.

Definition 3. The estimated probability of satisfaction (EPS)
for a goal is the probability of satisfaction of this goal in
view of its possible obstructions. It is computed from the
goal/obstacle models.

In our running example, an allocated ambulance might not
be mobilized for various reasons, e.g., the ambulance crew

being not responsive, the ambulance being not ready for the
next mission, communication failing, etc. Due to all such
obstacles, there is a probability of this goal not being
satisfied.

The EPS for a goal G will be denoted P(G) in the sequel;
P(G1, G2) will denote the EPS of G1 and G2 in combination.

Definition 4. The required degree of satisfaction (RDS) for a
goal is the minimal probability of satisfaction admissible for
this goal. It is imposed by elicited requirements, existing
regulations or standards, and the like.

For example, ORCON standards require ambulances to be on
the incident scene within 14 minutes in 95% of cases [24]. This
will be captured by annotating the goal Achieve[Ambulance
OnSceneInTimeWhenIncidentReported] with a RDS of 0.95.

Note that the previous situation of (non-probabilistic)
goals recalled in Section II is generalized here; for such goals
we have RDS (G) = 1.

Annotating a behavioral goal C ⇒ ΘT in a goal model with
its RDS amounts to specifying it in a probabilistic temporal
logic [18] through an assertion of form C ⇒ Pr ≥RDS [ΘT].

Definition 5. A goal G is probabilistic if 0 < RDS (G) < 1.

Based on a goal's EPS and RDS, we can measure the gap
between its estimated and prescribed probabilities. If EPS ≥
RDS, the goal's required satisfaction threshold is reached; if
EPS < RDS, it is not and we have a problem. This gap
should be as low as possible. The difference allows us to
measure how severe the goal violation is.

Definition 6. The severity of violation of a goal G is defined
by:

SV (G) = RDS (G) – P (G).

The domain-consistency condition introduced in Section
II is generalized accordingly; it now states that there is a
chance to observe a behavior at least that satisfies the goal
and the domain properties:

P (G | Dom) > 0

In our generalized setting for goals with a partial degree
of satisfaction, we need to state what desirable goal
refinements are. The completeness, consistency and
minimality conditions in Section II are therefore generalized
accordingly.

A refinement of goal G into subgoals SG1, ..., SGn is now
said to be complete if:
 P (G | SG1, …, SGn, Dom) > 0 (complete refinement)

Note that this condition is weaker than the completeness
condition in Section II as it accounts for partial satisfaction;
it covers in particular the case of full satisfaction, equivalent
to the completeness condition in Section II:

P (G | SG1, …, SGn, Dom) = 1

The refinement is consistent if:

 P (SG1, …, SGn | Dom) > 0 (consistent refinement)

The refinement is minimal if for all i:
 P (G | SG1, …, SGi-1, SGi+1, ..., SGn, Dom)
 < P (G | SG1, …, SGn, Dom) (minimal refinement)

B. Probabilistic Obstacles

A goal is partially satisfied because obstacles to it can occur.
Consider the goal Achieve [AmbulanceMobilizedWhenAllocated] in
Fig. 1 whose precise specification is:

AmbulanceAllocated ⇒ ◊≤2 min AmbulanceMobilized
There is a domain property stating that a necessary condition
for ambulances to be mobilized is that their ambulance crew
must be responsive:

AmbulanceMobilized ⇒ CrewResponsive
By regression [21] of the goal negation through this domain
property, we obtain the obstacle AmbulanceCrewNot
Responsive:

◊ (AmbulanceAllocated ∋ □≥2 min ¬ CrewResponsive)
This condition captures the situation of an ambulance being
sooner or later allocated without subsequent crew response
for 2 minutes. It will be called obstacle condition. Such
conditions should hopefully not be satisfied too often.

Definition 7. The probability of an obstacle is the
probability of satisfaction of the obstacle condition, that is,
the proportion between (a) the number of possible behaviors
satisfying the obstacle condition and (b) the number of
possible system behaviors.

The probability of an obstacle O will be denoted by P(O).
The probability of O over all behaviors satisfying some
property H will be denoted by P(O |H).

The obstruction and domain-consistency conditions
recalled in Section II must be generalized in this probabilistic
setting.

The obstruction condition now states that there is a
chance that the obstacle will violate the goal:
 P (¬ G | O, Dom) > 0 (obstruction)

Note again that this condition is weaker than the obstruction
condition in Section II as it accounts for partial obstruction;
it covers in particular the case of full obstruction, equivalent
to the obstruction condition in Section II:
 P (¬ G | O, Dom) = 1

The domain-consistency condition states that there is a
chance for the obstacle to occur:
 P (O | Dom) > 0 (domain consistency)

In our generalized setting, we need to characterize what
obstacle refinements are. The conditions on obstacle
refinement introduced in Section II are therefore generalized
accordingly.

