
Scenarios, Goals, and State Machines:
a Win-Win Partnership for Model Synthesis

Christophe Damas, Bernard Lambeau, and Axel van Lamsweerde
Dept. Ingénierie Informatique, Université catholique de Louvain

B-1348 Louvain-La-Neuve (Belgium)
{damas, blambeau, avl}@info.ucl.ac.be

ABSTRACT
Models are increasingly recognized as an effective means for
elaborating requirements and exploring designs. For complex
systems, model building is far from an easy task. Efforts were
therefore recently made to automate parts of this process, notably,
by synthesizing behavior models from scenarios of interactions
between the software-to-be and its environment. In particular, our
previous interactive synthesizer generates labelled transition
systems (LTS) from simple message sequence charts (MSC)
provided by end-users. Compared with others, the synthesizer
requires no additional input such as state or flowcharting
information. User interactions consist in simple scenarios generated
by the synthesizer that the user has to classify as example or
counterexample of desired behavior.
Experience with this approach showed that the number of such
scenario questions may become fairly large in interaction-intensive
applications such as web applications. In this paper, we extend our
model synthesis technique by injecting additional information into
the synthesizer, when available, in order to constrain induction and
prune the inductive search space. Additional information may
include global definitions of fluents that link interaction events and
atomic assertions; declarative properties of the domain; behavior
models of external components; and goals that the software system
is expected to satisfy. We provide comparative data on increasingly
complex examples to show how effective such constraints are in
reducing the number of scenario questions and in increasing the
adequacy of the synthesized model. As goals and domain properties
might not be easily provided by users, the paper also shows how our
synthesizer generates a significant class of them automatically from
the available scenarios. As a side-effect, our work provides
additional evidence on the synergistic links between scenarios,
goals, and state machines for model-driven engineering of
requirements and designs.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specification -
methodologies, languages, tools.

General Terms: Design, Languages, Verification.

Keywords
Synthesis of behavior models, goal-oriented requirements
engineering, scenario-based elicitation, scenario generation, labelled
transition systems, message sequence charts, incremental learning,
analysis tools.

1 INTRODUCTION
Model-driven elaboration, validation, and documentation of
requirements and designs call for rich models of the system-to-be.
Such models need to cover the intentional, structural, and
behavioral dimensions of the system [11] – by system we mean both
the target software and its environment. Goals, scenarios, and state
machines form a golden triangle along the intentional and
behavioral dimensions.
• Goals are prescriptive statements of intent whose satisfaction

requires cooperation among the agents forming the system. Goal
models are AND/OR graphs that capture how functional and non-
functional goals contribute positively or negatively to each other.
Such models support various forms of early, declarative, and
incremental reasoning for, e.g., goal refinement and completeness
checking, conflict management, hazard analysis, threat analysis,
requirements document generation, and so forth [12]. On the
down side, goals are sometimes felt too abstract by stakeholders.
They cover classes of intended behaviors but such behaviors are
left implicit. Goals may also be hard to elicit in the first place and
make fully precise.

• Scenarios capture typical examples or counterexamples of system
behavior through sequences of interactions among agents. They
support an informal, narrative, and concrete style of description.
Scenarios are therefore easily accessible to stakeholders involved
in the requirements engineering process [6]. On the down side,
scenarios are inherently partial and cover few behaviors of
specific instances. They leave intended system properties
implicit. Scenarios may also entail premature design decisions
about event sequencing and distribution of responsibilities among
system agents.

• State machines capture classes of required agent behaviors in
terms of states and events firing transitions. They provide visual
abstractions of explicit behaviors for any agent instance in some
corresponding class. State machines can be composed
sequentially and in parallel, and are executable. They can be
validated through animation and verified against declarative
properties. State machines also provide a good basis for code
generation. On the down side, state machines are too operational
in the early stages of requirements elaboration. Their elaboration
may turn to be quite hard – the diversity of published semantics
of state machine formalisms making things even worse [19].

In any case, building rich models that cover the intentional,
structural, and behavioral dimensions is a complex process.
Automated support is therefore needed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT'06/FSE-14, November 5–11, 2006, Portland, Oregon, USA.
Copyright 2006 ACM 1-59593-468-5/06/0011...$5.00.

197

Recent efforts have been made along this way. For example, a
labelled transition system (LTS) model can be synthesized from
message sequence charts (MSC) taken as positive examples of
system behavior [22]. UML state diagrams can be generated from
sequence diagrams capturing positive scenarios [23, 16]. In a
similar spirit, MSC specifications can be translated into statecharts
[8]. Goal specifications in linear temporal logic can also be inferred
inductively from MSC scenarios taken as positive or negative
examples [10].
Those techniques all require additional input information beside
scenarios, namely: a high-level message sequence chart (hMSC)
showing how MSC scenarios are to be flowcharted [22]; pre- and
post-conditions of interactions, expressed on global state variables
[10, 23]; local MSC conditions [8]; or state machine traces local to
some specific agent [16]. Such additional input information may be
hard to get from end-users, and may need to be refactored in non-
trivial ways in case new positive or negative scenario examples are
provided later in the requirements/design engineering process [15].
To address this problem, we have developed a synthesis technique
that requires no such additional input information [1]. A global
system LTS is synthesized first and then projected on local LTS for
each system agent. The global system LTS covers all positive
MSCs provided and excludes all negative ones. It is inductively
generated through an interactive procedure that extends learning
techniques used for grammar induction [20]. In our extension,
simple MSC scenarios are generated during synthesis as questions
to the end-user; the latter just needs to accept or reject the generated
scenario and the synthesis continues with the answer being added to
the scenario collection. The induction procedure is incremental on
training examples.
There is a price to pay with this technique though. While interaction
takes place in terms of simple end-user scenarios, and scenarios
only, the number of scenario questions may sometimes become
large for interaction-intensive applications with complex composite
states – as we experienced it when applying the technique to non-
trivial web applications.
This paper describes various extensions we implemented in our
LTS synthesizer to meet three new objectives:
(a) reduce the number of scenario questions significantly,
(b) produce a more adequate LTS model, that is, a model consistent

with knowledge about the domain and about the goals of the
target system, and

(c) produce the additional information required for (a) and (b)
systematically and, when possible, automatically.

