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Abstract. Reguirements and architecture are two essential inter-related products
in the software lifecycle. Software architecture has long been recognized to have a
profound impact on non-functional requirements about security, fault tolerance,
performance, evolvability, and so forth. In spite of this, very few techniques are
available to date for systematically building software architectures from functional
and non-functional reguirements so that such requirements are guaranteed by
construction. The paper addresses this challenge and proposes a goal-oriented
approach to architectural design based on the KAOS framework for modeling,
specifying and analyzing requirements. After reviewing some global architectural
decisions that are already involved in the requirements engineering process, we
discuss our architecture derivation process. Software specifications are first
derived from requirements. An abstract architectural draft is then derived from
functional specifications. This draft is refined to meet domain-specific
architectural constraints. The resulting architecture is then recursively refined to
meet the various non-functional goals modelled and analyzed during the
reguirements engineering process.

1 Introduction

Requirements engineering (RE) is concerned with the elicitation of the goals to be
achieved by the system envisioned (WHY issues), the operationalization of such
goals into specifications of services and constraints (WHAT issues), and the
assignment of responsibilities for the resulting requirements to agents such as
humans, devices and software available or to be developed (WHO issues) [Lam00a).
Architectural design (AD) is concerned with the organization of the software-to-be
into main components and interactions between them [Sha96, Bos00].

It has long been recognized that architectural design has a major impact on non-
functional requirements about security, fault tolerance, performance, interoperability
and maintainability [Per92, Sha96]. The problem of building an architecture which
satisfies the software requirements is obviously central to software engineering. By
and large, such building is however an ad hoc, largely informal and unsystematic
process to date.

Asavery first step, arigorous architectural design process should rely on the use of
precise descriptions of the software components and their interactions. Many
architecture description languages (ADLs) have been proposed for this purpose, e.g.,
[ANI97, Gar97, Luc95, Mag95, Mor95, Med96]. An ADL captures the information
required to guarantee desired properties related to the interaction of its components,
as opposed to detailed design issues such as the choice of specific algorithms and
data structures. ADLs provide support for explicitly modeling software components,
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connectors, their configurations, and constraints on the components, connectors and
configurations. One may thereby define a limited vocabulary of components and
connectors, and rules by which they can be legally composed or legally interact.
Some ADLSs support architecture-level analysis to examine whether properties of
interest are satisfied (e.g., absence of deadlocks). Other ADLs constrain component
composition and run-time interactions so as to enforce the desired properties. ADL-
based tools can then check conformance to rules of interaction and composition.
Other tools can generate monitoring systems able to check at run-time whether the
interaction rules are followed. Preliminary experience with ADLs suggest that
architectural design based on such notations can be beneficial to the development,
validation, maintenance, and reuse of software [Sha96]. For example, analysis at the
architecture level has revealed anomalies and errors in a software integration
framework for distributed simulation applications [All98]; new architecture-based
integration tools have been successful at rapidly generating code for complex
applications [Sha95].

Yet the key issue of constructing a software architecture that meets the elaborated
requirements remains largely open. Very little work has been reported since Parnas’
seminal work on heuristics for identifying components and dependencies among
them [Par79]. In [Mor95], a formal framework is proposed in which correctness-
preserving transformations can be applied to refine abstract architectures into
concrete ones. Refinement patterns are also proposed there which are proved
formally correct once for al and can be reused in matching situations. Bosch and
Molin suggest an informal, iterative process for architecture elaboration based on
successive evaluations and transformations of architectural drafts to meet non-
functional concerns [B0s99]. Gross and Yu show how the NFR goal-oriented
qualitative framework from [Myl92, Chu00] can be used to document design patterns
for selection during the architectural design process [Gro0Ol]. In [Lam00Oa], an
oversimplified procedure is just outlined by which components and dataflow
connectors are derived first from functional requirements and then refined to meet
non-functional goalsthrough other types of refining connectors.

This paper presents some ongoing work on goal-oriented architecture derivation that

goes far beyond our preliminary efforts. We put the following idea
(meta)requirements on our derivation process:

the derivation should be systematic so as to provide active guidance to achitects,
it should be incremental and allow for reasoning on partial models,

it should lead to (at best) provably or (at least) arguably “correct” and “good”
architectures —that is, meeting functional requirements and achieving non-
functional ones,

it should allow different architectural views to be highlighted, e.g., a security
view, afault tolerance view, etc.

At present stage, what we come up with is a systematic, goal-oriented process that
partially intertwines requirements and architecture elaboration and at places allows
for incremental, formal analysis of partial models through animation or checking
against upstream, higher-level goal formulations.