For an AND-refinement, the completeness, consistency
and minimality conditions are similar to those introduced in
Section III.A for probabilistic goals.

For an OR-refinement, the counterpart of the entailment
condition in Section II now states that if one of the sub-
obstacles occurs then the parent obstacle may occur:

 P (O | SOi) > 0 for all SOi (entailment)
This condition is again weaker than the entailment condition
in Section II; it covers the particular case of full satisfaction,
equivalent to the entailment condition in Section II:
 P (O | SOi) = 1

For example, for the top OR-Refinement in Fig. 2 we have:

P (MobilizedAmbulanceNotOnSceneInTime | AmbulanceLost) > 0,

as a mobilized ambulance lost might not be on the incident
scene within 11 minutes.

The generalized condition for an OR-refinement to be
domain-complete now states that the parent obstacle cannot
be satisfied through further sub-obstacles:
 P (O | ¬ SO1, …, ¬ SOn, Dom) = 0 (domain completeness)

In our running example, our domain knowledge might allow
us to state "if a mobilized ambulance is not stuck in traffic jam nor
lost nor broken down, it will reach the incident scene within 11
minutes"; in such case we would have:

P (MobilizedAmbulanceNotOnScene | ¬ StuckInTrafficJam,
¬ AmbulanceLost, ¬ AmbulanceBrokenDown) = 0.

The disjointness condition on sub-obstacles in Section II
is generalized into an independence condition:
 P (SOi | SOj) = P (SOi | ¬ SOj) = P (SOi),
 P (SOj | SOi) = P (SOj | ¬ SOi) = P (SOj)

In our example, the probability of an ambulance being
broken down does not depend on, e.g., the probability of the
ambulance being lost or stuck in a traffic jam.

Note that two dependent obstacles can be captured
through three independent obstacles: one where the first
obstacle condition holds but not the second, one where the
second obstacle condition holds but not the first, and one
where both hold. Each of these can have a different
probability.

IV. EVALUATING OBSTACLES AND THEIR CONSEQUENCES

This section shows how obstacle probabilities are
computed from the obstacle refinement model and how the
probabilities of their consequences are computed from the
goal refinement model.

The estimated probabilities of leaf obstacles are to be
obtained first. Such estimates are up-propagated in obstacle
refinement trees (Section IV.A); the results are propagated
from root obstacles to leaf goals in the goal model (Section
IV.B); the results are in turn up-propagated in the goal model
to obtain probabilities of consequences in terms of goal
obstructions at various levels of abstraction.

A. From Leaf Obstacles to Root Obstacles

We first need to rely on domain knowledge to obtain
estimated probabilities of leaf obstacles in refinement trees –
typically, through statistical data about past system behaviors
(cf. Definition 7). For the leaf obstacle

◊ (AmbulanceMobilized ∋□ ¬ AmbulanceInFamiliarArea)
in Fig. 2, such data might reveal that the situation of
mobilized ambulances being in unfamiliar areas occurs in
20% of the cases; for the leaf obstacle

◊ (AmbulanceMobilized ∋ □ ¬ GPSWorking)

we might get from such data that the situation of the GPS not
working inside mobilized ambulances occurs in 10% of the
cases.

Such estimates are to be up-propagated in obstacle trees.
In an AND-refinement, a parent obstacle may occur if all its
sub-obstacles occur. The probability of the parent obstacle is
therefore the probability that each sub-obstacle occurs and

their combined occurrence leads to the satisfaction of the
parent obstacle:

P (O) = P (SO1) × P (SO2) × ... × P (O | SO1, SO2, ...)
Back to our example, we thus also need to know from
statistical data how often does an ambulance in unfamiliar
area with non-working GPS get lost – e.g., in 95% of the
cases.

In an OR-refinement, a parent obstacle may occur if any of
the sub-obstacles occurs. The probability of the parent
obstacle is therefore the probability that any of the child
obstacle occurs and leads to the satisfaction of the parent
obstacle. In this case we cannot simply sum the probabilities
of each sub-obstacle occurring and leading to the satisfaction
of the parent obstacle; we would then need to remove the
probability of different sub-obstacles occurring in
combination. To overcome this problem, we consider the
probability of the parent obstacle not occurring, which equals
the probability of no child obstacle occurring that would lead
to the satisfaction of the parent obstacle. For a complete and
disjoint refinement, this leads to:

P (O) = 1 – (1 – P (SO1) × P (O | SO1))
 × (1 – P (SO2) × P (O | SO2)) × …

The preceding formulas for AND- and OR-refinements
are recursively applied bottom-up through the refinement
tree until the probability of the root obstacle is obtained.