The general principle underlying our extensions is to constrain the
induction process in order to prune the inductive search space and,
accordingly, the set of scenario questions. The constraints
considered in the paper include the following:
• local state assertions along agent timelines;
• LTS models of external components;
• safety properties that capture domain descriptions or system

goals.
Constraints of the first type are generated from fluent definitions
that link events and atomic predicates [3]. Constraints of the second
type are used when they are available from external sources or
analyst intervention. Constraints of the third type are obtained in
two ways as assertions in fluent temporal logic: (a) systematically,
as explanation of why a scenario is rejected as counterexample; (b)
automatically, by inference from positive scenarios. In the latter
case, the inferred property has to be validated by the user. If it turns

to be inadequate, the user is asked to provide a counterexample
scenario which will enrich the scenario collection.
The paper is organized as follows. To make the paper self-
contained, Section 2 presents some minimal background on
scenarios, labelled transition systems, fluent-based specification of
goals and domain properties, and our unoptimized LTS synthesis
technique. Section 3 shows how the induction process can be
constrained through generated state assertions, LTS specifications
of external components, domain descriptions, and goal
specifications. Section 4 shows how the latter properties can be
inferred from scenarios systematically or even automatically.
Section 5 evaluates the improvement on our previous technique
through comparative data from case studies of varying complexity.

2 BACKGROUND
A simple train system fragment will be used throughout the paper as
a running example. The scenarios involve three agent instances: a
train controller, a train actuator/sensor, and a passenger. The train
controller controls operations such as start, stop, open doors, and
close doors. A safety goal requires train doors to remain closed
while the train is moving. If the train is not moving and a passenger
presses the alarm button, the controller must open the doors in
emergency. When the train is moving and the passenger presses the
alarm button, the controller must stop the train first and then open
the doors in emergency.

2.1 Scenarios as Message Sequence Charts
To represent scenarios, our MSCs are composed of vertical lines
representing timelines associated with agent instances, and
horizontal arrows representing interactions among them. A timeline
label specifies the class of the corresponding agent instance. An
arrow label specifies some event defining the corresponding
interaction. The event is synchronously produced by the source
agent and monitored by the target agent.
A MSC timeline defines a total ordering on incoming/outgoing
events. An entire MSC defines a partial ordering on all events. To
allow scenario submission by end-users we restrict our MSCs to this
very simple form, leaving aside more sophisticated MSC features
such as conditions, timers, coregions, etc.
Scenarios are positive or negative. A positive scenario illustrates
some desired system behavior. A negative scenario captures a
behavior that may not occur. It is captured by a pair (p, e) where p is
a positive MSC, called precondition, and e is a prohibited
subsequent event. The meaning is that once the admissible MSC
precondition has occurred, the prohibited event may not label the
next interaction among the corresponding agents.
The semantics of MSCs used in this paper is the one introduced
in [22]. It is defined in terms of labelled transition systems and
parallel composition, see Section 2.2 hereafter. The intuitive, end-
user semantics of two consecutive events along a MSC timeline is
that the first is directly followed by the second.
Fig.1 presents typical scenarios for the train example – three
positive and one negative. The labels e.stop, e.open, a.pres and
a.prop there are shorthands for emergency stop, emergency open,
alarm pressed, and alarm propagated, respectively. Fig. 1.a shows a
positive MSC for the following scenario: “The train is started by the
controller. A passenger then presses the alarm button. The alarm is
then propagated to the controller. The latter then stops the train and
opens the doors in emergency”. Fig.1.b shows a negative scenario.
The MSC precondition is made of the interaction start; the
prohibited event is open doors. In our tool, prohibited events in

198

negative MSCs appear below a (red) dashed line. The negative
scenario in Fig.1.b is used to express that the train controller may
not open the doors after having started the train (without any
intermediate interaction). Fig.1.c and 1.d show other positive
scenarios.

2.2 Behavior models as Labelled Transition
Systems

A system is behaviorally modeled as a set of concurrent state
machines – one per agent. Each agent is characterized by a set of
states and a set of transitions between states. Each transition is
labelled by an event. Our state machines are labelled transition
systems (LTS) [17].

A LTS is an automaton defined by a structure (Q,Σ,δ,q0) where Q is
a finite set of states, Σ is a set of event labels, δ is a transition
function mapping QxΣ to 2Q, and q0 is the initial state.
A complex system is modelled by parallel composition of LTS
models of its components. The composed models behave
asynchronously but synchronize on shared events.
The semantics of MSCs is defined in terms of LTS and parallel
composition [22]. A MSC timeline defines a unique finite LTS
execution that captures a corresponding agent behavior. Similarly,
the semantics of an entire MSC is defined in terms of the LTS
modeling the entire system. MSCs define executions of the system
LTS, that is, the parallel composition of each agent LTS.

2.3 Goals as fluent-based assertions
A goal is a prescriptive statement of intent whose satisfaction
requires the cooperation of agents forming the system. Unlike goals,
domain properties are descriptive statements about the environment
– such as physical laws, organizational rules, etc. Goals are
structured into AND/OR refinement graphs showing how they
contribute to each other [11].
In this paper, we will formalize goals and domain properties in
Fluent Linear Temporal Logic (FLTL) [3]. This formalism is
convenient for specifying temporal logic properties over an event-
based operational model.
A fluent Fl is a proposition defined by a set InitFl of initiating
events, a set TermFl of terminating events, and an initial value
InitiallyFl that can be true or false. The sets of initiating and
terminating events must be disjoint. A fluent definition takes
the form:

fluent Fl = < InitFl, TermFl > initially InitiallyFl
In our train example, the fluents DoorsClosed and Moving are
defined as follows:
 fluent DoorsClosed = <{close doors},
 {open doors, emergency open}>
 initially true
 fluent Moving = <{start},
 {stop, emergency stop}>
 initially false
A fluent Fl holds at some time if either of the following conditions
holds:

(a) Fl holds initially and no terminating event has yet occurred;
(b) some initiating event has occurred and no terminating event

has occurred since then.
A fluent is controlled by an agent if the agent controls all initiating
and terminating events of the fluent. It is monitored by an agent if
the agent controls or monitors all initiating and terminating events
of the fluent.
The FLTL assertions for goals and domain properties use standard
operators for temporal referencing such as: ο (at the next smallest
time unit), ◊ (some time in the future), (always in the future),
U (always in the future until), W (always in the future unless),
→ (implies in the current state), ⇒ (always implies), see [18, 10].
For example, the goal “the doors shall remain closed while the train
is moving” can be formalized in terms of the above fluents as
follows:

