
Reasoning About Confidentiality
at Requirements Engineering Time

Renaud De Landtsheer and Axel van Lamsweerde
Département d’Ingénierie Informatique, Université catholique de Louvain

B-1348 Louvain-la-Neuve (Belgium)

{rdl, avl}@info.ucl.ac.be

ABSTRACT
Growing attention is being paid to application security at
requirements engineering time. Confidentiality is a particular
subclass of security concerns that requires sensitive information to
never be disclosed to unauthorized agents. Disclosure refers to
undesired knowledge states of such agents. In previous work we
have extended our requirements specification framework with
epistemic constructs for capturing what agents may or may not
know about the application. Roughly, an agent knows some
property if the latter is found in the agent’s memory.
This paper makes the semantics of such constructs further precise
through a formal model of how sensitive information may appear
or disappear in an agent’s memory. Based on this extended
framework, a catalog of specification patterns is proposed to
codify families of confidentiality requirements. A proof-of-
concept tool is presented for early checking of requirements
models against such confidentiality patterns. In case of violation,
the counterexample scenarios generated by the tool show how an
unauthorized agent may acquire confidential knowledge. Counter-
measures should then be devised to produce further confidentiality
requirements.

Categories & Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specification -
methodologies, languages, tools .

General Terms
Languages, Verification, Security, Design.

Keywords
Security requirements, reasoning about confidentiality,
bounded model checking, specification patterns.

1. INTRODUCTION

Software applications are increasingly ubiquitous, heterogeneous,
mission-critical and vulnerable to unintentional or intentional

security incidents [18, 3]. Security is therefore among the non-
functional requirements taken the most seriously nowadays.
Our interest is in modeling, specifying, and analyzing security-
related requirements and designs [21, 22]. Rather than considering
security at the crypto, protocol or system/language levels, as
usually done in the literature, we address security concerns at the
application level where the state of the art is much more limited
[31, 30]. At this level, services such as, e.g., web-based banking
operations must implement application-specific security
requirements in terms of primitives from the lower levels. Typical
application-specific security breaches would allow malicious users
of a web banking application to know account numbers together
with their associated PIN code, or malicious users of an e-
commerce application to get some item without having paid for it.
The paper’s focus is on confidentiality requirements.
Confidentiality requires that sensitive information be not disclosed
to unauthorized recipients [18]. It thus imposes restrictions on
what agents may or may not know about the application over time.
Agents are active components forming the system. They can be
humans, devices, legacy software, etc.
Information disclosure can be unintentional or intentional. In the
former case, confidential knowledge is inadvertently disclosed to
some unauthorized agent. In the latter case, the agent gets to know
confidential information by proactive exploitation of unprotected
data and system knowledge through deductive inferences,
calculations, or malicious behaviors. The agent does so in order to
satisfy its underlying anti-goals [22].
This paper proposes an extended framework for formally
specifying and reasoning about confidentiality requirements in the
early phases of software development. Our extension makes it
possible to automate checks of requirements models against
confidentiality claims and discover confidentiality violations at
requirements engineering time. Counter-measures must then be
found to yield new confidentiality requirements.
We make no distinction here between unintentional and
intentional disclosure. The term “unauthorized agent” (UA) will
therefore be used to refer to an attacker or an agent exposed to
unintentional disclosure.
Our framework is based on logics for reasoning about knowledge
[9]. It makes the operational semantics of earlier epistemic
constructs, used in [19, 22], more precise through axioms defining
how sensitive knowledge may get in and out an agent’s memory.
The tool is built on top of a constraint solver [29, 6] according to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ESEC-FSE’05, September 5–9, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-014-9/05/0009...$5.00.

principles borrowed from bounded model checking [1]. It checks
instantiated requirements models against confidentiality claims. In
case of claim violation, the tool shows a temporal sequence of
state transitions leading to information disclosure. Although
originally developed in the context of the KAOS method for goal-
oriented requirements engineering [20], our specification patterns
and checker were designed for use within other declarative
frameworks.
The paper is organized as follows. Section 2 introduces some
background on temporal and epistemic logics and their use for
requirements specification. Our running example, an e-payment
system widely used in Belgium, is introduced there as well.
Section 3 extends our previous specification framework through a
formal model of knowledge of UAs. Section 4 presents a
taxonomy of confidentiality requirements patterns that relies on
those grounds. Section 5 presents our confidentiality checker and
illustrates its use on the running example.

2. Background

2.1. Modeling and Specifying the Target System
To enable some form of automated reasoning about
confidentiality, we need some formal apparatus for structuring
requirements models and for specifying properties of interest.
With respect to the formal language optionally used in KAOS
[19], we assume a minimal subset comprising an entity-
relationship language for object modeling and a real-time linear
temporal logic.
Fig. 1 shows an object model fragment for a smartcard-based e-
purse installed on bank cards. Money can be transferred from bank
accounts onto e-purses at ATM counters. This requires PIN code
authentication like for cash withdrawal. Buyers may use their e-
purse at dedicated terminals installed in shops. To perform a
payment from an e-purse to a terminal, the buyer needs to insert
her bank card in the seller's terminal. The seller enters the amount
due in the terminal. This amount is displayed to the buyer so that
she can validate it by pressing an “OK” button. The validated
amount is transferred from the buyer’s e-purse to the seller’s
terminal. Payment is performed offline and requires no
authentication. Terminals are unloaded to bank accounts via a
secured network.

Buyer Seller

e-Purse
Balance: Int

Terminal
encodedAmount:Int

amountValidated:Bool

Item
Value:Int

Buys Sells

HasOwns

from to

Inserted
AgentEntity

for

Payment
Amount:Int

Fig. 1: Object model fragment for an e-purse payment system

In Fig. 1, agents are distinguished from entities as they control
behaviors and have knowledge (unlike entities). We expand on
this in Section 2.2 below.