Consider our obstacle model in Fig. 2 with the above
statistical data about leaf obstacles, namely, 20% of
mobilized ambulances are sent to unfamiliar areas, 10% of
GPS inside mobilized ambulances are not working, and 95%
of mobilized ambulances in unfamiliar areas with non-
working GPS get lost. The propagation rule for AND-
refinements yields the following probability for the parent
obstacle AmbulanceLost:

P (AmbulanceLost) = (0.2 × 0.1) × 0.95 = 0.019

Assume now that statistical data tell us that 2% of
mobilized ambulances get stuck in traffic jam, 0.5% of
mobilized ambulances break down, and the proportion of
lost, stuck or broken ambulances not reaching the incident
scene within 11 minutes is 99%, 98%, and 100%,
respectively. The propagation rule for OR-refinements yields
the following probability for the root obstacle
MobilizedAmbulanceNotOnSceneInTime:
 P(MobilizedAmbulanceNotOnSceneInTime)
 = 1 – (1 – 0.019 × 0.99) × (1 – 0.02 × 0.98)
 × (1 – 0.005 × 1) = 0.0429,
which means that a mobilized ambulance will not arrive on
the incident scene within 11 minutes in 4.29% of cases.

B. From Root Obstacles to Obstructed Leaf Goals

In standard risk analysis, a risk consequence is expressed in
terms of degree of loss of satisfaction of the associated
objective. This is translated in our framework by saying that
the consequence of an obstacle is the lower degree of
satisfaction of the obstructed leaf goal and, recursively, of its
parent and ancestor goals.

The probability of non-satisfaction of the leaf goal LG is
given by the probability that the root obstacle RO occurs and

that such occurrence actually leads to the non-satisfaction of
the leaf goal (see the obstruction condition in Section III.B):

1 - P (LG) = P (RO) × P (¬ LG | RO)
Back to our running example, we can thereby compute

the reduced probability of satisfaction for the leaf goal
Achieve [AmbulanceOnSceneWhenMobilized] in Fig. 1. As the
obstacle MobilizedAmbulanceNotOnSceneInTime always
obstructs the goal, we obtain:

P (Achieve [AmbulanceOnSceneWhenMobilized]) =
1 - 0.0428 × 1 = 0.957

This means that in more than 95% of cases, a mobilized
ambulance will arrive on scene within the prescribed 11
minutes.

If the leaf goal can be obstructed by more than one
obstacle, it will be satisfied when none of these occurs:

P (LG) = (1 - P (O1) × P (¬ LG | O1))
 × (1 - P (O2) × P (¬ LG | O2)) × …

C. From Obstructed Leaf Goals To Higher-Level Goals

The decreased degree of satisfaction of the obstructed leaf
goal must be up-propagated in the goal refinement graph in
order to determine all obstacle consequences. The probability
of satisfaction of a parent goal depends on the probabilities
of its subgoals. Without loss of generality, the presentation
will consider refinements in two subgoals for sake of clarity.

As introduced in Section III.A, in the most general case
the parent goal is satisfied if the two subgoals are satisfied,
or the satisfaction of the first is sufficient for satisfying the
parent, or the satisfaction of the second is sufficient for
satisfying the parent. This leads to the following general
propagation rule for AND-refinements:

P (G) = P (SG1, SG2) × P(G | SG1, SG2)
+ P (SG1, ¬ SG2) × P (G | SG1, ¬ SG2)

 + P (SG2, ¬ SG1) × P (G | SG2, ¬ SG1)
+ P (¬ SG1, ¬ SG 2) × P (G | ¬ SG1, ¬ SG2)

In case we focus our attention on a single system, no
alternative OR-refinements are to be considered; the
probability of satisfying G given that none of the subgoals is
satisfied is then equal to zero, and the last term disappears.
Moreover, in case where the refinement meets the non-
probabilistic completeness condition in Section II, we have
that P (G | SG1, SG2) = 1. The AND-propagation rule then
reduces to:

P (G) = P (SG1, SG2)
+ P (SG1, ¬ SG2) × P (G | SG1, ¬ SG2)
+ P (SG2, ¬ SG1) × P (G | SG2, ¬ SG1) (and-propag)

Depending on the type of refinement and goal, this
propagation rule can be made further specific. Table 1 gives
propagation rules for a sample of common refinement
patterns known to be complete, consistent and minimal [10];
the subgoals there are therefore independent.