DoorsClosedWhileMoving = (Moving → DoorsClosed)

2.4 LTS synthesis as grammar induction
Our LTS synthesizer proceeds in two steps [1]. First, the input
scenarios are generalized into a LTS for the entire system, called
system LTS. This LTS is then projected on each agent using
standard automaton transformation algorithms [5].
The system LTS covers all positive scenarios and excludes all
negative ones. It is obtained by an interactive extension of a
grammar induction algorithm known as RPNI [20]. Grammar
induction aims at learning a language from a set of positive and
negative strings defined on a specific alphabet. The alphabet here is
the set of event labels; the strings are provided by positive and
negative scenarios.
RPNI first computes an initial LTS solution, called Prefix Tree
Acceptor (PTA). The PTA is a deterministic LTS built from the
input scenarios; each scenario is a branch in the tree that ends with a
“white” state, for a positive scenario, or a “black” state, for a
negative one. As in the other synthesis approaches mentioned in
Section 1, scenarios are assumed to start in the same system state.
Fig.2 shows the PTA computed from the scenarios in Fig.1. A black
state is an error state for the system. A path leading to a black state
is said to be rejected by the LTS; a path leading to a white state is
said to be accepted by the LTS. By construction, the PTA accepts
all positive input scenarios while rejecting all negative ones.
Behavior generalization from the PTA is achieved by a “generate-
and-test” algorithm. This algorithm performs an exhaustive search
for equivalent state pairs that are merged into equivalence classes.
Two states are considered equivalent if they have no incompatible
continuation, that is, there is no subsequent event sequence accepted
by one and rejected by the other.

Figure 1 - Scenarios for a train system

199

At each generate-and-test cycle, RPNI considers merging a state q
in the current solution with a state q’ of lower rank. Merging a state
pair (q,q’) may require further merging of subsequent state pairs to
obtain a deterministic solution; shared continuations of q and q’ are
folded up by such further merges. When this would end up in
merging black and white states, the merging of (q,q’) is discarded,
and RPNI continues with the next candidate pair.
Fig.3 shows the system LTS computed by the tool for our train
example, with the following partition into equivalence classes:

π = { {0,3,6,10,16}, {1,14,15}, {2,7,13}, {4}, {5}, {8}, {9}, {11,12} }

The equivalence relation used by this inductive algorithm shows the
important role played by negative scenarios to avoid merging non-
equivalent system states and derive correct generalizations. RPNI is
guaranteed to find the correct system LTS when the input sample is
rich enough [20]; two distinct system states must be distinguished in
the PTA by at least one continuation accepted from one and rejected
from the other. When the input sample has no enough negative
scenarios, RPNI tends to compute a poor generalization by merging
non-equivalent system states.
To overcome this problem, our synthesizer extends RPNI in two
directions:
• Blue Fringe search: The search is made heuristic through an

evaluation function that favors states sharing common
continuations as first candidates for merging [13].

• Interactive search: The synthesis process is made interactive
through scenario questions asked by the synthesizer whenever a
merged state gets new outgoing transitions [1].

To answer a scenario question, the user has just to accept or reject
the new MSC scenario shown by the synthesizer. The answer
results in confirming or discarding the current candidate state
merge. Scenario questions provide a natural way of eliciting further
positive and negative scenarios to enrich the scenario sample.
Fig.4 shows a scenario question that can be rephrased as follows: “if
the train starts and a passenger presses the alarm button, may the
controller then open the doors in emergency and close the doors
afterwards?”. This scenario should be rejected as the train may not
move with open doors.

3 OPTIMIZING THE SYNTHESIS OF
BEHAVIOR MODELS

The synthesizer outlined in the preceding section shares a number
of problems with other inductive approaches to model synthesis.
Unlike deductive inference, induction is not necessarily sound;
overgeneralization can occur. The technique is also sensitive to
classification errors. Moreover, the synthesized model may not be
consistent with known properties of the domain and/or with known
goals of the target system. Specifically to our approach, the number
of scenario questions might become too large for interaction-
intensive systems.
This section discusses further techniques we have implemented in
our synthesizer, called ISIS, to address those problems. (ISIS stands
for Interactive State machine Induction from Scenarios.)
Section 3.1 shows how the induction process can be constrained
through domain knowledge. The integration of goals is then
discussed in Section 3.2. As we will see there, a temporal logic
specification embodies many negative scenarios; such integration
provides a drastic remedy to the potential lack of enough negative
scenarios.
The optimization techniques detailed hereafter are based on various
equivalence relations on system states beside the RPNI one which
focuses on compatibility of continuations. We use the term
equivalence relation here in its usual mathematical sense, that is, a
symmetric, reflexive, and transitive binary relation over states. The
general principle underlying our techniques is the following:

Two states will be considered for merging if they agree
according to all considered equivalence relations.

The equivalence relations considered hereafter are all invariant
under state merging; a state derived by merging some states simply
inherits their relation. This allows each relation to be computed only
once on the initial PTA. The results of such pre-processing are kept
as annotations on PTA states.
Note that the above principle for state merging is very general. It
could therefore be further instantiated to other equivalence relations
not considered in this paper.

3.1 Injecting domain knowledge in the
synthesis process

The domain knowledge used to constrain state merging comes from
multiple sources: fluent definitions, knowledge about components
in the environment of the software-to-be, and FLTL specifications
of domain properties. We discuss these successively.

Figure 2 - PTA built from the scenarios in Fig. 1

Figure 3 - System LTS for the train example

Figure 4 - Scenario question generated during synthesis

200

3.1.1. Propagating fluents
Fluent definitions provide simple and natural domain descriptions to
constrain induction. For example, the definition

 fluent DoorsClosed = < {close doors},
 {open doors, emergency open} >
 initially true
describes train door states as being either closed (DoorsClosed = true)
or open (DoorsClosed = false), and describes which event is
responsible for which state change.
Such descriptions can be effectively used to constrain the induction
process so that the synthesized system LTS conforms to them. The
idea is to compute the value of every fluent at each PTA state by
symbolic execution; the PTA states are then decorated with the
conjunction of such values. The pruning rule for constraining the
induction process is here to avoid merging inconsistent states, that
is, to avoid merging two states whose decoration has at least one
fluent with different values.
The specific equivalence relation here is thus the set of state pairs
where both states have the same value for every fluent. Two states
will be considered for merging if they have the same value for every
fluent.
The decoration of the merged state is simply inherited from the
states being merged.
To compute PTA node decorations by symbolic execution, we use a
simplified version of an algorithm described in [1] to propagate
fluent definitions forwards along paths of the PTA tree. (The
general algorithm propagates fluent definitions along multiple paths
with cycles until a fixpoint is reached.)
Fig.5 shows the result of propagating the values of fluent
DoorsClosed, according to its definition in Section 2.3, along the
PTA shown in Fig. 2.