Fig. 2 informally states a functional requirement and a
confidentiality requirement for that system.

Requirement Achieve [PaymentDoneIfAmountValidatedAnd
 BalanceSufficient]
 Def A payment shall be done for some amount, from a card to

a terminal, when the card is inserted in the terminal, the
amount is entered by the seller in the terminal, the balance of
the card is higher or equal to the amount, and the amount is
OK-ed by the buyer on the terminal.

 Requirement Maintain [e-PurseBalanceConfidential]
 Def E-purse balances shall be known only to the e-purse

holder and the e-purse itself.

 Fig. 2: Two requirements for an e-purse payment system

The requirements to be analyzed are assumed to be formalized in a
first-order, real-time linear temporal logic [19, 26]. The following
operators are used for temporal referencing:

o (in the next state) • (in the prev ious state)

◊ (some time in the future) ♦ (some time in the past)
o (always in the future) n (always in the past)

W (always in the future unless) U (always in the future until)

◊≤d (some time in the future within deadline d)
o≤d (always in the future up to deadline d)

We will also use standard logical connectives such as ∧ (and),
∨ (or), ¬ (not), → (implies), ↔ (equivalent), ⇒ (entails), with

P ⇒ Q iff o (P → Q).
Entities and agents from the object model may be used as sorts in
quantifications. Attributes generally define state variables; they
are accessed through the standard “.” selector. For example, the
assertion

(∀ ep: e-Purse) o ep.Balance ≥ 0
says that the balance of any e-Purse instance must always remain
positive.
Association classes define predicates over instance variables
playing the corresponding role. For example, the predicate

Payment (ep, term, it)
is true in the current state if and only if there is an object
Payment[ep,term,it] in that state – that is, an instance of the ternary
association Payment linking instances ep, term and it of sort e-
Purse, Terminal and Item, respectively (see Fig. 1).
The functional requirement in Fig. 2 may now be specified
formally as follows:

Requirement Achieve [PaymentDoneIfAmountValidatedAnd
 BalanceSufficient]

FormalSpec ∀ ep: e-Purse, term:Terminal, it: Item
Inserted (ep, term) ∧ term.encodedAmount ≤ ep.Balance
∧ term.amountValidated
⇒ o (Payment (ep, term, it) ∧

 Payment[ep,term,it].Amount = term.amountValidated)

2.2. Specifying Requirements On Agent Knowledge
To formalize confidentiality requirements such as the second
requirement in Fig. 2, we need epistemic constructs that capture
what agents may or may not know at specific states. The epistemic

operator Knowsag was introduced in [19] to capture accuracy
requirements and inaccuracy obstacles. It is defined as follows:

Knowsag (P) ≡ Beliefag (P) ∧ P (“knows property”)

The operational semantics of the epistemic operator Beliefag(P) is:
“P is among the properties currently stored in the local memory
of agent ag”. An agent thus knows a property if that property is
found in its local memory and it is indeed the case that the
property holds.
The following particularization of this construct was used in [22]
to capture malicious violations of confidentiality goals:

KnowsVag (x) ≡ ∃ v: Knowsag (x = v) (“knows value”)

This particular construct expresses that agent ag currently knows
the value of state variable x. A very first specification pattern for
confidentiality goals was introduced in [22] based on this
construct:

Goal Avoid [SensitiveInfoKnownByUnauthorizedAgent]
FormalSpec ∀ ag: Agent, ob: Object

 ¬ Authorized (ag, ob.Info) ⇒ ¬ KnowsVag (ob.Info),
where the Authorized predicate is generic and has to be
instantiated through an application-specific definition.
This pattern may not be adequate in various situations. It only says
that exact knowledge of the value of some state variable is
prohibited to UAs. Let us assume that we use it for specifying our
confidentiality requirement in Fig. 2; the knowledge by some third
party that the e-purse balance is between $99 and $101 would not
violate the corresponding requirement specification (as only exact
knowledge of the current balance is prohibited). However, in such
a situation the balance would be almost completely disclosed.
Such disclosure might be sufficient in the context of satisfying an
anti-goal of some malicious agent – such as, e.g., stealing e-purses
that are sufficiently worth taking the risk. We should therefore
specify stronger restrictions on knowledge of e-purse balances.
We come back to this in Section 3.2.
The semantics of Knowsag(P) should also make it precise under
which circumstances properties P do appear/disappear in/from the
agent's memory. We come back to this in Section 3.1.

2.3. Logics for Reasoning about Knowledge
Different axiomatic systems have been proposed for defining the
semantics of knowledge operators found in epistemic logics [9].
The S5 system is the strongest in that it gives agents the most
powerful reasoning capabilities. This system is summarized in
Fig. 3, where K denotes the knowledge operator, P and Q are
assertion placeholders and ag is an agent instance. The axiom
schemas hold for all possible P, Q and ag.
Other systems are generally variants of S5 where one or more
axioms are removed or weakened. For instance, a formal model
of agents with resource-bounded reasoning capabilities is
described in [14].
Knowledge logics have also been combined with temporal logics
such as LTL or CTL [9, 11]. For LTL integration, the S5 axioms
are strengthened with the ð-operator to hold at any time.
Additional axioms capture the interaction between knowledge
and time, typically, by defining memory-related capabilities of
agents. Several combined systems are available dependent on
whether the agents have a “synchrony” capability of measuring
time or not. The two most common axioms in a synchronous
system are given in Fig. 4.