For a milestone-driven refinement, for example, the
satisfaction of a single milestone-based subgoal is not
sufficient for satisfying the parent goal. The propagation rule
therefore reduces to

P(G) = P(SG1) × P(SG2)
For a case-driven refinement, the parent goal is satisfied

when one of the subgoals is satisfied. If P (CS) denotes the

probability of satisfying the case-condition CS, assuming
two disjoint cases, the propagation rule becomes:

P(G) = P(CS) × P(SG1) + (1 - P(CS)) × P(SG2)

To evaluate obstacles consequences, we can proceed in
two ways:
• Global impact analysis: the computed probabilities for

all obstructed leaf goals are together propagated bottom-
up in the goal graph to see how much the resulting EPS
of higher-level goals deviates from their required RDS.

• Local impact analysis: the consequence of a single leaf
goal obstruction is evaluated by up-propagation of the
computed probability for this leaf goal, all other leaf
goals being assigned a probability of 1 (meaning that
they are all assumed to be fully satisfied).

Let us illustrate such global impact analysis on the model in
Fig. 1. (For lack of space we will use precise goal names
instead of their formal specification.) We want to know
whether this model satisfies the threshold imposed by the
ORCON standard; the latter requires the goal Achieve
[AmbulanceOnSceneInTimeWhenIncidentReported] to be satisfied
in at least 95% of cases.

For the leaf goal Achieve[AmbulanceOnSceneWhenMobilized],
the probability of satisfaction computed in Section IV.B is
0.956. Similar computations for the other leaf goals in Fig.1
yield:

Achieve [AmbulanceAllocatedWhenIncidentReported]: 0.98,

Achieve [AllocatedAmbulanceMobilizedWhenOnRoad]: 0.98,
Achieve [MobilizedByFaxWhenAllocated]: 0.90,
Achieve [MobilizedByPhoneWhenAllocated]: 0.95,
Achieve [MobilizedByFaxOrByPhoneWhenAllocated]: 1
 (no obstacle found in the obstacle model).

To obtain the probability for the parent goal Achieve
[AllocatedAmbulanceMobilizedWhenAtStation], we use the general
and-propag rule as the refinement does not fit any pattern. In
this rule, we have here P (G | ¬ SGi, SGj) = 1; for example,
MobilizedWhenAtStation is satisfied given that MobilizedByFax is
satisfied. The simplified rule then yields:

P (Achieve [AllocatedAmbulanceMobilizedWhenAtStation]) =
0.9 × 0.95 + 0.10 × 0.95 + 0.05 × 0.9 = 0.995

We can now compute the probability of satisfying the
goal Achieve [AmbulanceMobilizedWhenAllocated]. Its refinement
in Fig. 1 is a case-driven refinement; the corresponding
simplified propagation rule can therefore be used. The case
condition CS is AllocatedAmbulanceAtStation; statistical data
tell us that this condition holds in 60% of cases. We therefore
obtain:

P (Achieve [AmbulanceMobilizedWhenAllocated]) =
= 0.60 × 0.995 + 0.40 × 0.98 = 0.984

We can then continue the up-propagation and compute
the probability of satisfying the goal Achieve
[AmbulanceOnSceneWhenAllocated] in Fig. 1. Its refinement is a
milestone-driven one; the associated propagation rule is
therefore used. This leads to:

P (Achieve [AmbulanceOnSceneWhenAllocated]) =
0.984 × 0.957 = 0.9466

Finally, we reach the top goal in Fig. 1. Its refinement is
a milestone-driven one as well. The same propagation rule
yields:
 P (Achieve[AmbulanceOnSceneInTimeWhenIncidentReported]) =
 0.98 × 0.9466 = 0.9277

The resulting EPS for this goal is thus 92.77%; the system as
modelled is thus not able to satisfy the ORCON standard
prescribing 95%. The next section discusses how the critical
obstacles can be identified for higher-priority resolution in a
new version of the model.

V. IDENTIFYING CRITICAL OBSTACLE COMBINATIONS

Countermeasures must be deployed at RE time or at system
runtime in order to resolve probabilistic goal violations. Such
countermeasures can be explored according to risk reduction
tactics [21, 23]. To select most appropriate ones at modeling
time or at runtime, we need to identify the most problematic
leaf obstacles.

There is a multi-criteria optimization problem here as we
are looking for minimal sets of leaf obstacles that maximize
the severity of goal violations, where SV (G) = RDS(G) – P(G).

To achieve this, we can generate all possible leaf obstacle
combinations. The violation severity SV (G) is then computed
for each obstructed goal G. If these goals have different
priorities, we can weight differently the computed SV (G)
according to their respective priority. The most critical
combinations are identified by sorting the leaf obstacle
combinations by violation severity (possibly weighted).

