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ABSTRACT 
Models are increasingly recognized as an effective means for 
elaborating requirements and exploring designs. For complex 
systems, model building is far from an easy task. Efforts were 
therefore recently made to automate parts of this process, notably, 
by synthesizing behavior models from scenarios of interactions 
between the software-to-be and its environment. In particular, our 
previous interactive synthesizer generates labelled transition 
systems (LTS) from simple message sequence charts (MSC) 
provided by end-users. Compared with others, the synthesizer 
requires no additional input such as state or flowcharting 
information. User interactions consist in simple scenarios generated 
by the synthesizer that the user has to classify as example or 
counterexample of desired behavior. 
Experience with this approach showed that the number of such 
scenario questions may become fairly large in interaction-intensive 
applications such as web applications. In this paper, we extend our 
model synthesis technique by injecting additional information into 
the synthesizer, when available, in order to constrain induction and 
prune the inductive search space. Additional information may 
include global definitions of fluents that link interaction events and 
atomic assertions; declarative properties of the domain; behavior 
models of external components; and goals that the software system 
is expected to satisfy. We provide comparative data on increasingly 
complex examples to show how effective such constraints are in 
reducing the number of scenario questions and in increasing the 
adequacy of the synthesized model. As goals and domain properties 
might not be easily provided by users, the paper also shows how our 
synthesizer generates a significant class of them automatically from 
the available scenarios. As a side-effect, our work provides 
additional evidence on the synergistic links between scenarios, 
goals, and state machines for model-driven engineering of 
requirements and designs. 
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D.2.1 [Software Engineering]: Requirements/Specification - 
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Keywords 
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1   INTRODUCTION 
Model-driven elaboration, validation, and documentation of 
requirements and designs call for rich models of the system-to-be. 
Such models need to cover the intentional, structural, and 
behavioral dimensions of the system [11] – by system we mean both 
the target software and its environment. Goals, scenarios, and state 
machines form a golden triangle along the intentional and 
behavioral dimensions. 
• Goals are prescriptive statements of intent whose satisfaction 

requires cooperation among the agents forming the system. Goal 
models are AND/OR graphs that capture how functional and non-
functional goals contribute positively or negatively to each other. 
Such models support various forms of early, declarative, and 
incremental reasoning for, e.g., goal refinement and completeness 
checking, conflict management, hazard analysis, threat analysis, 
requirements document generation, and so forth [12]. On the 
down side, goals are sometimes felt too abstract by stakeholders. 
They cover classes of intended behaviors but such behaviors are 
left implicit. Goals may also be hard to elicit in the first place and 
make fully precise. 

• Scenarios capture typical examples or counterexamples of system 
behavior through sequences of interactions among agents. They 
support an informal, narrative, and concrete style of description. 
Scenarios are therefore easily accessible to stakeholders involved 
in the requirements engineering process [6]. On the down side, 
scenarios are inherently partial and cover few behaviors of 
specific instances. They leave intended system properties 
implicit. Scenarios may also entail premature design decisions 
about event sequencing and distribution of responsibilities among 
system agents.  

• State machines capture classes of required agent behaviors in 
terms of states and events firing transitions. They provide visual 
abstractions of explicit behaviors for any agent instance in some 
corresponding class. State machines can be composed 
sequentially and in parallel, and are executable. They can be 
validated through animation and verified against declarative 
properties. State machines also provide a good basis for code 
generation. On the down side, state machines are too operational 
in the early stages of requirements elaboration. Their elaboration 
may turn to be quite hard – the diversity of published semantics 
of state machine formalisms making things even worse [19]. 

In any case, building rich models that cover the intentional, 
structural, and behavioral dimensions is a complex process. 
Automated support is therefore needed. 
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Recent efforts have been made along this way. For example, a 
labelled transition system (LTS) model can be synthesized from 
message sequence charts (MSC) taken as positive examples of 
system behavior [22]. UML state diagrams can be generated from 
sequence diagrams capturing positive scenarios [23, 16]. In a 
similar spirit, MSC specifications can be translated into statecharts 
[8]. Goal specifications in linear temporal logic can also be inferred 
inductively from MSC scenarios taken as positive or negative 
examples [10].  
Those techniques all require additional input information beside 
scenarios, namely: a high-level message sequence chart (hMSC) 
showing how MSC scenarios are to be flowcharted [22]; pre- and 
post-conditions of interactions, expressed on global state variables 
[10, 23]; local MSC conditions [8]; or state machine traces local to 
some specific agent [16]. Such additional input information may be 
hard to get from end-users, and may need to be refactored in non-
trivial ways in case new positive or negative scenario examples are 
provided later in the requirements/design engineering process [15]. 
To address this problem, we have developed a synthesis technique 
that requires no such additional input information [1]. A global 
system LTS is synthesized first and then projected on local LTS for 
each system agent. The global system LTS covers all positive 
MSCs provided and excludes all negative ones. It is inductively 
generated through an interactive procedure that extends learning 
techniques used for grammar induction [20]. In our extension, 
simple MSC scenarios are generated during synthesis as questions 
to the end-user; the latter just needs to accept or reject the generated 
scenario and the synthesis continues with the answer being added to 
the scenario collection. The induction procedure is incremental on 
training examples. 
There is a price to pay with this technique though. While interaction 
takes place in terms of simple end-user scenarios, and scenarios 
only, the number of scenario questions may sometimes become 
large for interaction-intensive applications with complex composite 
states – as we experienced it when applying the technique to non-
trivial web applications. 
This paper describes various extensions we implemented in our 
LTS synthesizer to meet three new objectives: 
(a)  reduce the number of scenario questions significantly,  
(b) produce a more adequate LTS model, that is, a model consistent 

with knowledge about the domain and about the goals of the 
target system, and  

(c) produce the additional information required for (a) and (b) 
systematically and, when possible, automatically. 

The general principle underlying our extensions is to constrain the 
induction process in order to prune the inductive search space and, 
accordingly, the set of scenario questions. The constraints 
considered in the paper include the following: 
• local state assertions along agent timelines;  
• LTS models of external components; 
• safety properties that capture domain descriptions or system 

goals. 
Constraints of the first type are generated from fluent definitions 
that link events and atomic predicates [3]. Constraints of the second 
type are used when they are available from external sources or 
analyst intervention. Constraints of the third type are obtained in 
two ways as assertions in fluent temporal logic: (a) systematically, 
as explanation of why a scenario is rejected as counterexample; (b) 
automatically, by inference from positive scenarios. In the latter 
case, the inferred property has to be validated by the user. If it turns 

to be inadequate, the user is asked to provide a counterexample 
scenario which will enrich the scenario collection. 
The paper is organized as follows. To make the paper self-
contained, Section 2 presents some minimal background on 
scenarios, labelled transition systems, fluent-based specification of 
goals and domain properties, and our unoptimized LTS synthesis 
technique. Section 3 shows how the induction process can be 
constrained through generated state assertions, LTS specifications 
of external components, domain descriptions, and goal 
specifications. Section 4 shows how the latter properties can be 
inferred from scenarios systematically or even automatically. 
Section 5 evaluates the improvement on our previous technique 
through comparative data from case studies of varying complexity. 