• Distribution
[K ag(P) ∧ K ag(P → Q] → Kag(Q)
 (Agents can deduce new knowledge from their knowledge)

• Knowledge generalization

If P is valid then Kag(P) (Agents know all valid formulas)
• Truth axiom

Kag(P) → P (Agents have no false knowledge)

• Positive introspection
Kag(P) → Kag(Kag(P)) (Agents know that they know)

• Negative introspection
¬ Kag(P) → Kag(¬ Kag(P)) (Agents know that they don’t know)

Fig. 3: Axioms of the S5 epistemic logic system

• Perfect Recall
Kag(o P) ⇒ o Kag(P) (Agents never forget past knowledge)

• No Learning
o Kag(P) ⇒ Kag(o P) (Agent knowledge does not increase over time)

Fig. 4: Axioms for temporal knowledge

3. WHAT DO UNAUTHORIZED AGENTS
KNOW?

To automate reasoning about (non-)disclosure of sensitive
information to UAs, we need to make our Knowsag construct
further precise by addressing questions such as the following:

• When and how do assertions get in and out of the memory of
an UA?

• What do such agents know about the target system?
• Can such agents have contradictory beliefs?
• Can such agents reason on their beliefs and make deductions?

In other words, does an agent's memory merely consist of a set
of assertions or of its deductive closure?

• Can such agents know that time has elapsed?
For security-critical systems the answer to such questions should
be driven by worst-case principles. To get robust requirements
about confidentiality, we need to pessimistically consider an
environment with malicious agents that are able to make
calculations and deductions, even unanticipated ones. If such
agents cannot violate the confidentiality requirements, any other
will not. This worst-case principle is directly inspired from the
Most Powerful Attacker model (MPA) used in cryptographic
protocol analysis [17, 25, 2, 15, 4]. We use it to choose axioms
that further define our Knowsag construct. The axioms are stated
just informally here. Their relevance is illustrated on our e-purse
example.
• Perfect System Knowledge: UAs know all the requirements

the software implements and all the properties of the domain.
In the e-purse system, the seller knows that payment is denied
in case of insufficient balance.

• Maximal Input: An agent at any time knows the value of any
state variable that is not explicitly specified as confidential to
her. The agent at any time also knows any past value of any
state variable if that past value is not explicitly specified as

confidential in the current state. In our e-purse system, the
seller knows the amount that was entered, the amount that was
validated, etc. This axiom ensures that the requirements model
has no implicit assumptions on the confidentiality of variables.

• Distribution (taken from S5): UAs are able to make deductive
inferences. In our example, if a payment is denied due to
insufficient balance in the e-purse, the seller is able to infer
that the balance of the e-purse is lower than the amount
entered in the terminal.

• Knowledge generalization (taken from S5): UAs know all
tautologies. In our example, the seller knows that the assertion

(e.Balance ≥ $5 ∧ true) → false
reduces to

e.Balance < $5.

• Truth axiom (taken from S5): UAs have no false knowledge.
This axiom supports our first definition of Knowsag in terms of
Beliefag, see Section 2.2.

• Perfect Recall (taken from Fig. 4): UAs always remember
facts and properties they used to know in the past. In our
running example, the seller remembers, in the state where
payment should take place, that the card was inserted in the
terminal, that the amount was entered, and that this amount
was validated.

• Synchrony (see Fig. 4): UAs are able to measure time. In our
example, the seller may notice that time has elapsed since the
card was inserted and since the amount was validated.

• Introspection (taken from S5): UAs know that they know and
know that they do not know. This capability is taken to ensure
some desired theoretical properties of the axiomatic system
(e.g., the relation behind the epistemic modality is an
equivalence relation). It also makes UAs more knowledgeable.

• Closure assumption: All the knowledge of UAs directly or
indirectly comes from the above axioms. This axiom is taken
to keep models realistic enough by excluding some “deus ex
machina”. We need it when we want to show that
confidentiality requirements cannot be violated within the
requirements model considered.

The closure assumption and the “Perfect System Knowledge”
axiom together make the axiomatic system non-monotonic [10, 8],
that is, we can have

P |= Q and P ∧ R |≠ Q
A confidentiality requirement might be satisfied by a requirements
model but violated by some extended model where, for example,
some functionality has been added (e.g., an alarm ringing on the
terminal when e-purse balances are insufficient). Moreover, the
confidentiality requirement might be satisfied by the requirements
model but not by the final product due to information leaks
introduced at implementation time [12].

4. SPECIFICATION PATTERNS FOR
CONFIDENTIALITY REQUIREMENTS

Section 2.2 introduced the KnowsVag construct that captures
knowledge of the exact value of some state variable. Although
appropriate in some situations, confidentiality of exact values may
be too weak in others, as illustrated in the requirement on e-purse
balances. In that specific example, agents who are not the
cardholder should not know that there is at least $v in the e-purse
(whatever the value of v is). Moreover, knowing that the e-purse

contained at least $v six months ago is of no particular appeal to a
potential card stealer; knowledge should refer to the current state
in this case. The confidentiality requirement should thus rather
look like:

∀ ag: Agent, ep: e-Purse
¬ Authorized (ag, ep.Balance)
 ⇒ ∀ v ∈ ran(ep.Balance): ¬ Knowsag (ep.Balance ≥ v)

where ran(ep.Balance) denotes the range of values of state
variable ep.Balance.
In the spirit of [7, 5, 23], we have explored specification patterns
that could help specifiers write recurring properties more easily as
pattern instances. In our case the properties refer to confidentiality
requirements. Such patterns may guide requirements elicitation;
the analyst may browse the pattern catalog and ask herself whether
instantiations to sensitive application objects are relevant
requirements for the system. Pattern instances may also be used as
input to analysis tools.
Our pattern catalog was built systematically along two
dimensions:
• the degree of approximate knowledge to be kept confidential,

• the timing according to which that knowledge should be kept
confidential.