Consider the obstacles in Fig. 2. There are 4 leaf
obstacles and 8 possible combinations (as two leaf obstacles

TABLE I. PROPAGATION RULES FOR COMMON REFINEMENTS

Pattern Equation

Milestone-driven

P(G)
= P(SG1) × P(SG2)

Case-driven

P(G)
= P(CS) × P(SG1)
+ (1 - P (CS) × P(SG2)

Refinements are annotated with P(CS)

Guard-introduction

P(G)
= P(SG1) × P(SG2) × P(SG3)

Divide-and-conquer

P(G)
= P(SG1) × P(SG2)

Unmonitoribility-driven

P(G)
= P(SG1) × P(SG2)

Uncontrollability-driven

P(G)
= P(SG1) × P(SG2)

are involved in an AND-Refinement). Table II shows the
computed SVs for all these combinations; a value "1" (resp.
"0") indicates that the corresponding obstacle is (resp. is not)
in the combination. Fig. 3 visualizes the computed violation
severity SV corresponding to each combination. The squares
represent leaf obstacle combinations that differ in size; the
black ones indicate the most critical combinations for a given
size. As we can see there, two combined leaf obstacles are
sufficient for falling under the goal's RDS; a single obstacle
cannot obstruct the goal enough. From Table 2 we can make
the following further observations.

• The possibility of an ambulance being lost or stuck in
traffic jam is sufficient for severe obstruction of the
goal; this is the pair to resolve first.

• The two other pairs cause a significantly smaller loss in
satisfaction of our top-level goal.

The set of black squares in Fig. 3 defines a Pareto front;
efficient algorithms for generating them are available [19, 8].
Our generation of leaf obstacle combinations and their
ranking by severity can thereby be optimized in order to
scale up for larger systems.

VI. VALIDATION

The techniques in this paper were also used for risk analysis
of a carpooling support system. A brief description follows.

The system should act as a marketplace for drivers to offer
empty seats in real time and travellers to use them under agreed
conditions. A driver is matched in real time with anyone
searching for a ride along a common route. Effective carpooling
may critically depend on marketplace size; the system should
therefore be attractive to drivers, in particular by not
overconstraining them. Drivers are assumed to have a GPS-
based navigation device and a PDA/iPhone-like touch screen.

Our goal model for this system includes 32 goals, 15
refinements up to 7 levels. A variety of refinements patterns
were used [23]. The obstacle model includes 75 obstacles,
among which 42 leaf obstacles. The complete report for the
case study can be found at [9]. For lack of space, we only
present fragments of our study together with some lessons
learnt; precise goal names are used here again instead of their
formal specification.

A top behavioral goal for this system is Achieve
[NeedForRideServed]; it prescribes that at "least 95% of
passengers making a request for a ride will arrive at destination
within the specified time constraints". This high-level goal is
refined in three subgoals: Achieve[RideRequestEncoded],
Achieve[AdequateDriverFoundWhenRequestEncoded], and Achieve
[PassengerAtDestinationWhenDriverFound]. Each of these is
refined towards assignable requirements or assumptions. For
example, the leaf goal Achieve [DropPointReachedWhen
PassengerInCar] states that "a passenger of a planned ride inside
the driver’s car shall arrive at the drop point"; the leaf goal Achieve
[RidePlannedWhenProposalSelected] states that "a ride shall
eventually be planned when passenger has selected a proposal".
Obstacles to such leaf goals were generated and refined.
Here is a sample of refinements in textual format together
with their probability - estimated for leaf goals and computed
for non-leaf goals.

 Drop Point Not Reached When Passenger In Car 12,4%

 Drop Point Not Reached In Time 3,8%
 Car Stuck In Traffic Jam 3,4%
 Driver Has Wrong Instructions 0,1%
 Detour From Planned Road 0,2%
 Other Passenger Late 0,1%
 Drop Point Never Reached 8,6%
 Car Broken Down 0,5%
 Driver Gets Lost 3%
 Driver Has Wrong Instructions 0,1%
 Driver At Other Drop Point 2%
 Drop Point Inaccessible 3%
 Ride Not Planned While Proposal Selected 4,55%
 Ride Canceled 1,95%
 Cancelled By Driver 1%
 Cancelled By Passenger 0,95%
 No Pickup Or Drop Point Found 2,67%
 No Pickup Point Found 0,7%
 No Pickup Point Accessible To Riders 0,7%
 No Drop Point Found 0,7%
 No Drop Point Accessible To Riders 0,7%
 No Pickup Or Drop Time Found 1,2%
 No Pickup Time Found 0,6%
 Pickup Time Incompatible With Other Pickups 0,2%
 Journey Longer Than Proposed Time 0,2%
 No Drop Time Found 0,6%
 …

The estimates for leaf obstacles are grounded on the
domain; they can be elicited from experienced users,
statistical data or runtime measures from existing software
applications. For example, the probability of the leaf obstacle
DriverForgetsToGoToPickupPoint was estimated to 1% (10 rides
out of 1000). The probability of the leaf obstacle
RidersDoNotRecognizeEachOther was estimated to 0,9%
whereas the probability of the more frequent leaf obstacle
WrongContactInformation was estimated to 6%.