2  BACKGROUND 
A simple train system fragment will be used throughout the paper as 
a running example. The scenarios involve three agent instances: a 
train controller, a train actuator/sensor, and a passenger. The train 
controller controls operations such as start, stop, open doors, and 
close doors. A safety goal requires train doors to remain closed 
while the train is moving. If the train is not moving and a passenger 
presses the alarm button, the controller must open the doors in 
emergency. When the train is moving and the passenger presses the 
alarm button, the controller must stop the train first and then open 
the doors in emergency. 

2.1  Scenarios as Message Sequence Charts 
To represent scenarios, our MSCs are composed of vertical lines 
representing timelines associated with agent instances, and 
horizontal arrows representing interactions among them. A timeline 
label specifies the class of the corresponding agent instance. An 
arrow label specifies some event defining the corresponding 
interaction. The event is synchronously produced by the source 
agent and monitored by the target agent.  
A MSC timeline defines a total ordering on incoming/outgoing 
events. An entire MSC defines a partial ordering on all events. To 
allow scenario submission by end-users we restrict our MSCs to this 
very simple form, leaving aside more sophisticated MSC features 
such as conditions, timers, coregions, etc. 
Scenarios are positive or negative. A positive scenario illustrates 
some desired system behavior. A negative scenario captures a 
behavior that may not occur. It is captured by a pair (p, e) where p is 
a positive MSC, called precondition, and e is a prohibited 
subsequent event. The meaning is that once the admissible MSC 
precondition has occurred, the prohibited event may not label the 
next interaction among the corresponding agents. 
The semantics of MSCs used in this paper is the one introduced 
in [22]. It is defined in terms of labelled transition systems and 
parallel composition, see Section 2.2 hereafter. The intuitive, end-
user semantics of two consecutive events along a MSC timeline is 
that the first is directly followed by the second. 
Fig.1 presents typical scenarios for the train example – three 
positive and one negative. The labels e.stop, e.open, a.pres and 
a.prop there are shorthands for emergency stop, emergency open, 
alarm pressed, and alarm propagated, respectively. Fig. 1.a shows a 
positive MSC for the following scenario: “The train is started by the 
controller. A passenger then presses the alarm button. The alarm is 
then propagated to the controller. The latter then stops the train and 
opens the doors in emergency”. Fig.1.b shows a negative scenario. 
The MSC precondition is made of the interaction start; the 
prohibited event is open doors. In our tool, prohibited events in 
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negative MSCs appear below a (red) dashed line. The negative 
scenario in Fig.1.b is used to express that the train controller may 
not open the doors after having started the train (without any 
intermediate interaction). Fig.1.c and 1.d show other positive 
scenarios. 

2.2  Behavior models as Labelled Transition 
Systems  

A system is behaviorally modeled as a set of concurrent state 
machines – one per agent. Each agent is characterized by a set of 
states and a set of transitions between states. Each transition is 
labelled by an event. Our state machines are labelled transition 
systems (LTS) [17].  

A LTS is an automaton defined by a structure (Q,Σ,δ,q0) where Q is 
a finite set of states, Σ is a set of event labels, δ is a transition 
function mapping QxΣ to 2Q, and q0 is the initial state. 
A complex system is modelled by parallel composition of LTS 
models of its components. The composed models behave 
asynchronously but synchronize on shared events. 
The semantics of MSCs is defined in terms of LTS and parallel 
composition [22]. A MSC timeline defines a unique finite LTS 
execution that captures a corresponding agent behavior.  Similarly, 
the semantics of an entire MSC is defined in terms of the LTS 
modeling the entire system.  MSCs define executions of the system 
LTS, that is, the parallel composition of each agent LTS.  

2.3  Goals as fluent-based assertions 
A goal is a prescriptive statement of intent whose satisfaction 
requires the cooperation of agents forming the system. Unlike goals, 
domain properties are descriptive statements about the environment 
– such as physical laws, organizational rules, etc. Goals are 
structured into AND/OR refinement graphs showing how they 
contribute to each other [11]. 
In this paper, we will formalize goals and domain properties in 
Fluent Linear Temporal Logic (FLTL) [3]. This formalism is 
convenient for specifying temporal logic properties over an event-
based operational model. 
A fluent Fl is a proposition defined by a set InitFl of initiating 
events, a set TermFl of terminating events, and an initial value 
InitiallyFl that can be true or false. The sets of initiating and 
terminating events must be disjoint. A fluent definition takes 
the form: 

fluent Fl = < InitFl, TermFl > initially InitiallyFl 
In our train example, the fluents DoorsClosed and Moving are 
defined as follows: 
 fluent DoorsClosed = <{close doors}, 
  {open doors, emergency open}>  
  initially true 
 fluent Moving =  <{start}, 
  {stop, emergency stop}>  
  initially false 
A fluent Fl holds at some time if either of the following conditions 
holds: 

(a)  Fl holds initially and no terminating event has yet occurred; 
(b)  some initiating event has occurred and no terminating event 

has occurred since then. 
A fluent is controlled by an agent if the agent controls all initiating 
and terminating events of the fluent. It is monitored by an agent if 
the agent controls or monitors all initiating and terminating events 
of the fluent. 
The FLTL assertions for goals and domain properties use standard 
operators for temporal referencing such as: ο (at the next smallest 
time unit), ◊ (some time in the future),   (always in the future), 
U (always in the future until), W (always in the future unless), 
→ (implies in the current state), ⇒ (always implies), see [18, 10]. 
For example, the goal “the doors shall remain closed while the train 
is moving” can be formalized in terms of the above fluents as 
follows: 

DoorsClosedWhileMoving =   (Moving → DoorsClosed) 