Degree of approximate knowledge
Patterns along this dimension include the following.

• Confidential exact value: An agent should not know the
exact value of some state variable:

val-Confidentialag(x) ≡
∀ v ∈ ran(x): ¬ Knowsag (x = v)

• Confidential lower/upper bound: An agent should not know
that the value of some state variable is below/above some
treshold:

lb-Confidentialag(x) ≡
∀ v ∈ ran(x): ¬ Knowsag (x ≥ v)

ub-Confidentialag(x) ≡
∀ v ∈ ran(x): ¬ Knowsag (x ≤ v)

betw-Confidentialag(x) ≡
∀ v1, v2 ∈ ran(x): ¬ Knowsag (v1 ≤ x ≤ v2)

• Fully confidential value: An agent should not be able to infer
any property about the value of some state variable (e.g.,
lower/upper bound, parity, order of magnitude, etc.). In other
words, the agent should not be able to exclude any value
within the variable's range:

full-Confidentialag(x) ≡

∀ v ∈ ran(x): ¬ Knowsag (x ≠ v)

This is the strongest confidentiality requirement.
• Confidentiality of order of magnitude: An agent should not

know the order of magnitude of some state variable. In other
words, the agent will always consider that the order of
magnitude of that variable can be any possible value. The
order of magnitude might be defined, e.g., as the decimal
logarithm rounded down. The pattern is then:

om-Confidentialag(x) ≡
∀ v ∈ 0.. log10(max(ran(x)) :

¬ Knowsag (log10(x) ≠ v)

Timing of confidentiality
To be fully precise, the specifier should also make it explicit at
what time and how long should confidentiality be enforced.

• Confidential now: In the current state, an agent should not
know about some state variable:

Y-Confidential-now ag (x) ≡ Y-Confidentialag(x)
with Y ∈ {val, lb, ub, betw, full, om}

Example of use: In our e-purse system, we might only be
concerned by UAs knowing the value of an e-purse balance in
the current state where the balance has that value – without
necessarily caring for such agents to know tomorrow that the
balance had that value today.

• Confidential until expiration date: An agent should not
know about some state variable until some delay has expired:

Y-Confidential-upTo ag (x; d) ≡
∀ w: x = w → o≤d Y-Confidentialag(w)

with Y ∈ {val, lb, ub, betw, full, om}

Example of use: A classified NSA archive must be kept
confidential for 60 years.

• Confidential unless/until condition: An agent should not
know about some state variable unless or until some condition
becomes true:

Y-Confidential-unless ag(x; Cond) ≡
∀ w: x = w → Y-Confidentialag(w) W Cond

Y-Confidential-until ag(x; Cond) ≡
∀ w: x = w → Y-Confidentialag(w) U Cond

with Y ∈ {val, lb, ub, betw, full, om}

Example of use: In a paper publication process, submissions
must be kept confidential unless they are accepted.

• Confidential forever: An agent should never know about
some state variable:

Y-Confidential-always ag(x) ≡
∀ w: x = w → o Y-Confidentialag(w)

with Y ∈ {val, lb, ub, betw, full, om}

Example of use: In some banking applications, daily account
balances may be required to be kept confidential forever.

The combination of patterns defined along the knowledge
approximation and the timing dimensions yields a pattern space of
30 generic specifications to be considered during requirements
elicitation. The catalog is of course extendable along those two
dimensions. Retrieving the appropriate pattern from the catalog is
fairly simple; the degree of approximate knowledge is determined
first and then the required timing is selected.

5. CHECKING REQUIREMENTS MODELS
AGAINST CONFIDENTIALITY CLAIMS

We have built a proof-of-concept tool that checks requirements
models against confidentiality claims that are expressed in terms
of our specification patterns. The tool is named CONCHITA
(CONfidentiality CHecker for Incremental Threat Analysis). It
uses bounded model checking (BMC) and constraint solving
techniques to search for counter-example scenarios leading to
violations of confidentiality claims. The difference from standard
BMC is that (a) the system is described at a more abstract level in

terms of temporal logic assertions (instead of operational state
machines), and (b) the tool reasons on epistemic logic constructs.

5.1 CONCHITA as seen from outside
The following inputs are provided to the tool.
• A set of functional requirements about the system (for

example, the one given in Fig. 2). These are taken as system
specification and as UA’s knowledge of the system according
to the Perfect System Knowledge axiom.

• A set of confidentiality requirements, taken as claims. These
requirements are specified in terms of the patterns in Section
4. For our running example, we might submit the following
claim (see Fig.2):

∀ ep: e-Purse, ag: Agent
¬ Owns (ag, ep) ∧ ag ≠ ep

⇒ full-Confidential-foreverag (ep.balance)

• A (possibly empty) set of other confidentiality requirements,
specified with the same patterns, and taken as assumptions.

• An entity-relationship model that declares the objects referred
to in those various assertions (see Fig. 1).

• Directives for instantiating the object model in order to
propositionalize those various assertions. For example, we
might bound our model to one single instance of Buyer, Seller
and Terminal and introduce corresponding names for reference
in the counter-example trace (if any):

Buyer:[alice]
Seller:[bob]
Terminal:1

• A maximal length for the output trace.

• Optional hints for constraining the output trace to make it
more “interesting”. For example, the user might require that
the balance of e-purses is a least 3, to avoid simple traces with
zero-balance.