Combinations involving a large number of obstacles
causing the high-level goal to fall under its RDS were not

TABLE II. Violation severity for
Achieve [AmbulanceOnSceneInTimeWhenIncidentReported]

Amb.
Lost

Amb.
Stuck In
Traffic

Amb.
Broken
Down

EPS RDS SV

1 1 1 92,77% 2,23%

1 1 0 93,20% 1,80%

0 1 1 94,54% 0,46%

1 0 1 94,61% 0,39%

0 1 0 95,02% -0,02%

1 0 0 95,10% -0,10%

0 0 1 96,44% -1,44%

0 0 0 96,92%

95%

-1,92%

Fig. 3. Obstacle combination ranking by violation severity

felt really helpful in identifying the obstacles to focus on.
Some of the singletons and obstacle pairs we found were
potentially causing significant goal violations already. For
example, the obstacle WrongContactInformation with
probability 6% produced a SV of 1% (meaning that only
94% of passengers would have a successful ride). The
obstacle DriverGetsLost with probability 3% produced a SV of
0.91%. The obstacle PassengerLateAtPickupPoint with
probability 5,5% produced a SV of 0.5%.

Among the 904 pairs of leaf obstacles identified as
critical (out of 1722 pairs), the 3 most critical pairs not
including the previous obstacles were:
• (PassengerGetsLost, RideCancelledByPassenger), SV = 4.78%;
• (PassengerGetsLost, DriverLateAtPickupPoint), SV = 4.75%;
• (DriverLateAtPickupPoint, RideCancelledByPassenger), SV =

4.74%
These three obstacle combinations should thus have higher
priority for resolution.

Some of the leaf obstacles appeared to have more
importance than others, even if they have a small probability.
For example, the obstacle PassengerCancelsRide, with a
probability of 0,85%, was seen to potentially obstruct many
leaf goals, e.g., PassengerAtPickupPointWhenInstructionsKnown,

RideInstructionsReadWhenSent, ProposalSelectedFromSuggestions,

ProposalRemainsMatchingIfSelected, etc. Even if the estimated
probability is low, the obstacle might be critical. For
example, if the probability of PassengerCancelsRide is
changed from 0,85% to 0.95%, the violation severity
increases from -0.10% to 0.57%.

To sum up, the large number of obstacles made it quite
difficult to identify what most critical obstacles should be
considered first for selecting resolutions. The prioritized list
of obstacles produced by our technique helped significantly
in that direction.

VII. RELATED WORK

Probabilistic fault trees are sometimes used for analyzing
undesirable events in safety-critical systems [26, 6]. Low-
level events are annotated with probabilities that are
propagated by use of ad hoc rules. As they are informal and
not model-based, such trees provide little support for
identifying root events, refining trees incrementally and
reasoning in terms of higher-level objectives.

CORAS is a UML-based risk modeling methodology that
relates assets and risks annotated with likelihoods to support
quantitative reasoning in the identify-assess-control cycle of
risk analysis [28]. Such likelihoods and their contributions
however remain fairly vague from a semantic standpoint.

DDP is a lightweight, tool-supported technique for
quantitative risk analysis [13]. Goals, obstacles and
countermeasures are called requirements, failure modes and
PACTs, respectively. Each goal is decorated with a weight
representing its importance. Failure modes are annotated
with likelihoods. Countermeasures are decorated with an
effectiveness defined as the proportion of risk reduction.
Criticality and loss of objective are then characterized as
arithmetic combinations on these annotations. Our technique
builds on DDP by adding formality to specifications, a more

precise semantics for probabilities grounded on application-
specific phenomena, and a model-based refinement structure
for propagating probabilities through risks and consequences
at various levels of granularity.