2.4  LTS synthesis as grammar induction 
Our LTS synthesizer proceeds in two steps [1]. First, the input 
scenarios are generalized into a LTS for the entire system, called 
system LTS. This LTS is then projected on each agent using 
standard automaton transformation algorithms [5].  
The system LTS covers all positive scenarios and excludes all 
negative ones. It is obtained by an interactive extension of a 
grammar induction algorithm known as RPNI [20]. Grammar 
induction aims at learning a language from a set of positive and 
negative strings defined on a specific alphabet. The alphabet here is 
the set of event labels; the strings are provided by positive and 
negative scenarios.  
RPNI first computes an initial LTS solution, called Prefix Tree 
Acceptor (PTA). The PTA is a deterministic LTS built from the 
input scenarios; each scenario is a branch in the tree that ends with a 
“white” state, for a positive scenario, or a “black” state, for a 
negative one. As in the other synthesis approaches mentioned in 
Section 1, scenarios are assumed to start in the same system state. 
Fig.2 shows the PTA computed from the scenarios in Fig.1. A black 
state is an error state for the system. A path leading to a black state 
is said to be rejected by the LTS; a path leading to a white state is 
said to be accepted by the LTS. By construction, the PTA accepts 
all positive input scenarios while rejecting all negative ones.  
Behavior generalization from the PTA is achieved by a “generate-
and-test” algorithm. This algorithm performs an exhaustive search 
for equivalent state pairs that are merged into equivalence classes. 
Two states are considered equivalent if they have no incompatible 
continuation, that is, there is no subsequent event sequence accepted 
by one and rejected by the other. 

 
Figure 1 - Scenarios for a train system  
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At each generate-and-test cycle, RPNI considers merging a state q 
in the current solution with a state q’ of lower rank. Merging a state 
pair (q,q’) may require further merging of subsequent state pairs to 
obtain a deterministic solution; shared continuations of q and q’ are 
folded up by such further merges. When this would end up in 
merging black and white states, the merging of (q,q’) is discarded, 
and RPNI continues with the next candidate pair.  
Fig.3 shows the system LTS computed by the tool for our train 
example, with the following partition into equivalence classes: 

π =  { {0,3,6,10,16}, {1,14,15}, {2,7,13}, {4}, {5}, {8}, {9}, {11,12} } 

The equivalence relation used by this inductive algorithm shows the 
important role played by negative scenarios to avoid merging non-
equivalent system states and derive correct generalizations. RPNI is 
guaranteed to find the correct system LTS when the input sample is 
rich enough [20]; two distinct system states must be distinguished in 
the PTA by at least one continuation accepted from one and rejected 
from the other. When the input sample has no enough negative 
scenarios, RPNI tends to compute a poor generalization by merging 
non-equivalent system states.  
To overcome this problem, our synthesizer extends RPNI in two 
directions: 
• Blue Fringe search: The search is made heuristic through an 

evaluation function that favors states sharing common 
continuations as first candidates for merging [13].  

• Interactive search: The synthesis process is made interactive 
through scenario questions asked by the synthesizer whenever a 
merged state gets new outgoing transitions [1].  

To answer a scenario question, the user has just to accept or reject 
the new MSC scenario shown by the synthesizer. The answer 
results in confirming or discarding the current candidate state 
merge. Scenario questions provide a natural way of eliciting further 
positive and negative scenarios to enrich the scenario sample.  
Fig.4 shows a scenario question that can be rephrased as follows: “if 
the train starts and a passenger presses the alarm button, may the 
controller then open the doors in emergency and close the doors 
afterwards?”. This scenario should be rejected as the train may not 
move with open doors. 

3 OPTIMIZING THE SYNTHESIS OF 
BEHAVIOR MODELS 

The synthesizer outlined in the preceding section shares a number 
of problems with other inductive approaches to model synthesis. 
Unlike deductive inference, induction is not necessarily sound; 
overgeneralization can occur. The technique is also sensitive to 
classification errors. Moreover, the synthesized model may not be 
consistent with known properties of the domain and/or with known 
goals of the target system. Specifically to our approach, the number 
of scenario questions might become too large for interaction-
intensive systems. 
This section discusses further techniques we have implemented in 
our synthesizer, called ISIS, to address those problems. (ISIS stands 
for Interactive State machine Induction from Scenarios.)  
Section 3.1 shows how the induction process can be constrained 
through domain knowledge. The integration of goals is then 
discussed in Section 3.2. As we will see there, a temporal logic 
specification embodies many negative scenarios; such integration 
provides a drastic remedy to the potential lack of enough negative 
scenarios. 
The optimization techniques detailed hereafter are based on various 
equivalence relations on system states beside the RPNI one which 
focuses on compatibility of continuations. We use the term 
equivalence relation here in its usual mathematical sense, that is, a 
symmetric, reflexive, and transitive binary relation over states. The 
general principle underlying our techniques is the following:  

Two states will be considered for merging if they agree 
according to all considered equivalence relations.  

The equivalence relations considered hereafter are all invariant 
under state merging; a state derived by merging some states simply 
inherits their relation. This allows each relation to be computed only 
once on the initial PTA. The results of such pre-processing are kept 
as annotations on PTA states. 
Note that the above principle for state merging is very general. It 
could therefore be further instantiated to other equivalence relations 
not considered in this paper. 

3.1  Injecting domain knowledge in the 
synthesis process 

The domain knowledge used to constrain state merging comes from 
multiple sources: fluent definitions, knowledge about components 
in the environment of the software-to-be, and FLTL specifications 
of domain properties. We discuss these successively. 

 
Figure 2 - PTA built from the scenarios in Fig. 1  

 
Figure 3 - System LTS for the train example 

 
Figure 4 - Scenario question generated during synthesis 
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3.1.1. Propagating fluents 
Fluent definitions provide simple and natural domain descriptions to 
constrain induction. For example, the definition 

 fluent DoorsClosed =   <  {close doors}, 
    {open doors, emergency open} >  
    initially true 
describes train door states as being either closed (DoorsClosed = true) 
or open (DoorsClosed = false), and describes which event is 
responsible for which state change. 
Such descriptions can be effectively used to constrain the induction 
process so that the synthesized system LTS conforms to them.  The 
idea is to compute the value of every fluent at each PTA state by 
symbolic execution; the PTA states are then decorated with the 
conjunction of such values. The pruning rule for constraining the 
induction process is here to avoid merging inconsistent states, that 
is, to avoid merging two states whose decoration has at least one 
fluent with different values.  
The specific equivalence relation here is thus the set of state pairs 
where both states have the same value for every fluent. Two states 
will be considered for merging if they have the same value for every 
fluent. 
The decoration of the merged state is simply inherited from the 
states being merged. 
To compute PTA node decorations by symbolic execution, we use a 
simplified version of an algorithm described in [1] to propagate 
fluent definitions forwards along paths of the PTA tree. (The 
general algorithm propagates fluent definitions along multiple paths 
with cycles until a fixpoint is reached.) 
Fig.5 shows the result of propagating the values of fluent 
DoorsClosed, according to its definition in Section 2.3, along the 
PTA shown in Fig. 2. 