3.1.2. Unfolding models of external components
Quite often the components being modelled need to interact with
external components in their environment – e.g., legacy components
in a bigger existing system, foreign components in an open system,
and so forth. In such cases the behavior of external components is
generally known – typically, through some behavioral model [4].
Here we assume that external components are known by their LTS
model.
For example, Fig.6 shows the LTS for a legacy alarm sensor in our
train system. When the alarm button is pressed by a passenger, this
component propagates a corresponding signal to the train controller.
A LTS model of an external component can constrain the induction

process so that the synthesized system LTS conforms to it. The idea
is to decorate the PTA with states of the external LTS by unfolding
the latter on the PTA. Such decoration is performed by jointly
visiting the PTA and the external LTS; the latter synchronizes on
shared events and stays in its current state on other events.
Fig.7 shows the result of unfolding the alarm sensor LTS from Fig.
6 on the PTA shown in Fig. 2. Each state in Fig. 7 is labelled with
the number of the corresponding state in the alarm sensor LTS.
The pruning rule for constraining the induction process is now to
avoid merging states decorated with distinct states of the external
component. The specific equivalence relation used here is the set of
states where both states have the same external LTS state. Two
states will be considered for merging if they have the same external
LTS state.

3.1.3. Using declarative domain properties
Descriptive statements and assumptions about the domain can be
expressed declaratively in FLTL. For example, the physical law

 (HighSpeed → Moving)
excludes all negative scenarios where the train is running at high
speed while not moving.
The technique for constraining induction through descriptive or
prescriptive statements is the same; we discuss it hereafter.

3.2 Injecting goals in the synthesis process
Goals are prescriptive statements of intent about the target system.
We restrict our attention here to goals that can be formalized as
FLTL safety properties. For such goals we can use the technique
described in [3] to generate a tester. A tester for a property is a LTS
extended with an error state such that every path leading to the error
state violates that property.
Consider the goal requiring train doors to remain closed while the
train is moving:

DoorsClosedWhileMoving = (Moving → DoorsClosed)
Fig.8 shows the tester LTS for this property (the error state is the
black one). Any event sequence leading to the error state from the
initial state corresponds to an undesired system behavior. In
particular, the event sequence <start, open> corresponds to the

Figure 5 – Propagating fluent values along a PTA

 (dc is a shorthand for DoorsClosed)

Figure 6 – LTS model for an alarm sensor

Figure 7 – Unfolding the alarm sensor LTS on the PTA

Figure 8 - Tester LTS for the goal DoorsClosedWhileMoving

201

initial negative scenario in our running example (see Fig.1). As seen
in Fig.8, the tester provides many more negative scenarios. Property
testers can in fact provide potentially infinite classes of negative
scenarios.
The property tester is used to constrain the induction process in a
way similar to an external component LTS. The PTA and the tester
are traversed jointly in order to decorate each PTA state with the
corresponding tester state. Fig. 9 shows the PTA decorated using
the tester in Fig.8.
The pruning rule for constraining the induction process is now to
avoid merging states decorated with distinct states of the property
tester. The specific equivalence relation used here is the set of states
where both states correspond to the same property tester state. Two
states will be considered for merging if they have the same property
tester state.
This pruning technique has the additional benefit of ensuring that
the synthesized system LTS satisfies the considered goal or domain
property. A proof argument is provided by known results from
automata theory. A tester for a safety property is a canonical
automaton, that is, minimal and deterministic [3]. A bijection thus
exists between states and continuations [5]. In other words, two
states are distinct if and only if there is at least one continuation to
distinguish them. In the particular case of the tester LTS, two states
are distinct if and only if they do not have the same set of
continuations leading to the error state (these are called violating
continuations).
The equivalence relation and corresponding pruning rule thus
amount to avoid merging system states that do not share the same
set of violating continuations.
In practice, ISIS reuses the LTL2Buchi tool [2] and generates
property testers from the produced Büchi automata.

4 MINING GOALS FROM SCENARIOS
At this point the question arises as to where those goals and domain
descriptions are coming from. In view of our emphasis on end-user
involvement, possibly with an analyst on the back, we would like to
obtain them systematically through property mining from scenarios.
This section discusses how goals and domain descriptions can be
obtained as explanations of why a scenario is rejected as
counterexample (Section 4.1), or as safety properties inferred
automatically from positive scenarios (Section 4.2).
Scenarios are fragmentary, operational, and leave the underlying
goals, assumptions, and domain properties implicit. Mining these
provides further benefits beside this paper’s concern of reducing the
number of scenario questions and synthesizing models that are
“correct” with respect to them. Goal specifications can be used to
formally check or derive goal refinements, generate hazard and
threat conditions, detect conflicts, and generate further scenarios
that satisfy them [11, 12].

4.1 WHY questions about negative scenarios
When the user answers a scenario question by rejecting the scenario
as counterexample, the ISIS synthesizer asks her the reason for
rejection. The user can explain it by adding the goal or domain
description being violated by the scenario.
For example, when rejecting the scenario question in Fig.4, the user
may click the “No, why ?” button in order to explain why that
behavior is prohibited. The lower part of the window in Fig.10
shows the reason for rejection; the goal

 (Moving → DoorsClosed)
has been added using the fluents defined in the middle part of the
window.
No scenario question excluded by the goal will be asked
subsequently in the induction process. Moreover, any inconsistency
between the added property and the scenarios previously entered is
automatically detected and reported.

4.2 Inferring goals from scenarios
A more ambitious objective is to infer safety properties
automatically from the scenario collection. We focus on specific
property patterns, under responsibility of single agents. An inferred
property will therefore be a requirement on a software agent, an
assumption on an environment agent, or a domain property [11].