The TROPOS goal-oriented framework is also closely
related to our efforts. It puts more focus on modeling soft
goals and reasoning qualitatively about their contributions.
TROPOS has been extended to support some form of
quantitative reasoning [15], risk assessment [4], and
evaluation of system performance indicators [5]. In [4], goals
are called assets and are related to external events that
influence positively or negatively goal satisfaction or denial,
respectively. Influences and degrees of satisfaction are
assessed quantitatively or qualitatively. The quantitative
approach in [15] on which [4] and [5] are based also relies on
model-based propagation rules. However, the considered
goals and risks have no precise semantics in terms of system
behaviors; they are not measurable. The probabilities
therefore cannot be grounded on behavioral semantics.
Moreover, the propagations do not take advantage of specific
types of refinement. There seems to be no risk AND/OR-
refinement structure for propagating probabilities from fine-
grained risks that are easier to estimate in terms of
application-specific phenomena. Lastly, probabilistic goals
are not supported in terms of estimated vs. required
probabilities of satisfaction.

In [31], KAOS goal models are extended with
probabilities and propagation rules for technology
qualification. Their rules appear different; they do not take
advantage of different refinement types. For example, their
AND-propagation rule does not apply to case-driven or non-
minimal refinements; their OR-propagation rule for obstacles
can be made simpler thanks to obstacle disjointness.
Probabilistic goals as defined in our work are not introduced
in [31]; they seem not relevant to their context.

In [25], goals are annotated with random variables they
refer to and associated objective functions; such variables are
bound by equations that are tailored to corresponding
refinements. Probability density functions are propagated
bottom-up to assess alternative goal refinements. This
technique is more precise and finer-grained, but more
heavyweight. It is targeted at selecting alternative options
rather than prioritizing obstacles by criticality.

VIII. CONCLUSION

The quantitative risk assessment technique presented in the
paper is model-based and anchored on an existing goal-
oriented framework for requirements engineering. The
framework is extended with a probabilistic layer allowing
behavioral goals to be characterized in terms of their
estimated and required degrees of satisfaction. The
specification of such goals and their obstacles has a formal
semantics in terms of system behaviors, allowing
probabilities to be grounded on measurable, application-
specific phenomena. The severity of obstacle consequences
in terms of degree of goal violation is determined
quantitatively and systematically by probability propagations
through the obstacle and goal models. The most critical
obstacle combinations are then determined in order to

prioritize obstacles and guide the exploration of appropriate
countermeasures against the more critical obstacles, using
available techniques [21], to increase requirements
completeness.

Our technique was successfully applied to two non-trivial
mission-critical systems for ambulance dispatching and
carpooling, respectively.

The use of Markov chains as semantic models of
goal/obstacle specifications is currently being investigated to
improve the accuracy of probability estimations. Dedicated
tool support is also under development to replace our current
spreadsheet calculations and integrate them in semi-formal
[23] and formal [1] goal-oriented RE environments. The
transposition of our framework from behavioral goals to
measurable soft goals is also worth considering.

A next step concerns the assessment of the cost-
effectiveness of countermeasures and their integration in the
goal model. The handling of uncertainty over probabilities is
another issue. Domain experts tend to provide ranges for
estimating probabilities; measurements can contains errors;
knowledge about certain probabilities might be missing.
Such uncertainty needs to be integrated as well.

ACKNOWLEDGMENT

This work was supported by the European Fund for
Regional Development and the Walloon Region. Thanks are
due to Bernard Lambeau, Christophe Damas and Simon
Busard for inspiring discussions, and to the reviewers for
their comments calling for clarifications.

REFERENCES
[1] D. Alrajeh, J. Kramer, A. van Lamsweerde, A. Russo and S.

Uchitel, "Generating Obstacle Conditions for Requirements
Completeness", Proc. ICSE'2012: 34th Intl. Conf. on
Software Engineering, Zürich, May 2012.

[2] E.J. Amoroso, Fundamentals of Computer Security. Prentice
Hall, 1994.

[3] A. Anton and C. Potts, "The Use of Goals to Surface
Requirements for Evolving Systems", Proc. ICSE'1998: Intl.
Conf. on Software Engineering, Kyoto, May 1998, 157-166.

[4] Y. Asnar, P. Giorgini and John Mylopoulos, "Goal-driven
Risk Assessment in Requirements Engineering", Req. Eng.
Journal 16(2), June 2011, 101-116.

[5] D. Barone, L. Jiang, D. Amyot, J. Mylopoulos, "Reasoning
with Key Performance Indicators", PoEM 2011, LNBIP Vol.
92, 2011, 82-96.

[6] T. Bedford and R. Cooke, Probabilistic Risk Assessment -
Foundations and Methods. Cambridge University Press,
2001.

[7] B.W. Boehm, "Software Risk Management: Principles and
Practices," IEEE Software, Jan./Feb. 1991, 32-41.

[8] S. Börzsönyi, D. Kossmann and K. Stocker, "The Skyline
Operator", Proc. IEEE 17th Intl. Conf. on Data Engineering.,
Washington, 2001, 421-430.