CONCHITA displays a counter-example trace, if one is found, or
a message “no confidentiality violation found”. The output trace
leads to disclosure of one of the claimed-to-be-confidential state
variables. Disclosure takes place at the last position of the trace. It
is characterized by the following items:
• the state variable that was claimed to be confidential,

• the agent instance that was claimed to know nothing about this
variable,

• a position in the trace and a value for the variable such that, at
the end of the trace, the agent knows that the variable is
different from this value at that position.

The counter-example trace delivered for our running example is
shown in Fig. 5. A graphical representation of it is shown in Fig.
6.
The trace is displayed as a sequence of states. Each state shows
the value of the attributes of entity/agent instances together with
their associations. A bracketed attribute in the trace expresses that
its value was assumed to be confidential and thus hidden to the
agent instance (see e-Purse1.Balance in state 1).
As mentioned before, unviolated confidentiality claims are taken
as assumptions. The claim is split into one confidentiality claim
per position in the trace because of the o-operator implicit in the
strong implication of the claim. The stars around
ePpurse1.Balance in state 0 express that this state of the variable

is disclosed at the end of the trace. The UA is bob. At the end of
the trace, he gets to know that the balance of alice’s e-purse was
different from 4 at time 0 (see the message generated in state 1 in
Fig. 5 or the bubble at state 1 in Fig. 6). Bob’s reasoning goes as
follows: (a) in state 0, the e-Purse1 is inserted in Terminal1, the
encoded amount is 4, and this amount is validated; (b) in state 1,
no payment takes place; hence the balance of e-Purse1 can be
inferred to be strictly lower than 4.

-------------------------------- State 0
alice (Buyer agent){}
bob (Seller agent){}
e-Purse1 (e-Purse agent){

** Balance: 3 ** (DISCLOSED) }
Terminal1 (Terminal agent){

amountValidated: true
encodedAmount: 4 }

Inserted<docked: e-Purse1
 docker: Terminal1>
Owns<owned: e-Purse1
 owner: alice>
--- State 1
alice (Buyer agent){}
bob (Seller agent){}
e-Purse1 (e-Purse agent){

[Balance: 3] (HIDDEN)}
Terminal1 (Terminal agent){

amountValidated: false
encodedAmount: 0}

Owns<owned: e-Purse1
 owner: alice>
At this state, bob knows that e-Purse1.Balance is
different from 4 at time 0

Fig. 5: Counter-example trace produced by CONCHITA

alice
bob

Epurse0
balance:0

Terminal0
encodedAmount :1

amountValidated:true
Inserted

alice

bob

Epurse0
balance:0

Terminal0
encodedAmount :0

amountValidated:false

State 0

State 1 {0} |= e-Purse1.Balance ≠ 4

e-Purse1
Balance:3

Terminal1
encodedAmount :4

amountValidated:true
encodedAmount

Owns

e-Purse1
[Balance:3]

Terminal1
encodedAmount :0

amountValidated:false

Owns

Fig. 6: Graphical view of the output trace

In the current state of implementation, CONCHITA searches for
violation of the most typical patterns only, that is, the full-
Confidential-nowag, full-Confidential-untilag and full-Confidential-
foreverag patterns. Therefore, it only finds one value that Bob can
eliminate from the set of possible values for e-Purse1’s balance.
However, as explained before, Bob can infer more properties
about this value.

CONCHITA also explains the reasoning performed by the UA
that enabled him to infer that the claimed-to-be-confidential
variable is different from the given value. The explanation consists
of a minimal set of knowledge fragments about the system that are
necessary to perform the deduction. Knowledge fragments include
requirements and domain properties (including association
multiplicities), in which universal quantifications over objects and
time have been instantiated to corresponding object instances and
trace positions, respectively.
Fig. 7 shows the explanation displayed for Bob’s reasoning. In this
case it includes one fragment only, taken from the requirement

Achieve[PaymentDoneIfAmountValidatedAndBalanceSufficient]

formalized in Section 2.1, where the universally quantified
variables have been instantiated to Teminal1 and e-Purse1,
respectively, and where the o-operator implicit in the “⇒”
entailment has been instantiated to state 0, as mentioned on the left
of the "|=" symbol; the '^' suffix is used for reference to the
previous value of the state variable.

The unauthorized agent used the following
knowledge fragments in his inference.

Source: Achieve[PaymentDoneIfAmountValidated
AndBalanceSufficient]

Instantiation:

[term/Terminal1, ep/e-Purse1]

0 |= Inserted<docked:e-Purse1 docker:Terminal1>
 & Terminal1.amountValidated
 & Terminal1.encodedAmount ≤ e-Purse1.Balance
 -> o Payment<amount: Terminal1.encodedAmount^
 from: e-Purse1
 to:Terminal1>

Fig. 7: Explaining the reasoning for disclosure

5.2. CONCHITA’s bones and guts
Our tool is based on bounded model checking and finite
instantiation algorithms [13, 1]. It is structured into four layers.
The top three layers translate their input problem into a simpler
problem. The bottom layer performs the computation using
constraint-programming techniques [28, 6, 29]. It also contains a
constraint satisfaction diagnosis algorithm used for generating the
UA's reasoning. The solution found by the bottom layer percolates
up through the upper layer; it is gradually translated into a solution
to the top input problem. The overall architecture of the tool is
shown in Fig. 8. The system specification there is made of the
requirements, the domain properties and the hints. The UA's
knowledge is made of the requirements and the domain properties.
Layers are organized into a “use” hierarchy.
The propositionalization and time bounding layers are not
semantics-preserving as they restrict the expressiveness of the
model. To ensure tool soundness, we therefore strengthen the
translation of the system specification and confidentiality
assumptions while weakening the translation of the confidentiality
claims and of the UAs's knowledge. Such dual translations are
known as expanding and contracting abstractions [27]. Intuitively,
it means that we will be more demanding on generated traces
while UAs will know a little bit less about the system. For
example, we want to avoid UAs to know that there is only one
single e-Purse instance and use this in their reasoning.