3.1.2. Unfolding models of external components 
Quite often the components being modelled need to interact with 
external components in their environment – e.g., legacy components 
in a bigger existing system, foreign components in an open system, 
and so forth. In such cases the behavior of external components is 
generally known – typically, through some behavioral model [4]. 
Here we assume that external components are known by their LTS 
model.  
For example, Fig.6 shows the LTS for a legacy alarm sensor in our 
train system. When the alarm button is pressed by a passenger, this 
component propagates a corresponding signal to the train controller.  
A LTS model of an external component can constrain the induction 

process so that the synthesized system LTS conforms to it. The idea 
is to decorate the PTA with states of the external LTS by unfolding 
the latter on the PTA. Such decoration is performed by jointly 
visiting the PTA and the external LTS; the latter synchronizes on 
shared events and stays in its current state on other events. 
Fig.7 shows the result of unfolding the alarm sensor LTS from Fig. 
6 on the PTA shown in Fig. 2. Each state in Fig. 7 is labelled with 
the number of the corresponding state in the alarm sensor LTS. 
The pruning rule for constraining the induction process is now to 
avoid merging states decorated with distinct states of the external 
component. The specific equivalence relation used here is the set of 
states where both states have the same external LTS state. Two 
states will be considered for merging if they have the same external 
LTS state. 

3.1.3. Using declarative domain properties 
Descriptive statements and assumptions about the domain can be 
expressed declaratively in FLTL. For example, the physical law 

 (HighSpeed → Moving) 
excludes all negative scenarios where the train is running at high 
speed while not moving.  
The technique for constraining induction through descriptive or 
prescriptive statements is the same; we discuss it hereafter. 

3.2  Injecting goals in the synthesis process 
Goals are prescriptive statements of intent about the target system. 
We restrict our attention here to goals that can be formalized as 
FLTL safety properties. For such goals we can use the technique 
described in [3] to generate a tester. A tester for a property is a LTS 
extended with an error state such that every path leading to the error 
state violates that property.  
Consider the goal requiring train doors to remain closed while the 
train is moving: 

DoorsClosedWhileMoving =   (Moving → DoorsClosed) 
Fig.8 shows the tester LTS for this property (the error state is the 
black one). Any event sequence leading to the error state from the 
initial state corresponds to an undesired system behavior. In 
particular, the event sequence <start, open> corresponds to the 

 
Figure 5 – Propagating fluent values along a PTA  

          (dc is a shorthand for DoorsClosed) 

 
Figure 6 – LTS model for an alarm sensor 

 
Figure 7 – Unfolding the alarm sensor LTS on the PTA  

 
Figure 8 - Tester LTS for the goal DoorsClosedWhileMoving 
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initial negative scenario in our running example (see Fig.1). As seen 
in Fig.8, the tester provides many more negative scenarios. Property 
testers can in fact provide potentially infinite classes of negative 
scenarios. 
The property tester is used to constrain the induction process in a 
way similar to an external component LTS. The PTA and the tester 
are traversed jointly in order to decorate each PTA state with the 
corresponding tester state. Fig. 9 shows the PTA decorated using 
the tester in Fig.8.  
The pruning rule for constraining the induction process is now to 
avoid merging states decorated with distinct states of the property 
tester. The specific equivalence relation used here is the set of states 
where both states correspond to the same property tester state. Two 
states will be considered for merging if they have the same property 
tester state. 
This pruning technique has the additional benefit of ensuring that 
the synthesized system LTS satisfies the considered goal or domain 
property. A proof argument is provided by known results from 
automata theory. A tester for a safety property is a canonical 
automaton, that is, minimal and deterministic [3]. A bijection thus 
exists between states and continuations [5]. In other words, two 
states are distinct if and only if there is at least one continuation to 
distinguish them. In the particular case of the tester LTS, two states 
are distinct if and only if they do not have the same set of 
continuations leading to the error state (these are called violating 
continuations). 
The equivalence relation and corresponding pruning rule thus 
amount to avoid merging system states that do not share the same 
set of violating continuations. 
In practice, ISIS reuses the LTL2Buchi tool [2] and generates 
property testers from the produced Büchi automata. 

4  MINING GOALS FROM SCENARIOS  
At this point the question arises as to where those goals and domain 
descriptions are coming from. In view of our emphasis on end-user 
involvement, possibly with an analyst on the back, we would like to 
obtain them systematically through property mining from scenarios. 
This section discusses how goals and domain descriptions can be 
obtained as explanations of why a scenario is rejected as 
counterexample (Section 4.1), or as safety properties inferred 
automatically from positive scenarios (Section 4.2). 
Scenarios are fragmentary, operational, and leave the underlying 
goals, assumptions, and domain properties implicit. Mining these 
provides further benefits beside this paper’s concern of reducing the 
number of scenario questions and synthesizing models that are 
“correct” with respect to them. Goal specifications can be used to 
formally check or derive goal refinements, generate hazard and 
threat conditions, detect conflicts, and generate further scenarios 
that satisfy them [11, 12]. 

4.1 WHY questions about negative scenarios 
When the user answers a scenario question by rejecting the scenario 
as counterexample, the ISIS synthesizer asks her the reason for 
rejection. The user can explain it by adding the goal or domain 
description being violated by the scenario. 
For example, when rejecting the scenario question in Fig.4, the user 
may click the “No, why ?” button in order to explain why that 
behavior is prohibited. The lower part of the window in Fig.10 
shows the reason for rejection; the goal   

 (Moving → DoorsClosed) 
has been added using the fluents defined in the middle part of the 
window.  
No scenario question excluded by the goal will be asked 
subsequently in the induction process. Moreover, any inconsistency 
between the added property and the scenarios previously entered is 
automatically detected and reported. 

4.2  Inferring goals from scenarios 
A more ambitious objective is to infer safety properties 
automatically from the scenario collection. We focus on specific 
property patterns, under responsibility of single agents. An inferred 
property will therefore be a requirement on a software agent, an 
assumption on an environment agent, or a domain property [11]. 

Our procedure for inferring property specifications from scenarios is 
specified as follows:   
  GIVEN  a set of positive scenarios, 
 a set of fluents, 
   FIND a conjunctive set of properties covering all input 

scenarios, and taking the form: 
     (A → C) (Maintain/Avoid goals) 
     (A → ο C) (Immediate Response goals) 

 
Figure 10 – Negative scenario explained by the goal 

DoorsClosedWhileMoving 

 
Figure 9 – PTA decorated using the tester LTS from Fig. 8 
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where A and C are state assertions without temporal 
operators. 