Section 2 introduces some necessary background on goal-oriented model elaboration
[LamO1]; it briefly recalls how software requirements can be incrementally derived
from system goals and how high-level architectural choices are already made during
that process. Section 3 shows how software specifications can be derived from
requirements. The derivation of abstract dataflow architectures from functional
software specifications is discussed in Section 4. The resulting architectural draft is
refined first by imposing architectural styles on parts of it to meet domain-specific
architectural constraints (Section 5). The next, iterative step then consists in refining
this global, style-based architectural draft through local, pattern-directed refinement
of components and connectors so as to meet the non-functional goals that emerged
from the goal elaboration process (Section 6).

Throughout the exposition we will use the Meeting Scheduler benchmark as a
running example [MOD]. The reader may refer to [Fea97] for a full problem
statement.

2 Background

We introduce some basic concepts and terminology before recalling how goal, object,
agent and operation models can be built systematically.

2.1 Goals, agents, objects and operations

A goal is a prescriptive statement of intent about some system (existing or to-be)
whose satisfaction in general requires the cooperation of some of the agents forming
that system. Agents are active components such as humans, devices, legacy software
or software-to-be components that play some role towards goal satisfaction. Some
agents thus define the software whereas the others define its environment; the word
“system” refers to the software under consideration and its environment. Unlike
goals, domain properties are descriptive statements about the environment —e.g.,
physical laws, organizational norms, etc.

Goals may refer to awide variety of prescriptive assertions.

Functional goals refer to services the system is expected to provide. For
example, SatisfactionGoals are functional goals concerned with satisfying agent
reguests; InformationGoals are goals concerned with keeping agents informed
about object states.

Non-functional goals refer to quality of service, development objectives or
architectural constraints.

-quality-of-service goals capture application-specific concerns about safety,
security, usability, performance, interoperability, accuracy of software
information with respect to what it representsin the environment, etc.;

-development goals refer to standard software quality criteria such as
maintainability, reusability, etc.;
-architectural constraints refer to domain-specific features of environment

agents and relationships among them to be taken into account during
architectural design —such as the distribution of human agents, organization



data or physical devicesin the environment.

Goals are organized into AND/OR refinement-abstraction structures where higher-
level goals are in general strategic, coarse-grained and involve multiple agents
whereas lower-level goals are in general technical, fine-grained and involve less
agents [Dar93, Dar96]. In such structures, AND-refinement links relate a goal to a set
of subgoals (called refinement) possibly conjoined with domain properties; this
means that satisfying all subgoals in the refinement is a sufficient condition in the
domain for satisfying the goal. OR-refinement links relate a goal to an alternative set
of refinements; this means that satisfying one of the refinements is a sufficient
condition in the domain for satisfying the goal.

Goal refinement ends up when every subgoal is realizable by some individual agent
assigned to it, that is, expressible in terms of conditions that are monitorable and
controllable by the agent [LetO2a]. A requirement is a realizable goal under
responsibility of an agent in the software-to-be; an expectation is a realizable goal
under responsibility of an agent in the environment (unlike requirements,
expectations cannot be enforced by the software-to-be).

Goals prescribe intended behaviors; they can be formalized in a rea-time linear
temporal logic [Man92, Koy92, Dar93]. For example, one goa for a meeting
scheduling system might assert that the date constraints of people expected to attend
a meeting shall be known to the scheduler within M days after the meeting is
requested:

Goal Achieve [ParticipantsConstraintsKknown]
FormalSpec " m: Meeting, p: Participant
Requested (m) Ulnvited (p, m) U Scheduling (s, m) b &wma Knows (s, p.Constraints)

(Semi-formal keywords such as Achieve, Avoid, Maintain are used for lightweight
reference to goals according to the temporal behavior pattern they prescribe.)

SoftGoal s prescribe preferred behaviors; they are used to select preferred alternatives
in an AND/OR goal refinement graph through qualitative reasoning [Myl92, Chu0Q].
SoftGoals can be refined but arein general hard to formalize.

The state of the system is defined by aggregation of the states of its objects. An
object can be an entity, an association, an event or an agent (active object). Objects
are characterized by attributes and domain properties (invariants). Anobject model is
represented by aUML class diagram.

The agent model captures responsibility links between agents and goal s together with
monitoring/control links between agents and object attributes. The object attributes
monitored and controlled by an agent define itsinterface to other agents[L et02a].