Claimed
confidentiality

Time
bound

directives
Propositionalizing the input model

Bounding time

Solving the constraint
satisfaction problem

Constraint satisfaction
problem diagnosis

Translating to a constraint
satisfaction problem (with)

Claimed
confidentiality
confidentiality

claims
unauthorized

agent’s
knowledge

hints

system spec

time
bound

instantiation
directives

trace

Propositionalizer

Time bounder

Constraint satisfaction
problem solver

Translator to constraint
satisfaction problem

datalayerData flow

confidentiality
assumptions

Explainer

Object
model

Figure 8: CONCHITA’s overall architecture

The four layers of the tool are now briefly described.

Layer 1: Propositionalizing the input model

The first-order input model is propositionalized by instantiation of
the object model according to the instantiating directives provided.
The system specification and assumptions are propositionalized
with strengthening by application of standard transformation rules
[13], e.g.,

(∀ ep: e-Purse) P ∧ e-Purse = {e-Purse1, e-Purse2}
 ~~> P [ep / e-Purse1] ∧ P [ep / e-Purse2]

(∃ e: e-Purse) P ∧ e-Purse = {e-Purse1, e-Purse2}
~~> P [ep / e-Purse1] ∨ P [ep / e-Purse2]

On the other hand, the UA’s knowledge and the confidentiality
claims are propositionalized with weakening by addition of an
abstract instance, denoted by Others, that represents all other
instances. The same translation rules then yield:

 (∀ ep: e-Purse) P ∧ e-Purse = {e-Purse1, e-Purse2, Others}
 ~~> P [ep / e-Purse1] ∧ P [ep / e-Purse2] ∧ P [ep / Others]

 (∃ e: e-Purse) P ∧ e-Purse = {e-Purse1, e-Purse2, Others}
 ~~> P [ep / e-Purse1] ∨ P [ep / e-Purse2] ∨ P [ep / Others]

The assertion P [ep / Others] is actually translated into true or false
dependent on whether the translation of P is performed with
weakening or strengthening, respectively. (A translation with
strengthening must be foreseen for propositionalization with
abstract domains as the negation of P is translated with weakening
into the negation of the translation of P with strengthening.)
The propositionalization layer also makes a switch to a mono-
agent model with one single UA denoted by a rigid variable
“Unauthorized” whose value does not change along the trace. The
confidentiality claims are translated accordingly, e.g.,
 Unauthorized = 'bob' →
 full-Confidential-forever (Unauthorized, e-Purse1.Balance)

 Unauthorized = 'Terminal1' →
full-Confidential-forever (Unauthorized, e-Purse1.Balance)

As all claims refer to the same agent we drop agent references.

Layer 2: Bounding time

The propositional temporal logic assertions are transformed into
non-temporal logic versions by setting the length of traces to the
given time bound. Non-temporal variables are introduced to
represent the value of each state variable at each position in the

trace. All temporal references are resolved along this finite trace.
The system specification and UA’s knowledge are transformed
with strengthening and weakening, respectively, by application of
rules such as the following:

bound (“? P", t, s) ~~> ∧ t ≤ i ≤ end bound("P", i, s)

bound ("o P", t, strong)
 ~~> if t = end then false else bound ("P", t+1,strong)

bound ("o P", t, weak)
 ~~> if t = end then true else bound ("P", t+1, weak)

In the above rules, t is a position in the trace, end is the last
position, and s takes the value strong for a transformation with
strengthening and weak for a translation with weakening.
Temporal references in confidentiality claims and assumptions are
resolved by evaluating the UA's knowledge at the last position in
the trace. We use the full-Confidential pattern for confidentiality in
non-temporal models. Our first claim above is transformed into
the following two non-temporal claims:

Unauthorized = 'bob'
→ full-Confidential (e-Purse1.Balance0)
Unauthorized = 'bob
→ full-Confidential (e-Purse1.Balance1) ,

where subscripts denote the position of the non-temporal variables
in the trace.
The transformation of assumptions yields the annotation of
whether or not a non-temporal variable is hidden to the UA. If the
value of a temporal variable at some position may be disclosed at
any subsequent position in the trace, then its corresponding non-
temporal variable is taken as disclosed in the non-temporal model,
because of the perfect recall axiom.

Layer 3: Translation into a constraint satisfaction problem

The confidentiality checking problem is translated into an
equivalent constraint satisfaction problem by encoding our
confidentiality patterns as quantifications over traces envisioned
by the UA, given his knowledge of the system (Hw) and his
knowledge of the variables that are not claimed nor assumed to be
confidential. The system specification is denoted Hs. The
constraint satisfaction problem submitted to the Oz constraint
solver [29] can be paraphrased as follows:

 find a value c and interpretation Int such that:
(a) Int |= Hs

(b) there is no interpretation J such that
J |= Hw

and non-confidential variables have
 same values in Int and J

and claimed-confidential variable in Int
 is equal to c

Constraint (a) expresses that the interpretation found must be
admissible with respect to the system specification translated with
strengthening. Constraint (b) expresses that there is no other
interpretation that the UA could imagine of such that the claimed
confidential variable is equal to some value, given UA’s
knowledge (i.e., the system specification translated with
weakening and the value of each non-confidential variable). The
UA is therefore able to find out that the claimed confidential
variable is different from this value.

Layer 4: Solving the constraint satisfaction problem

The constraint satisfaction problem is solved by means of
constraint programming techniques built on top of the Oz
constraint solver [28, 6, 29].