Our procedure for inferring property specifications from scenarios is
specified as follows:
 GIVEN a set of positive scenarios,
 a set of fluents,
 FIND a conjunctive set of properties covering all input

scenarios, and taking the form:
 (A → C) (Maintain/Avoid goals)
 (A → ο C) (Immediate Response goals)

Figure 10 – Negative scenario explained by the goal

DoorsClosedWhileMoving

Figure 9 – PTA decorated using the tester LTS from Fig. 8

202

where A and C are state assertions without temporal
operators.

In previous work, we have developed an inductive learning
technique for generating LTL goal specifications from positive and
negative scenarios [10]. This technique is not applied here because
it is not based on fluents, and makes the stronger assumption that
specifications of interaction events are available as pre- and
postconditions on corresponding operations.
The inference of Maintain/Avoid properties is detailed in Section
4.2.1 while the inference of Immediate Response properties is
discussed in Section 4.2.2.

4.2.1. Inferring Maintain/Avoid properties
Let us consider the two positive scenarios in Fig.11. The state
predicates S0, S1, S2, S3, S4, S5 along agent B’s timelines are fluent
conjunctions that hold between the corresponding interactions. The
following assertion on agent B then holds in any of those states:

S0 ∨ S1∨ S2 ∨ S3 ∨ S4 ∨ S5
Let Inv denote this assertion. If those two scenarios were to cover all
states of agent B’s LTS, we could infer that Inv is preserved under
all behaviors of this agent and get the safety property:

 Inv
As the set of positive scenarios in which the agent is involved is
likely not to be complete, this generalization can be unsound; it
must therefore be validated by the user.
It is thus crucial for the candidate property to be structured and easy
to understand. To achieve this we transform it into a minimal
conjunctive normal form (CNF). This yields a logically equivalent
set of simpler and shorter candidate invariants.
Rejection of one of these by the user means that the scenario
collection is not complete. ISIS then asks the user to provide a
counterexample to the rejected invariant to be covered as additional
positive scenario.
The procedure for inferring Maintain/Avoid properties on a single
agent is now detailed step by step on our running example. We start
from the positive scenarios in Fig.1 together with the following
fluent definitions:
 fluent DoorsClosed = < {close doors},
 {open doors, emergency open} >
 initially true
 fluent Moving = < {start},
 {stop, emergency stop} >
 initially false

 fluent Alarmed = < {alarm propagated},
 {emergency open} >
 initially false

Step 1: Compute fluent-based state predicates along the agent’s
timelines

To obtain the local state predicates Si along the agent’s timelines,
we decorate these timelines with the fluents holding at the
corresponding point.
As we are looking for prescriptions (or descriptions) on this agent,
we restrict ourselves to the fluents controlled by the agent.
Properties of the form (A → B) where A contains monitored
fluents and B contains controlled ones would be unrealizable by the
agent [14]; we are not making the synchrony hypothesis where
agents can react instantly to their environment. Said otherwise, if A
becomes true, the agent needs at least one (smallest) time unit to set
B to true.
Conjunctions of controlled fluents that hold at specific points of an
agent timeline are called controlled predicates. The algorithm for
decorating timelines with controlled predicates is another simplified
version of our symbolic execution algorithm [1], particularized here
to a MSC timeline instead of an entire LTS. This algorithm is a
fluent-based counterpart of the algorithm for generating condition
lists along timelines in [10], also used in [23].
Let us focus on the TrainController agent. It controls the fluents
DoorsClosed and Moving because it performs their initiating and
terminating events. The decoration is generated from top to bottom.
First, we annotate the initial state S0 of the timeline with the initial
fluent values, yielding ¬ Moving ∧ DoorsClosed as Moving is
initially false and DoorsClosed is initially true. Recursively, we
compute the next state decoration using the above definitions of
fluents Moving and DoorsClosed. After the start event, the
decoration is Moving ∧ DoorsClosed because start is an initiating
event of Moving; the fluent DoorsClosed does not change as start is
not among its initiating/terminating events. We continue until the
end of the scenario is reached (see Fig.12).
Step 2: Form the candidate invariant
A single scenario contributes to the candidate global invariant
through the following assertion:

InvSc = ∨i ∈0...n cpi
where cpi is the controlled predicate decorating the timeline right
after event i. In our example we get (see Fig.12):

 ¬ Moving ∧ DoorsClosed ∨ Moving ∧ DoorsClosed
∨ Moving ∧ DoorsClosed ∨ Moving ∧ DoorsClosed
∨ ¬ Moving ∧ DoorsClosed ∨ ¬ Moving ∧ ¬ DoorsClosed

Similarly we compute the contributions of all other input scenarios
to obtain the candidate global invariant:

Inv = ∨j InvScj
Step 3: Normalize the candidate invariant in minimal CNF form
The candidate global assertion is then transformed into a minimal
conjunction of disjunctions, using standard CNF tools. In our
example, Inv is reduced to

¬ Moving ∨ DoorsClosed.
Step 4: Generalize the candidate CNF invariant
Generalization to any state is simply achieved by prefixing Inv with
the “always” operator. In our example, we get

 (¬Moving ∨ DoorsClosed).
Step 5: Validate each conjoined property with the user

Figure 11 - State predicates along timelines of an agent in

multiple scenarios

203

Each conjunct in the generalized CNF invariant is shown to the user
for validation. There is a readability issue here as each conjunct can
be presented in alternative, equivalent ways. In our example, we
obtain one requirement only that can be presented in one of the
following forms:

 (¬ Moving ∨ DoorsClosed)
 (Moving → DoorsClosed)
 (¬ DoorsClosed → ¬ Moving)
 ¬ (¬ DoorsClosed ∧ Moving)

Heuristics for increased readability are needed here. So far we
favored implications with minimal number of negation symbols –
but other heuristics should deserve further attention.
The user may react in three ways with respect to each candidate
property in the conjunctive list presented.
• Accept it: The property is added to the specification and used to

constrain the induction process (see Section 3.2).
• Reject it: This means that the current scenario collection does

not cover all agent states. The user is then asked to provide a
counterexample to the rejected property in order to enrich the
collection with a new positive scenario to be covered. Property
inference thus turns to be an effective way of checking whether
a scenario collection is complete enough and, if not, solicit new
behavior examples.

• Don’t know: the generated property might be hard to
understand. In this case, it may be ignored.