In previous work, we have developed an inductive learning 
technique for generating LTL goal specifications from positive and 
negative scenarios [10]. This technique is not applied here because 
it is not based on fluents, and makes the stronger assumption that 
specifications of interaction events are available as pre- and 
postconditions on corresponding operations.   
The inference of Maintain/Avoid properties is detailed in Section 
4.2.1 while the inference of Immediate Response properties is 
discussed in Section 4.2.2. 

4.2.1. Inferring Maintain/Avoid properties 
Let us consider the two positive scenarios in Fig.11. The state 
predicates S0, S1, S2, S3, S4, S5 along agent B’s timelines are fluent 
conjunctions that hold between the corresponding interactions. The 
following assertion on agent B then holds in any of those states: 

S0 ∨ S1∨ S2 ∨ S3 ∨ S4 ∨ S5 
Let Inv denote this assertion. If those two scenarios were to cover all 
states of agent B’s LTS, we could infer that Inv is preserved under 
all behaviors of this agent and get the safety property: 

 Inv 
As the set of positive scenarios in which the agent is involved is 
likely not to be complete, this generalization can be unsound; it 
must therefore be validated by the user.  
It is thus crucial for the candidate property to be structured and easy 
to understand. To achieve this we transform it into a minimal 
conjunctive normal form (CNF). This yields a logically equivalent 
set of simpler and shorter candidate invariants.  
Rejection of one of these by the user means that the scenario 
collection is not complete. ISIS then asks the user to provide a 
counterexample to the rejected invariant to be covered as additional 
positive scenario. 
The procedure for inferring Maintain/Avoid properties on a single 
agent is now detailed step by step on our running example. We start 
from the positive scenarios in Fig.1 together with the following 
fluent definitions: 
 fluent DoorsClosed  = < {close doors}, 
   {open doors, emergency open} >  
   initially true 
 fluent Moving  =  < {start}, 
   {stop, emergency stop} >  
   initially false 

 fluent Alarmed  =  < {alarm propagated}, 
   {emergency open} >  
  initially false 

Step 1: Compute fluent-based state predicates along the agent’s 
timelines  

To obtain the local state predicates Si along the agent’s timelines, 
we decorate these timelines with the fluents holding at the 
corresponding point.  
As we are looking for prescriptions (or descriptions) on this agent, 
we restrict ourselves to the fluents controlled by the agent. 
Properties of the form  (A → B) where A contains monitored 
fluents and B contains controlled ones would be unrealizable by the 
agent [14]; we are not making the synchrony hypothesis where 
agents can react instantly to their environment. Said otherwise, if A 
becomes true, the agent needs at least one (smallest) time unit to set 
B to true.  
Conjunctions of controlled fluents that hold at specific points of an 
agent timeline are called controlled predicates. The algorithm for 
decorating timelines with controlled predicates is another simplified 
version of our symbolic execution algorithm [1], particularized here 
to a MSC timeline instead of an entire LTS. This algorithm is a 
fluent-based counterpart of the algorithm for generating condition 
lists along timelines in [10], also used in [23]. 
Let us focus on the TrainController agent. It controls the fluents 
DoorsClosed and Moving because it performs their initiating and 
terminating events. The decoration is generated from top to bottom. 
First, we annotate the initial state S0 of the timeline with the initial 
fluent values, yielding ¬ Moving ∧ DoorsClosed as Moving is 
initially false and DoorsClosed is initially true. Recursively, we 
compute the next state decoration using the above definitions of 
fluents Moving and DoorsClosed. After the start event, the 
decoration is Moving ∧ DoorsClosed because start is an initiating 
event of Moving; the fluent DoorsClosed does not change as start is 
not among its initiating/terminating events. We continue until the 
end of the scenario is reached (see Fig.12). 
Step 2: Form the candidate invariant 
A single scenario contributes to the candidate global invariant 
through the following assertion:  

InvSc = ∨i ∈0...n cpi 
where cpi is the controlled predicate decorating the timeline right 
after event i. In our example we get (see Fig.12): 

  ¬ Moving ∧  DoorsClosed ∨  Moving  ∧  DoorsClosed  
∨ Moving  ∧  DoorsClosed ∨ Moving  ∧  DoorsClosed  
∨ ¬ Moving  ∧  DoorsClosed ∨ ¬ Moving ∧ ¬ DoorsClosed 

Similarly we compute the contributions of all other input scenarios 
to obtain the candidate global invariant: 

Inv =  ∨j InvScj 
Step 3: Normalize the candidate invariant in minimal CNF form 
The candidate global assertion is then transformed into a minimal 
conjunction of disjunctions, using standard CNF tools. In our 
example, Inv is reduced to 

¬ Moving ∨ DoorsClosed. 
Step 4: Generalize the candidate CNF invariant 
Generalization to any state is simply achieved by prefixing Inv  with 
the “always” operator. In our example, we get 

 (¬Moving ∨ DoorsClosed). 
Step 5: Validate each conjoined property with the user 

 
Figure 11 - State predicates along timelines of an agent in 

multiple scenarios 
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Each conjunct in the generalized CNF invariant is shown to the user 
for validation. There is a readability issue here as each conjunct can 
be presented in alternative, equivalent ways. In our example, we 
obtain one requirement only that can be presented in one of the 
following forms:  

 (¬ Moving ∨ DoorsClosed) 
 ( Moving  →  DoorsClosed) 
 (¬ DoorsClosed  →  ¬ Moving) 
 ¬ (¬ DoorsClosed  ∧  Moving) 

Heuristics for increased readability are needed here. So far we 
favored implications with minimal number of negation symbols – 
but other heuristics should deserve further attention. 
The user may react in three ways with respect to each candidate 
property in the conjunctive list presented. 
• Accept it: The property is added to the specification and used to 

constrain the induction process (see Section 3.2). 
• Reject it: This means that the current scenario collection does 

not cover all agent states.  The user is then asked to provide a 
counterexample to the rejected property in order to enrich the 
collection with a new positive scenario to be covered. Property 
inference thus turns to be an effective way of checking whether 
a scenario collection is complete enough and, if not, solicit new 
behavior examples. 

• Don’t know: the generated property might be hard to 
understand. In this case, it may be ignored. 