Explaining the UA's reasoning
The interpretation Int discovered by the tool has the property that
the following problem has no solution:

find interpretation J such that:
J |= Hw

and non-confidential variables have
 same values in Int and J

and claimed-confidential variable in Int
 is equal to c

The tool finds the knowledge fragments from Hw that cause the
failure by applying a two-step process.

Step 1: Decompose Hw into as many conjuncts as possible. This
is actually performed by layers 1 and 2. For example, a
universal quantification yields one fragment per
instance, a ?-operator yields one fragment per position
between the position at which it is evaluated and the last
position in the trace, and a conjunction yields two
fragments. Fragmentation is performed recursively up to
the first operator that cannot be fragmented; generally an
implication or a disjunction.

Step 2: Find a minimal set of such fragments that causes the
problem to have no solution. In constraint programming
terms, this amounts to searching for a minimal conflict
set. We use the QuickXPlain algorithm for this [16].

5.3. Properties of CONCHITA
Our checker is sound; if it finds a trace, the trace does violate
some confidentiality claim while matching the system
specification. In other words, it will never produce false positives.
Like any bounded model checker, CONCHITA only searches
within the given time bounds and object instances. Assigning too
restrictive bounds may therefore result in failure to find a trace
when there is a longer one or one with more instances.
CONCHITA is however bounded-complete: if there is a trace
within the given bounds, it will find it. Bounded-completeness is
achieved by ensuring that the top two layers perform as little
strengthening/weakening as possible. (Completeness issues do not
arise at the two lower layers which perform exact translations and
resolutions of their input problem.)

6. CONCLUSION

Confidentiality is an important class of security concerns that
refers to restrictions on agent knowledge. The earliest security
leaks are detected, the best; countermeasures can then be devised
early as new requirements for a more robust system. Our formal
framework makes it possible to specify and analyze confidentiality
concerns at requirements engineering time. Non-intentional and
malicious disclosure of sensitive information are both supported.
Our framework has three components.

• An axiomatic system, built on top of epistemic logics [9],
captures how the knowledge of UAs evolves over time. In a
way similar to the “Most Powerful Attacker” hypothesis used in

cryptographic protocol analysis, we assume UAs to be clever
and “forgetless”.

• A catalog of confidentiality specification patterns captures
different types of confidentiality requirements on state
variables. The patterns are expressed in terms of knowledge
operators from this axiomatic system. The catalog is built on
top of previous patterns [22]. It has a two-dimensional
structure according to the degree of approximate knowledge
and knowledge timing.

• A proof-of-concept tool prototype checks requirements
models against confidentiality requirements expressed in
terms of such epistemic patterns. The tool separately maintains
UA’s knowledge according to the epistemic axiomatic system.
It combines bounded model checking and constraint
programming techniques to generate counter-example traces
leading to violation of confidentiality requirements.

Our framework combines formality, grounded on epistemic logics,
and lightweightedness through specification patterns.
Formality is a prerequisite for a well-defined semantics of
specification constructs and for in-depth analysis of interactions
between functional and security requirements. The analysis
performed by the tool is incremental as it is applied to declarative
model fragments. It is made efficient by instantiation of our
models to small worlds, as done by bounded model checkers, and
by pruning of the search space, as done by constraint solvers. The
latter more efficiently support complex specifications, e.g., over
arithmetic expressions.
The patterns, in the spirit of [7, 19], considerably facilitate the task
of writing specifications with knowledge operators. They can also
be used as a means for eliciting confidentiality requirements and
making them more precise.
Our framework makes minimal assumptions about the
requirements model. It essentially needs a simple form of UML
class diagram and a set of assertions. It might therefore be grafted
at low cost on recent extensions of goal-oriented and agent-
oriented methods for threat modeling [24, 22]. Moreover,
CONCHITA can be used in the context of goal-oriented
requirements engineering [20] to ensure that some high-level goal
is enforced by lower-level requirements. In a banking application,
for example, we should ensure that bank accounts are confidential
on the basis that information flows between ATMs and the central
bank is kept confidential; in such a case the high-level goal would
be submitted as a confidentiality claim whereas the lower-level
requirements are submitted as confidentiality assumptions.
In situations where confidentiality violations are not felt critical,
it might be worth considering less clever UAs who know less
about the system or are forgetful. In such situations we should
then explicitly provide application-specific axioms that specify
the conditions under which specific system knowledge fragments
appear/disappear in/from UA’s memory.
Our approach requires the analyst to specify all necessary
confidentiality requirements (in view of the maximal input
axiom). We might alleviate this by imposing a least privilege
principle [30] as additional requirement on some agents – e.g.,
software agents. This principle would state here that the agents
may only see those state variables which they need to
monitor/control for achieving the requirements they are
responsible for.
Our pattern catalog is currently limited to confidentiality of state
variables. Although it was built in a systematic way along two

structuring dimensions, its coverage needs to be better assessed
through further validation studies. Our current implementation
also needs to be extended to support the entire catalog, and then
experimented on larger-scale applications. The feedback provided
by the tool should also be easier to understand. Our plan is to
represent violation scenarios graphically (see Fig. 6 in comparison
with Fig. 5), and only show attributes that are effectively used in
UA’s reasoning.
There is an interesting connection between confidentiality and
trust we are also currently exploring. To enforce confidentiality of
classified information, one must ensure that secret holders are
trustworthy agents; they should not reveal classified information
to unauthorized agents. This issue might be resolved by inclusion
of some appropriate model of trustworthiness in requirements
models.

Acknowledgements. The work reported herein was partially
supported by the Belgian Fonds National de la Recherche
Scientifique (FNRS) and the Regional Government of Wallonia
(MILOS project, RW Conv. 114856).