4.2.2. Inferring Immediate Response Properties
The second property pattern that ISIS can infer takes the form

 (A → ο B)
where A may contain monitored fluents and B contains controlled
fluents only. This stimulus-response property pattern is important as
it arises fairly frequently in reactive, event-based systems.
Such properties are not necessarily closed under stuttering [9]; their
satisfaction by an event trace may be affected by insertion or
removal of unobservable events. In the Immediate Response
properties we consider, the “next” operator means “in the next
smallest time unit” and refers to the alphabet of the input scenarios.
We are protected against stuttering as long as such properties are
not combined with others defined on another alphabet. The inferred
Immediate Response properties must thus be handled with care –
e.g., they should not be used when composing the system with
components on different alphabets. In any case, they need to be
validated by the user as well.
The inference of Immediate Response properties is fairly similar to
Maintain/Avoid properties. We briefly discuss the differences.
Step 1: Compute fluent-based state predicates along the agent’s
timelines. Each agent’s timeline is decorated with its controlled and
monitored fluents by use of the same algorithm. Conjunctions of
controlled and monitored fluents that hold at specific points of an
agent timeline are called state predicates. For our TrainController
agent, the timelines are decorated using three fluents: the controlled
fluents Moving and DoorsClosed, and the monitored fluent Alarmed.
Step 2: Form the candidate invariant. The single-scenario invariant
takes a different form here, namely,

InvSc = ∨i ∈ 0…n-1 (spi ∧ ο cpi+1)

where spi is the state predicate right after event i and cpi the
controlled predicate after event i.
The global candidate invariant on all scenarios is then:

Inv =∨j InvScj

Step 3: Normalize the candidate invariant in minimal CNF form.
This step is similar. For the three positive scenarios in Fig. 1 we
obtain:
 Inv = (¬ Alarmed ∨ ο ¬ Moving)

∧ (DoorsClosed ∨ ¬ Moving)
∧ (DoorsClosed ∨ ο ¬ Moving)
∧ (¬ Moving ∨ ο DoorsClosed)
∧ (ο DoorsClosed ∨ ο ¬ Moving)
∧ (DoorsClosed ∨ ο DoorsClosed)
∧ (¬ Alarmed ∨ Moving ∨ ο ¬ DoorsClosed)

Such disjunctions can be rewritten as implications taking the form
A → ο B

where A is a conjunction and B a disjunction.
Step 4: Generalize the candidate CNF invariant. This step is
similar; we just we add the “ ” prefix.
Step 5: Validate candidate properties with the user. Here we
perform some filtering on the properties shown to the user.
• Properties without “next” operator are not presented as they are

already shown as Maintain/Avoid properties.
• Properties where all fluents are prefixed with the “next”

operator are not presented for a similar reason, e.g.,
(ο DoorsClosed ∨ ο ¬ Moving)

• Tautologies resulting from the LTS semantics are not shown.
Let us explain the last point. Consider the following fluents:

Fluent A = <aInit, aTerm>
Fluent B = <bInit, bTerm>

together with the assertion
 (A ∧ B → ο A ∨ ο B)

This assertion is a tautology in view of the LTS one-input
assumption. This semantic assumption states that exactly one input
event occurs at every state transition. As aTerm and bTerm cannot occur
at the same time, if A and B are true in the current state, either A or
B will be true in the next state.
A tautology tester is a universal LTS, that is, a LTS accepting any
sequence of events. The error state for such testers is unreachable.
No scenario can violate the property. Tautologies thus do not
constrain the induction process. ISIS generates testers for all

Figure 12 - Train controller decorated with controlled fluents

204

inferred properties in the candidate CNF invariant, and presents
only properties whose tester is not the universal LTS.
In our example, there is no tautology. Five generated properties are
shown to the user, e.g., the requirement

 (Alarmed → ο ¬ Moving)
which states that “when the train is in alarm state, the train controller
must stop the train immediately”.
Here again, the user is asked to provide a counterexample scenario
when a property is rejected. All accepted properties are added to the
specification to constrain the induction process.

5 EVALUATION
We compared how the techniques in Sections 3 and 4 perform on
three different case studies of varying complexity. The first case
study is a mine pump system inspired from [7]. The second is an
extended, less simplistic version of the train system used here as a
running example. The third is a phone system handling
communications between a caller and a callee.
The objective was to assess the impact of constraining induction
through fluents, models of external components, domain
descriptions, and goals. Impact was measured in terms of number of
generated scenario questions and adequacy of the synthesized
models.
For each case study, we proceeded in two steps:
1. (a) Design a scenario collection allowing for meaningful

subsequent comparison, that is, a scenario collection sufficiently
rich to allow an adequate system LTS to be synthesized under
one setting of the experiment at least.
(b) Define a common set of fluent definitions identifiable from
this scenario collection.

2. Evaluate the techniques on this scenario collection, without and
with fluents, goals, domain descriptions, or models of external
components.

In Step 1, condition (a) amounts to require the scenario collection to
be structurally complete [20, 1]; every transition in the LTS being
synthesized must occur in at least one scenario. We used the ISIS
tool itself to incrementally set up such a scenario collection. We
started from an initial set of scenarios that end-users would typically
provide. By generating scenario questions, validating inferred
properties, and validating synthesized LTSs, we found a number of
additional scenarios that were missing for the scenario collection to
be usable for the comparisons in Step 2.

The size of the scenario collection resulting from Step 1 is shown in
Table 1. “SC+” and “SC-” correspond to the number of positive and
negative scenarios, respectively. This table also shows the size of
the target LTS in terms of number of different event labels, states,
and edges. The average size of scenarios, in terms of number of
interactions, is not shown there. This size is 8 for the Mine Pump
system, 9 for the Big Train system, and 11 for the Phone System.
To perform the comparisons, an oracle was implemented to
simulate the end-user. This oracle knows the target LTS for each