4.2.2. Inferring Immediate Response Properties 
The second property pattern that ISIS can infer takes the form  

 (A → ο B) 
where A may contain monitored fluents and B contains controlled 
fluents only. This stimulus-response property pattern is important as 
it arises fairly frequently in reactive, event-based systems. 
Such properties are not necessarily closed under stuttering [9]; their 
satisfaction by an event trace may be affected by insertion or 
removal of unobservable events. In the Immediate Response 
properties we consider, the “next” operator means “in the next 
smallest time unit” and refers to the alphabet of the input scenarios. 
We are protected against stuttering as long as such properties are 
not combined with others defined on another alphabet. The inferred 
Immediate Response properties must thus be handled with care – 
e.g., they should not be used when composing the system with 
components on different alphabets. In any case, they need to be 
validated by the user as well. 
The inference of Immediate Response properties is fairly similar to 
Maintain/Avoid properties. We briefly discuss the differences. 
Step 1: Compute fluent-based state predicates along the agent’s 
timelines.  Each agent’s timeline is decorated with its controlled and 
monitored fluents by use of the same algorithm. Conjunctions of 
controlled and monitored fluents that hold at specific points of an 
agent timeline are called state predicates. For our TrainController 
agent, the timelines are decorated using three fluents: the controlled 
fluents Moving and DoorsClosed, and the monitored fluent Alarmed.  
Step 2: Form the candidate invariant. The single-scenario invariant 
takes a different form here, namely, 

InvSc = ∨i ∈ 0…n-1 (spi  ∧ ο cpi+1) 

where spi is the state predicate right after event i and cpi the 
controlled predicate after event i. 
The global candidate invariant on all scenarios is then: 

Inv =∨j InvScj 

Step 3: Normalize the candidate invariant in minimal CNF form. 
This step is similar. For the three positive scenarios in Fig. 1 we 
obtain: 
    Inv  =  (¬ Alarmed ∨ ο ¬ Moving)  

∧ (DoorsClosed ∨  ¬ Moving)  
∧ (DoorsClosed  ∨ ο ¬ Moving)  
∧ (¬ Moving  ∨ ο DoorsClosed)  
∧ (ο DoorsClosed  ∨ ο ¬ Moving)  
∧ (DoorsClosed  ∨ ο DoorsClosed)  
∧ (¬ Alarmed  ∨  Moving  ∨ ο ¬ DoorsClosed) 

Such disjunctions can be rewritten as implications taking the form 
A → ο B 

where A is a conjunction and B a disjunction.  
Step 4: Generalize the candidate CNF invariant. This step is 
similar; we just we add the “ ” prefix. 
Step 5: Validate candidate properties with the user. Here we 
perform some filtering on the properties shown to the user. 
• Properties without “next” operator are not presented as they are 

already shown as Maintain/Avoid properties.  
• Properties where all fluents are prefixed with the “next” 

operator are not presented for a similar reason, e.g.,  
(ο DoorsClosed ∨ ο ¬ Moving) 

• Tautologies resulting from the LTS semantics are not shown.  
Let us explain the last point. Consider the following fluents:  

Fluent A = <aInit, aTerm> 
Fluent B = <bInit, bTerm> 

together with the assertion  
 (A ∧ B → ο  A ∨ ο  B) 

This assertion is a tautology in view of the LTS one-input 
assumption. This semantic assumption states that exactly one input 
event occurs at every state transition. As aTerm and bTerm cannot occur 
at the same time, if A and B are true in the current state, either A or 
B will be true in the next state.  
A tautology tester is a universal LTS, that is, a LTS accepting any 
sequence of events. The error state for such testers is unreachable. 
No scenario can violate the property. Tautologies thus do not 
constrain the induction process. ISIS generates testers for all 

 
Figure 12 - Train controller decorated with controlled fluents 
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inferred properties in the candidate CNF invariant, and presents 
only properties whose tester is not the universal LTS.  
In our example, there is no tautology. Five generated properties are 
shown to the user, e.g., the requirement  

 (Alarmed → ο ¬ Moving) 
which states that “when the train is in alarm state, the train controller 
must stop the train immediately”. 
Here again, the user is asked to provide a counterexample scenario 
when a property is rejected. All accepted properties are added to the 
specification to constrain the induction process.  

5  EVALUATION 
We compared how the techniques in Sections 3 and 4 perform on 
three different case studies of varying complexity. The first case 
study is a mine pump system inspired from [7]. The second is an 
extended, less simplistic version of the train system used here as a 
running example. The third is a phone system handling 
communications between a caller and a callee. 
The objective was to assess the impact of constraining induction 
through fluents, models of external components, domain 
descriptions, and goals. Impact was measured in terms of number of 
generated scenario questions and adequacy of the synthesized 
models.  
For each case study, we proceeded in two steps: 
1. (a) Design a scenario collection allowing for meaningful 

subsequent comparison, that is, a scenario collection sufficiently 
rich to allow an adequate system LTS to be synthesized under 
one setting of the experiment at least. 
(b) Define a common set of fluent definitions identifiable from 
this scenario collection. 

2.  Evaluate the techniques on this scenario collection, without and 
with fluents, goals, domain descriptions, or models of external 
components. 

In Step 1, condition (a) amounts to require the scenario collection to 
be structurally complete [20, 1]; every transition in the LTS being 
synthesized must occur in at least one scenario. We used the ISIS 
tool itself to incrementally set up such a scenario collection. We 
started from an initial set of scenarios that end-users would typically 
provide. By generating scenario questions, validating inferred 
properties, and validating synthesized LTSs, we found a number of 
additional scenarios that were missing for the scenario collection to 
be usable for the comparisons in Step 2. 
 
The size of the scenario collection resulting from Step 1 is shown in 
Table 1. “SC+” and “SC-” correspond to the number of positive and 
negative scenarios, respectively. This table also shows the size of 
the target LTS in terms of number of different event labels, states, 
and edges. The average size of scenarios, in terms of number of 
interactions, is not shown there. This size is 8 for the Mine Pump 
system, 9 for the Big Train system, and 11 for the Phone System.  
To perform the comparisons, an oracle was implemented to 
simulate the end-user. This oracle knows the target LTS for each 

specification and correctly classifies scenario questions as positive 
or negative. 
Comparison 1:  RPNI vs. Blue-Fringe 
Table 2 shows the number of questions the oracle had to answer and 
the adequacy of the generated LTS, in the three case studies, when 
no additional knowledge is used to constrain induction. A 
synthesized model is said to be adequate if it matches the target 
known LTS. “Q+” and “Q-” are the number of accepted and 
rejected scenario questions, respectively.  
Note that the number of rejected scenario questions is drastically 
reduced thanks to Blue-Fringe’s heuristic search. For bigger 
systems pure RPNI becomes unusable. In the Phone system, an 
adequate LTS cannot be synthesized from the scenario collection. 
Wrong generalizations do occur; some states are merged whereas 
they need to be distinguished in the adequate model. Finally, the 
number of rejected scenarios tends to be much larger than the 
number of accepted ones. This observation confirms the usefulness 
of scenario questions; negative answers force the induction 
algorithm to backtrack when an incorrect search path has been 
taken. 
As Blue-Fringe is seen to be by far superior to pure RPNI, we will 
keep Blue-Fringe only for further comparisons.  
Comparison 2:  Impact of fluent propagation 
Table 3 shows the influence of fluent decorations to constrain the 
induction process. Note that the number of rejected scenario 
questions is decreasing in each case study as the number of fluents 
is increasing. Such questions can even disappear when the set of 
fluent definitions is sufficient. For the same generated LTS, the 
number of accepted scenario questions remains the same; fluent-
based state information only allows state merges to be rejected. 
Also note that two fluent definitions in the Phone system are 
sufficient for an adequate model to be found. 
Comparison 3:  Impact of inferred properties 
From the fluent definitions and the same initial scenario collection, 
ISIS automatically inferred various important requirements and 