7. REFERENCES

[1] A. Biere, A.Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu,
“Bounded model checking”, Advances in Computers, 58,
2003.

[2] D. Bolignano, “Towards a mechanization of cryptographic
protocol verification”, Proc. 9th International Computer
Aided Verification Conference, 1997, 131-142.

[3] http://www.cert.org/stats/cert_stats.html.
[4] I. Cervesato, “Data access specification and the most

powerful symbolic attacker in msr”, In ISSS 2002:
Software Security - Theories and Systems, LNCS 2609,
Springer-Verlag, November 2003, 384-416.

[5] M. Chechik and D. O. Paun, “Events in property patterns”, In
Theoretical and Practical Aspects of SPIN Model
Checking, LNCS 1680, Springer-Verlag, 1999, 154-167.

[6] R. De Landtsheer, “Solving CSPs including universal
quantifications”, Proc. of the 2nd Int. Mozart/Oz
Conference, 2004.

[7] M.B. Dwyer, G. S. Avrunin and J.C. Corbett, “Patterns in
Property Specifications for Finite-State Verification”, Proc.
ICSE’99 - 21st Intl. Conf. Softw. Eng., May 1999.

[8] J. Engelfriet, “Monotonicity and persistence in preferential
logics”, J. Artif. Intell. Res. 8, 1998, 1-21.

[9] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning About Knowledge. MIT Press, 1995.

[10] J. Halpern and Y. Moses, “Towards a Theory of Knowledge
and Ignorance: Preliminary Report”, In Logics and Models
of Concurrent Systems, Springer-Verlag, 1985, 459-476.

[11] Halpern J., van der Meyden R., and Vardi. Complete
axiomatizations for reasoning about knowledge and time.
1997.

[12] J. Jacob, “On the derivation of secure components”, In Proc.
of 1989 IEEE Symposium on Security and Privacy,
Oakland, CA, May 1989.

[13] D. Jackson, “Automating first-order relational logic”, Proc.
FSE’2000: 8th ACM SIGSOFT Intl Symp. Foundations of
Software Engineering, San Diego, 2000.

[14] M. Jago, N. Alechina, and B. Logan, “A complete and
decidable logic for resource bounded agents”, Proc.
AAMAS 04, New York, July 2004, 606 - 613.

[15] S. Jha, E.M. Clarke and W. Marrero, “Verifying security
protocols with Brutus”, ACM Trans. Software Engineering
and Methodology (TOSEM), October 2000, 443-487.

[16] U. Junker, “QUICKXPLAIN: Conflict Detection for
Arbitrary Constraint Propagation Algorithms”, Proc.
IJCAI’01 Workshop on Modeling and Solving Problems
with Constraints, 2001.

[17] R. Kemmerer, C. Meadows, and J. Millen, “Three systems
for cryptographic protocol analysis”, Journal of Cryptology
7(2), 1994, 79-130.

[18] R. Kemmerer, “Cybersecurity”, Proc.ICSE’03 - 25th Intl.
Conf. on Softw. engineering, Portland, 2003, 705 - 715.

[19] A. van Lamsweerde and E. Letier, “Handling obstacles in
goal-oriented requirements engineering”, IEEE
Transactions on Software Engineering, Special Issue on
Exception Handling, 26(10), October 2000, 978 - 1005.

[20] A. van Lamsweerde, “Goal-oriented requirements
engineering: A guided tour”. Proc.RE'01 - 5th IEEE
International Symposium on Requirements Engineering,
Toronto, August 2001, 249-263.

[21] A. van Lamsweerde, “From System Goals to Software
Architecture”, In Formal Methods for Software
Architectures, M. Bernardo & P. Inverardi (eds), LNCS
2804, Springer-Verlag, 2003, 25-43.

[22] A. van Lamsweerde, “Elaborating security requirements by
construction of intentional anti-models”, Proc. ICSE’04:
26th Intl. Conf. on Software Engineering, IEEE, 2004, 148-
157.

 [23] E. Letier and A. van Lamsweerde, “Deriving Operational
Software Specifications from System Goals”, Proc.
FSE’10: 10th ACM SIGSOFT Symp. Foundations of
Software Engineering, Charleston, November 2002.

[24] L. Liu, E. Yu and J. Mylopoulos, “Security and Privacy
Requirements Analysis within a Social Setting”,
Proc.RE'03: 11th IEEE International Requirements
Engineering Conference, Monterey, Sept. 2003.

[25] G. Lowe, “Breaking and fixing the Needham-Schroeder
public-key protocol using FDR”, in TACAS’96: Tools and
Algorithms for Construction and Analysis of Systems, 1996.

[26] Z. Manna and A. Pnueli. The Temporal Logic of Reactive
and Concurrent Systems. Springer-Verlag, 1992.

[27] A. Pnueli, “Verification by Finitary Abstraction”, Proc.
SPIN’98: 4th Intl. SPIN Workshop, Paris, Nov. 1998.

[28] Ch. Schulte. Programming Constraint Services . Lecture
Notes in Artificial Intelligence Vol. 2302,. Springer-
Verlag, Berlin, 2002.

[29] P. Van Roy and S. Haridi, Concepts, Techniques, and
Models of Computer Programming. MIT Press, March
2004.

[30] J. Viega and G. McGraw. Building Secure Software: How to
Avoid Security Problems the Right Way. Addison-Wesley,
2001.

[31] J. Wing, “A Symbiotic Relationship Between Formal
Methods and Security”, Proc. NSF Workshop on Computer
Security, Fault Tolerance, and Software Assurance: From
Needs to Solution. December 1998.