specification and correctly classifies scenario questions as positive
or negative.
Comparison 1: RPNI vs. Blue-Fringe
Table 2 shows the number of questions the oracle had to answer and
the adequacy of the generated LTS, in the three case studies, when
no additional knowledge is used to constrain induction. A
synthesized model is said to be adequate if it matches the target
known LTS. “Q+” and “Q-” are the number of accepted and
rejected scenario questions, respectively.
Note that the number of rejected scenario questions is drastically
reduced thanks to Blue-Fringe’s heuristic search. For bigger
systems pure RPNI becomes unusable. In the Phone system, an
adequate LTS cannot be synthesized from the scenario collection.
Wrong generalizations do occur; some states are merged whereas
they need to be distinguished in the adequate model. Finally, the
number of rejected scenarios tends to be much larger than the
number of accepted ones. This observation confirms the usefulness
of scenario questions; negative answers force the induction
algorithm to backtrack when an incorrect search path has been
taken.
As Blue-Fringe is seen to be by far superior to pure RPNI, we will
keep Blue-Fringe only for further comparisons.
Comparison 2: Impact of fluent propagation
Table 3 shows the influence of fluent decorations to constrain the
induction process. Note that the number of rejected scenario
questions is decreasing in each case study as the number of fluents
is increasing. Such questions can even disappear when the set of
fluent definitions is sufficient. For the same generated LTS, the
number of accepted scenario questions remains the same; fluent-
based state information only allows state merges to be rejected.
Also note that two fluent definitions in the Phone system are
sufficient for an adequate model to be found.
Comparison 3: Impact of inferred properties
From the fluent definitions and the same initial scenario collection,
ISIS automatically inferred various important requirements and

Specification Events States Edges SC+ SC-

 Mine Pump 8 10 13 3 0

 Big Train 13 17 23 3 0

 Phone System 16 23 33 6 3

Table 1 – Size of case studies

Specification Algorithm Q+ Q- Model Accuracy

RPNI 1 30 missing/unallowed paths Mine Pump
 BlueFringe 1 4 adequate model

RPNI 4 83 adequate model Big Train
 BlueFringe 5 5 adequate model

RPNI 5 171 missing/unallowed paths Phone System

BlueFringe 5 19 missing/unallowed paths

Table 2 – RPNI vs. BlueFringe

Specification Nb fluents Q+ Q- Model Accuracy

0 1 4 adequate model
1 1 1 adequate model
2 1 0 adequate model

 Mine Pump

3 1 0 adequate model
0 5 5 adequate model
1 5 3 adequate model
2 5 3 adequate model
3 5 3 adequate model
4 5 2 adequate model

 Big Train

5 5 0 adequate model
0 5 19 missing/unallowed paths

1 5 13 missing/unallowed paths
2 6 9 adequate model

 Phone System

3 6 4 adequate model

Table 3 – Impact of fluent propagation on induction

205

domain properties. As the scenario collection covers every event
label of the synthesized LTS (see the structural completeness
condition (a) above), all inferred properties are adequate.
For the Mine Pump system, the three main requirements were
inferred automatically, e.g.,

When the water level is below the low water threshold, the
pump controller must immediately set the pump to “off”.

For the Big Train system, three requirements and two domain
properties were inferred automatically, e.g.,

The train may never run at high speed when it comes near
a station.

For the Phone system, three requirements were inferred
automatically, e.g.,

When the caller hangs up, the connection should
immediately be closed.

The inferred properties were used in turn to incrementally constrain
the induction process. Table 4 shows the results. The same
observations can be made as with fluents. However, goals and
domain properties are seen to be more powerful than fluents. With
one single goal, there are no rejected scenario questions anymore in
the Mine Pump system; the LTS generated for the Phone system is
now adequate. (The fact that the numbers of fluents and goals are
the same in these case studies is purely coincidental.)
Comparison 4: Combined use of fluents, properties, and models of

external components
Table 5 shows the results of a Blue-Fringe induction constrained
with available fluents, goals, and domain properties, plus one
external component in each case study. Comparing this table with
Table 2 shows how much is gained when the various techniques
described in this paper are combined to constrain the interactive
LTS synthesis process.

6. CONCLUSION
Model-driven development requires adequate models to be
developed. Model building is a complex task, especially in the case
of behavior models. Techniques and tools are therefore needed to

support this task. System stakeholders should ideally be involved, at
least in the first stages of the process.
This paper has presented a number of techniques that provide
significant improvements over a previous method for synthesizing
behavior models interactively from end-user scenarios [1]. These
improvements are based on the use of knowledge about the target
system to constrain the induction process. Such knowledge includes
fluent definitions, behavior models of external components, domain
properties, and system goals. Each type of knowledge allows a
specific equivalence relation to be defined for pruning the search
space of mergeable state pairs. As a result, the number of scenario
questions in end-user interactions is reduced significantly,
sometimes drastically; and the adequacy of the synthesized model is
improved. Some of the techniques may require analyst intervention
to formalize specifications or to explain such specifications in
natural language. To address this limitation, an important class of
safety properties is inferred automatically from scenarios. All
techniques presented here are implemented in the ISIS synthesizer.
The evaluation of this tool on case studies of growing complexity
appears encouraging. We are currently pursuing such evaluation
further on real web applications where the number of states and
transitions is significantly larger.
An additional strength of our inductive approach is to allow system
knowledge to be integrated quite easily for constraining induction.
Two states are considered for merging if and only if they agree
according to all considered equivalence relations. Further
improvements with new specific equivalence relations on states
could be incorporated at low cost. For further pruning we might also
propagate non-equivalence backwards, from non-equivalent states,
along PTA transitions with the same event label.
Declarative properties were seen to play a prominent role in
effective pruning of the inductive search space. Every property
embodies a whole class of positive scenarios and rules out many
negative scenarios that will not be generated as questions. Properties
contribute to structural completeness of the scenario sample much
more effectively than isolated scenarios. Unlike model checking
approaches, such properties are not “floating in the air”; they pertain
to structured goal models as system goal, software requirement,
environment assumption, or domain property [11]. Some of them
can be taken from available goal models, others can be inferred
automatically and integrated into such models.
The current version of ISIS raises a number of open issues. As in all
other model synthesis approaches, the input scenarios to be initially
provided are assumed to start in the same state. This assumption
appears too strong for, e.g., scenario fragments coming from
multiple end-users. Our approach is also highly sensitive to
classification errors by end-users. The consistency checks
performed when a property is entered is a first step to address this.
The effectiveness of our techniques may depend on the choice of
fluents. What makes a good choice of fluents and how to identify
these is another interesting issue to consider.
The state machines ISIS generates are “flat” LTS. We plan to
exploit fluent-based information to parallelize them. The projection
of the synthesized LTS on local agents is known to possibly
introduce additional behaviors [1]. Such behaviors, called implied
scenarios, can be detected using techniques described in [21, 15].
Techniques to eliminate undesirable implied scenarios still need to
be developed.
In any case, the more we work on the model synthesis problem, the
more we are convinced that the “goal – scenario – state machine”
triangle is a rich, not yet fully exploited, source of synergy and
mutual reinforcement for model analysis and synthesis.