Specification Events States Edges SC+ SC- 

 Mine Pump 8 10 13 3 0 

 Big Train 13 17 23 3 0 

 Phone System 16 23 33 6 3 

Table 1 – Size of case studies 

Specification Algorithm Q+ Q- Model Accuracy 

RPNI 1 30 missing/unallowed paths  Mine Pump 
 BlueFringe 1 4 adequate model 

RPNI 4 83 adequate model  Big Train 
 BlueFringe 5 5 adequate model 

RPNI 5 171 missing/unallowed paths  Phone System 

BlueFringe 5 19 missing/unallowed paths

Table 2 – RPNI vs. BlueFringe 

Specification Nb fluents Q+ Q- Model Accuracy 

0 1 4 adequate model 
1 1 1 adequate model 
2 1 0 adequate model 

 Mine Pump 
 

3 1 0 adequate model 
0 5 5 adequate model 
1 5 3 adequate model 
2 5 3 adequate model 
3 5 3 adequate model 
4 5 2 adequate model 

 Big Train 
 

5 5 0 adequate model 
0 5 19 missing/unallowed paths 

1 5 13 missing/unallowed paths
2 6 9 adequate model

 Phone System 
 

3 6 4 adequate model

Table 3 – Impact of fluent propagation on induction 
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domain properties. As the scenario collection covers every event 
label of the synthesized LTS (see the structural completeness 
condition (a) above), all inferred properties are adequate.  
For the Mine Pump system, the three main requirements were 
inferred automatically, e.g.,  

When the water level is below the low water threshold, the 
pump controller must immediately set the pump to “off”.  

For the Big Train system, three requirements and two domain 
properties were inferred automatically, e.g., 

The train may never run at high speed when it comes near 
a station. 

For the Phone system, three requirements were inferred 
automatically, e.g.,  

When the caller hangs up, the connection should 
immediately be closed. 

The inferred properties were used in turn to incrementally constrain 
the induction process. Table 4 shows the results. The same 
observations can be made as with fluents. However, goals and 
domain properties are seen to be more powerful than fluents. With 
one single goal, there are no rejected scenario questions anymore in 
the Mine Pump system; the LTS generated for the Phone system is 
now adequate. (The fact that the numbers of fluents and goals are 
the same in these case studies is purely coincidental.) 
Comparison 4:  Combined use of fluents, properties, and models of 

external components 
Table 5 shows the results of a Blue-Fringe induction constrained 
with available fluents, goals, and domain properties, plus one 
external component in each case study. Comparing this table with 
Table 2 shows how much is gained when the various techniques 
described in this paper are combined to constrain the interactive 
LTS synthesis process. 

6.  CONCLUSION 
Model-driven development requires adequate models to be 
developed. Model building is a complex task, especially in the case 
of behavior models. Techniques and tools are therefore needed to 

support this task. System stakeholders should ideally be involved, at 
least in the first stages of the process. 
This paper has presented a number of techniques that provide 
significant improvements over a previous method for synthesizing 
behavior models interactively from end-user scenarios [1]. These 
improvements are based on the use of knowledge about the target 
system to constrain the induction process. Such knowledge includes 
fluent definitions, behavior models of external components,  domain 
properties, and system goals. Each type of knowledge allows a 
specific equivalence relation to be defined for pruning the search 
space of mergeable state pairs. As a result, the number of scenario 
questions in end-user interactions is reduced significantly, 
sometimes drastically; and the adequacy of the synthesized model is 
improved. Some of the techniques may require analyst intervention 
to formalize specifications or to explain such specifications in 
natural language. To address this limitation, an important class of 
safety properties is inferred automatically from scenarios. All 
techniques presented here are implemented in the ISIS synthesizer. 
The evaluation of this tool on case studies of growing complexity 
appears encouraging. We are currently pursuing such evaluation 
further on real web applications where the number of states and 
transitions is significantly larger. 
An additional strength of our inductive approach is to allow system 
knowledge to be integrated quite easily for constraining induction. 
Two states are considered for merging if and only if they agree 
according to all considered equivalence relations. Further 
improvements with new specific equivalence relations on states 
could be incorporated at low cost. For further pruning we might also 
propagate non-equivalence backwards, from non-equivalent states, 
along PTA transitions with the same event label. 
Declarative properties were seen to play a prominent role in 
effective pruning of the inductive search space. Every property 
embodies a whole class of positive scenarios and rules out many 
negative scenarios that will not be generated as questions. Properties 
contribute to structural completeness of the scenario sample much 
more effectively than isolated scenarios.  Unlike model checking 
approaches, such properties are not “floating in the air”; they pertain 
to structured goal models as system goal, software requirement, 
environment assumption, or domain property [11].  Some of them 
can be taken from available goal models, others can be inferred 
automatically and integrated into such models. 
The current version of ISIS raises a number of open issues. As in all 
other model synthesis approaches, the input scenarios to be initially 
provided are assumed to start in the same state. This assumption 
appears too strong for, e.g., scenario fragments coming from 
multiple end-users. Our approach is also highly sensitive to 
classification errors by end-users. The consistency checks 
performed when a property is entered is a first step to address this.  
The effectiveness of our techniques may depend on the choice of 
fluents. What makes a good choice of fluents and how to identify 
these is another interesting issue to consider. 
The state machines ISIS generates are “flat” LTS. We plan to 
exploit fluent-based information to parallelize them. The projection 
of the synthesized LTS on local agents is known to possibly 
introduce additional behaviors [1]. Such behaviors, called implied 
scenarios, can be detected using techniques described in [21, 15]. 
Techniques to eliminate undesirable implied scenarios still need to 
be developed. 
In any case, the more we work on the model synthesis problem, the 
more we are convinced that the “goal – scenario – state machine” 
triangle is a rich, not yet fully exploited, source of synergy and 
mutual reinforcement for model analysis and synthesis. 