[9] www.info.ucl.ac.be/~acaillia/publications/carpoolingsystem.html.
[10] R. Darimont and A. van Lamsweerde, “ Formal Refinement

Patterns for Goal-Driven Requirements Elaboration” , Proc.
FSE’4 - Fourth ACM SIGSOFT Symp. on the Foundations of
Software Engineering, San Francisco, October, 1996,179-190.

[11] R. Darimont and M. Lemoine, “ Security Requirements for
Civil Aviation with UML and Goal Orientation” , Proc.
REFSQ’07 – International Working Conference on

Foundations for Software Quality, Trondheim (Norway),
LNCS 4542, Springer-Verlag, 2007.

[12] US Department of Defense, Procedures for Performing a
Failure Mode Effect and Criticality Analysis, Standard MIL-
STD-1629A, November 1980.

[13] M.S. Feather and S.L. Cornford, “Quantitative Risk-Based
Requirements Reasoning”, Req. Eng. Journal, 8(4), 2003,
248-265.

[14] N. Fenton and M. Neil, ''Making Decisions: Using Bayesian
Nets and MCDA'', Knowledge-Based Systems 14, 2001, 307-
325.

[15] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani,
"Formal Reasoning Techniques for Goal Models", J. Data
Semantics 1(1), 2003, 1-20.

[16] W. Heaven and E. Letier, "Simulating and Optimising Design
Decisions in Quantitative Goal Models", Proc. RE 2011: 19th
IEEE Intl. Requirements Engineering Conf., Trento, Italy,
September 2011.

[17] C. Jones, Assessment and Control of Software Risks. Yourdon
Press, 1994.

[18] M. Kwiatkowska, G. Norman and D. Parker, "Probabilistic
Symbolic Model Checking with PRISM: A Hybrid
Approach", Proc. TACAS'02, LNCS 2280, Springer-Verlag,
April 2002, 52-66.

[19] H. T. Kung, F. Luccio and F. P. Preparata, "On Finding the
Maxima of a Set of Vectors", J. ACM 22(4), Oct. 1975, 469-
476.

[20] A. van Lamsweerde and E. Letier, “Integrating Obstacles in
Goal-Driven Requirements Engineering”, Proc. ICSE-98:
20th International Conference on Software Enginering,
Kyoto, April 1998.

[21] A. van Lamsweerde and Emmanuel Letier, "Handling
Obstacles in Goal-Oriented Requirements Engineering", IEEE
Trans. Softw. Eng. 26(10), October 2000, 978-1005.

[22] A. van Lamsweerde, “Elaborating Security Requirements by
Construction of Intentional Anti-Models”, Proc. ICSE’04,
26th Intl. Conf. on Software Engineering, ACM-IEEE, May
2004, 148-157.

[23] A. van Lamsweerde, Requirements Engineering: From System
Goals to UML Models to Software Specifications, Wiley,
January 2009.

[24] Report of the Inquiry Into the London Ambulance Service. The
Communications Directorate, SW Thames Regional
Authority, 1993.

[25] E. Letier and A. van Lamsweerde, "Reasoning about Partial
Goal Satisfaction for Requirements and Design Engineering",
Proc. FSE 2004: 12th ACM Symp. on Foundation of Software
Engineering, Newport Beach, CA, November 2004, 53-62.

[26] N.G. Leveson, Safeware: System Safety and Computers.
Addison-Wesley, 1995.

[27] N. Leveson, “An Approach to Designing Safe Embedded
Software”, Proc. EMSOFT 2002 – Embedded Software: 2nd
International Conference, Grenoble, LNCS 2491, Springer-
Verlag, Oct. 2002, 15-29.

[28] M.S. Lund, B. Solhaug and K. Stølen, Model-Driven Risk
Analysis: the CORAS approach. Springer-Verlag, 2011.

[29] R. Lutz, A. Patterson-Hine, S. Nelson, C.R. Frost, D. Tal and
R. Harris, “Using Obstacle Analysis to Identify Contingency
Requirements on an Unpiloted Aerial Vehicle”, Requirements
Engineering Journal 12(1), 2007, 41-54.

[30] S. Robertson and J. Robertson, Mastering the Requirements
Process. Addison-Wesley, 1999.

[31] M. Sabetzadeh, D. Falessi, L. Briand, S. Di Alesio, D.
McGeorge, V. Ahjem and J. Borg, "Combining Goal Models,
Expert Elicitation, and Probabilistic Simulation for
Qualification of New Technology," IEEE 13th Intl. Symp. on
High-Assurance Systems Engineering (HASE), Nov. 2011,
10-12.