Specification # properties Q+ Q- Model Accuracy

0 1 4 adequate model
1 1 0 adequate model
2 1 0 adequate model

 Mine Pump

3 1 0 adequate model
0 5 5 adequate model
1 5 3 adequate model
2 5 3 adequate model
3 5 2 adequate model
4 5 2 adequate model

 Big Train

5 5 2 adequate model
0 5 19 missing/unallowed paths

1 6 6 adequate model
2 6 4 adequate model

 Phone System

3 6 4 adequate model

Table 4 – Impact of inferred properties on induction

Specification Q+ Q- Model Accuracy

 Mine Pump 1 0 adequate model
 Big Train 5 0 adequate model
 Phone System 7 2 adequate model

Table 5 – Combining fluents, properties, and external
components to constrain induction

206

ACKNOWLEDGMENTS
This work was partially supported by the Regional Government of
Wallonia (ReQuest project, RW Conv. 315592). Warmest thanks
are due to Pierre Dupont. Beyond helpful comments on a previous
version of this paper, Pierre pointed out that the LTS synthesis
problem can be seen as a grammar induction problem, and observed
that the various techniques presented in this paper are all based on
specific equivalence relations on states.

REFERENCES
[1] C. Damas, B. Lambeau, P. Dupont, and A. van Lamsweerde,

“Generating Annotated Behavior Models From End-User
Scenarios”, IEEE Trans. on Software Engineering, Special Issue
on Interaction and State-Based Modeling, Vol. 31 No.12, Dec.
2005, 1056-1073.

[2] D. Giannakopoulou and F. Lerda, LTL2Buchi, available at
http://ic.arc.nasa.gov/people/dimitra/LTL2Buchi.php.

[3] D. Giannakopoulou and J. Magee, “Fluent Model Checking for
Event-Based Systems”, Proc. ESEC/FSE 2003, Helsinki, 2003.

[4] R.J. Hall and A. Zisman, “OMML: A Behavioral Model
Interchange Format”, Proc. RE’04, 12th IEEE Joint
International Requirements Engineering Conference, Kyoto,
Sept. 2004.

[5] J. E. Hopcroft and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation, Addison-Wesley, 1979.

[6] M.Jarke and R. Kurki-Suonio (eds.), Special Issue on Scenario
Management, IEEE Trans. on Sofware. Engineering, Vol. 24
No. 12, Dec. 1998.

[7] M. Joseph. Real-Time Systems: Specification, Verification and
Analysis. Prentice Hall Intl., 1996.

[8] I. Kruger, R. Grosu, P. Scholz and M. Broy, From MSCs to
Statecharts, Proc. IFIP WG10.3/WG10.5 Intl. Workshop on
Distributed and Parallel Embedded Systems (Scholoß
Eringerfeld, Germany), F. J. Rammig (ed.), Kluwer, 1998, 61-
71.

[9] L. Lamport, “The Temporal Logic of Actions”, ACM
Transactions on Programming Languages and Systems, 16(3),
1994, 872-923.

[10] A. van Lamsweerde and L. Willemet, “Inferring Declarative
Requirements Specifications from Operational Scenarios”, IEEE
Trans. on Sofware. Engineering, Vol. 24 No. 12, December
1998.

[11] A. van Lamsweerde, “Requirements Engineering in the Year 00:
A Research Perspective”. Keynote Paper, Proc. ICSE’2000:

22nd International Conference on Software Engineering, 2000,
5-19.

[12] A. van Lamsweerde, “Goal-Oriented Requirements Engineering:
A Roundtrip from Research to Practice”, Keynote Paper, Proc.
RE’04, 12th IEEE Joint Intl. Requirements Engineering Conf.,
Kyoto, Sept. 2004, 4-8.

[13] K.J. Lang, B.A. Pearlmutter, and R.A. Price, “Results of the
abbadingo one DFA learning competition and a new evidence-
driven state merging algorithm”, In Grammatical Inference,
Lecture Notes in Artificial Intelligence Nr. 1433, Springer-
Verlag, 1998, 1-12.

[14] E. Letier and A. van Lamsweerde, “Agent-Based Tactics for
Goal-Oriented Requirements Elaboration”, Proc. ICSE’02: 24th
Intl. Conf. on Soft. Engineering, Orlando, May 2002.

[15] E. Letier, J. Kramer, J. Magee, and S. Uchitel, “Monitoring and
Control in Scenario-Based Requirements Analysis”, Proc. ICSE
2005 - 27th Intl. Conf. Software Engineering, St. Louis, May
2005.

[16] E. Mäkinen and T. Systä, “MAS – An Interactive Synthesizer to
Support Behavioral Modelling in UML”, Proc. ICSE’01 – Intl.
Conf. Soft. Engineering,, Toronto, Canada, May 2001.

[17] J. Magee and J. Kramer, Concurrency: State Models and Java
Programs. Second Edition, Wiley, 2006.

[18] Z. Manna and A. Pnueli, “The Temporal Logic of Reactive and
Concurrent Systems”, Springer-Verlag, 1992.

[19] J. Niu, J.M. Atlee, and N. Day, “Understanding and Comparing
Model-Based Specifications Notations”, Proc. RE’03, 11th IEEE
Joint Intl. Requirements Engineering Conf., Monterey, Sept.
2003, 188-199.

[20] J. Oncina and P. García, “Inferring Regular Languages in
Polynomial Update Time”, In N. Perez de la Blanca et al (Ed.),
Pattern Recognition and Image Analysis, Vol. 1 Series in
Machine Perception & Artificial Intelligence, World Scientific,
1992, 49–61.

[21] S. Uchitel, J. Kramer, and J. Magee, “Detecting Implied
Scenarios in Message Sequence Chart Specifications”, Proc.
ESEC/FSE’01, Sept. 2001.

[22] S. Uchitel, J. Kramer, and J. Magee, “Synthesis of Behavioral
Models from Scenarios”, IEEE Trans. Softw. Engineering, 29(2),
2003, 99-115.

[23] J. Whittle and J. Schumann, “Generating Statechart Designs
from Scenarios”, Proc. ICSE’2000: 22nd Intl. Conference on
Software Engineering, Limerick, 2000, 314-323.

207

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