Specification # properties Q+ Q- Model Accuracy 

0 1 4 adequate model 
1 1 0 adequate model 
2 1 0 adequate model 

  Mine Pump 

3 1 0 adequate model 
0 5 5 adequate model 
1 5 3 adequate model 
2 5 3 adequate model 
3 5 2 adequate model 
4 5 2 adequate model 

  Big Train 

5 5 2 adequate model 
0 5 19 missing/unallowed paths 

1 6 6 adequate model 
2 6 4 adequate model 

  Phone System 
 

3 6 4 adequate model 

Table 4 – Impact of inferred properties on induction 

Specification Q+ Q- Model Accuracy 

 Mine Pump 1 0 adequate model 
 Big Train 5 0 adequate model 
 Phone System 7 2 adequate model 

Table 5 – Combining fluents, properties, and external 
components to constrain induction 

206



ACKNOWLEDGMENTS 
This work was partially supported by the Regional Government of 
Wallonia (ReQuest project, RW Conv. 315592). Warmest thanks 
are due to Pierre Dupont. Beyond helpful comments on a previous 
version of this paper, Pierre pointed out that the LTS synthesis 
problem can be seen as a grammar induction problem, and observed 
that the various techniques presented in this paper are all based on 
specific equivalence relations on states.  

REFERENCES 
[1] C. Damas, B. Lambeau, P. Dupont, and A. van Lamsweerde, 

“Generating Annotated Behavior Models From End-User 
Scenarios”, IEEE Trans. on Software Engineering, Special Issue 
on Interaction and State-Based Modeling, Vol. 31 No.12, Dec. 
2005, 1056-1073. 

[2]  D. Giannakopoulou and F. Lerda, LTL2Buchi, available at 
http://ic.arc.nasa.gov/people/dimitra/LTL2Buchi.php. 

[3]  D. Giannakopoulou and J. Magee, “Fluent Model Checking for 
Event-Based Systems”, Proc. ESEC/FSE 2003, Helsinki, 2003. 

[4]  R.J. Hall and A. Zisman, “OMML: A Behavioral Model 
Interchange Format”, Proc. RE’04, 12th IEEE Joint 
International Requirements Engineering Conference, Kyoto, 
Sept. 2004. 

[5]  J. E. Hopcroft and J. D. Ullman, Introduction to Automata 
Theory, Languages, and Computation, Addison-Wesley, 1979. 

[6]  M.Jarke and R. Kurki-Suonio (eds.), Special Issue on Scenario 
Management, IEEE Trans. on Sofware. Engineering, Vol. 24 
No. 12, Dec. 1998. 

[7] M. Joseph. Real-Time Systems: Specification, Verification and 
Analysis. Prentice Hall Intl., 1996. 

[8] I. Kruger, R. Grosu, P. Scholz and M. Broy, From MSCs to 
Statecharts, Proc. IFIP WG10.3/WG10.5 Intl. Workshop on 
Distributed and Parallel Embedded Systems (Scholoß 
Eringerfeld, Germany), F. J. Rammig (ed.), Kluwer, 1998, 61-
71. 

[9] L. Lamport, “The Temporal Logic of Actions”, ACM 
Transactions on Programming Languages and Systems, 16(3), 
1994, 872-923. 

[10] A. van Lamsweerde and L. Willemet, “Inferring Declarative 
Requirements Specifications from Operational Scenarios”, IEEE 
Trans. on Sofware. Engineering, Vol. 24 No. 12, December 
1998. 

[11] A. van Lamsweerde, “Requirements Engineering in the Year 00: 
A Research Perspective”. Keynote Paper, Proc. ICSE’2000: 

22nd International Conference on Software Engineering, 2000, 
5-19. 

[12] A. van Lamsweerde, “Goal-Oriented Requirements Engineering: 
A Roundtrip from Research to Practice”, Keynote Paper, Proc. 
RE’04, 12th IEEE Joint Intl. Requirements Engineering Conf., 
Kyoto, Sept. 2004, 4-8. 

[13] K.J. Lang, B.A. Pearlmutter, and R.A. Price, “Results of the 
abbadingo one DFA learning competition and a new evidence-
driven state merging algorithm”, In Grammatical Inference, 
Lecture Notes in Artificial Intelligence Nr. 1433, Springer-
Verlag, 1998, 1-12. 

[14] E. Letier and A. van Lamsweerde, “Agent-Based Tactics for 
Goal-Oriented Requirements Elaboration”, Proc. ICSE’02: 24th 
Intl. Conf. on Soft. Engineering, Orlando, May 2002. 

[15] E. Letier, J. Kramer, J. Magee, and S. Uchitel, “Monitoring and 
Control in Scenario-Based Requirements Analysis”, Proc. ICSE 
2005 - 27th Intl. Conf.  Software Engineering, St. Louis, May 
2005. 

[16] E. Mäkinen and T. Systä, “MAS – An Interactive Synthesizer to 
Support Behavioral Modelling in UML”, Proc. ICSE’01 – Intl. 
Conf. Soft. Engineering,, Toronto, Canada, May 2001. 

[17] J. Magee and J. Kramer, Concurrency: State Models and Java 
Programs. Second Edition, Wiley, 2006. 

[18] Z. Manna and A. Pnueli, “The Temporal Logic of Reactive and 
Concurrent Systems”, Springer-Verlag, 1992. 

[19] J. Niu, J.M. Atlee, and N. Day, “Understanding and Comparing 
Model-Based Specifications Notations”, Proc. RE’03, 11th IEEE 
Joint Intl. Requirements Engineering Conf., Monterey, Sept. 
2003, 188-199.  

[20] J. Oncina and P. García, “Inferring Regular Languages in 
Polynomial Update Time”, In N. Perez de la Blanca et al (Ed.), 
Pattern Recognition and Image Analysis, Vol. 1 Series in 
Machine Perception & Artificial Intelligence, World Scientific, 
1992, 49–61. 

[21] S. Uchitel, J. Kramer, and J. Magee, “Detecting Implied 
Scenarios in Message Sequence Chart Specifications”, Proc. 
ESEC/FSE’01, Sept. 2001. 

[22] S. Uchitel, J. Kramer, and J. Magee, “Synthesis of Behavioral 
Models from Scenarios”, IEEE Trans. Softw. Engineering, 29(2), 
2003, 99-115. 

[23] J. Whittle and J. Schumann, “Generating Statechart Designs 
from Scenarios”, Proc. ICSE’2000: 22nd Intl. Conference on 
Software Engineering, Limerick, 2000, 314-323. 

 

207



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