A goal assigned to some agent in the software-to-be is operationalized in functional
services, called operations, to be performed by that agent. An operation is an input-
output relation over objects; operation applications define state transitions. When
specifying an operation, a distinction is made between domain pre/postconditions and
additional pre-, post- and trigger conditions required for achieving some underlying
goal. A pair (domain precondition, domain postcondition) captures the elementary
state transitions defined by operation applications in the domain. A required



precondition for some goal captures a permission to perform the operation when the
condition istrue. A required trigger condition for some goal captures an obligation to
perform the operation when the condition becomes true provided the domain
precondition istrue. A required postcondition defines some additional condition that
any application of the operation must establish to achieve the corresponding goal.

2.2  From system goalsto softwarerequirements

Operational software requirements are derived gradually from the underlying system
goals. The derivation proceeds according to the following steps [LamO01].

Goal modeling: A goal refinement graph is elaborated first by identifying relevant
goals from input material (such as interview transcripts and available documents)
—typically, by looking for intentional keywords in natural language statements and
by asking why and how questions about such statements;

Object modeling: UML classes, attributes and associations are derived
systematically from goal specifications refering to them;

Agent modeling: agents are identified, their monitoring/control capabilities are
elicited from goal formulations, and alternative assignments of goalsto agents are
explored (alternative agent assignments define alternative system proposals and
software/environment boundaries where more or less is automated);

Operationalization: operations and their domain pre- and postconditions are
identified from goal specifications; additional required pre-, post- and trigger
conditions are derived so as to ensure the corresponding goals.
The above steps are ordered by data dependencies and, of course, intertwined. Each
step is guided by heuristics and derivation patterns associated with specific tactics
[Dar96, Let02a, Let02b]. Additional parallel steps of the method handle goal mining
from scenarios [Lam98b], the management of conflicts between goals [Lam98a] and
the management of obstacles to goal satisfaction [Lam00c], respectively.

/ MeetingScheduledEffectively /

L

\

/ MeetingRequestlinitiated // ParticipantsConstraintkKnown / / MeetingPlanned / / MeetingNotified /

/ ConstraintsRequested / / ConstraintsCollected /

/ ConstraintsReceived / /ConstraintsMerged /

Fig. 1 — Portion of a goal refinement graph

Fig. 1 shows a portion of the goal model for our meeting scheduling system that



includes the goal Achieve [ParticipantsConstraintsknown] formalized above. This goal
was formally refined using the formal Refine-by-Milestone pattern twice (see Fig. 2).
The goal Achieve [ConstraintsRequested] is formally operationalized into an operation
RequestConstraintsToParticipants using the formal Bounded-Achieve pattern (see Fig. 3
where S denotes the Since temporal operator over past states [Man92)).

Cb am MP aT

Fig. 2 — Refinement-by-milestone pattern

Operation Op
DomPre @ T
DomPost T
ReqTrig for RootGoal :

@TS-q1(CUDT)

Fig. 3— Bounded-Achieve operationalization pattern

2.3 Ontheinvitableintertwining between requirements and architecture

It has long been recognized that specification and implementation are often
intertwined in practice [Swa82]. More abstractly, problem and solution spaces are
intertwined due to the recursive nature of problem solving —a problem is solved by
specifying sub-problems and solving them. This observation has been remade
recently in the context of requirements and architecture [Nus01].
In our framework, such intertwining appears at places where decisions have to be
made among multiple alternatives being raised.
A goal may be refined into several alternative AND-combinations of subgoals
[Dar96];
An obstacle obstructing a goal may be resolved through several alternative
obstruction resolution tactics [Lam00c];

A conflict among multiple goals may be resolved through several alternative
conflict resolution tactics [Lam98];

A “terminal” goal realizable by multiple agents may be assigned to several
aternative candidate agents [Let02a]. When a software agent is being considered
for assignment, there are alternative choices on the granularity of that agent —



from a fine-grained agent entirely dedicated to that goal to a global, coarse-
grained “software-to-be” agent (see Section 4).

For each type of alternative, decisions have to be made which in the end will produce
different architectures. A specific refinement, resolution or assignment is selected
based on qualitative preferences dictated by positive contributions to high-priority
softgoals [Myl92, Chu00, Lam00a] and/or resolution of other critical obstacles and
conflicts [Lam0Oc, Lam98a]. Such early choices may have a global impact on the
architecture.

Fig. 4 and 5 illustrate the point in the case of alternative refinements and assignments,
respectively.

/ ParticipantsConstraintsKnown/

N

/ ConstraintsKknownBy / / ConstraintsKknownBy /

EmailRequests E-AgendaAccess

Fig. 4 — Alternative goal refinements

/ ConstraintsRequested /

X Meetinglnitiator ConstraintRequestor

Fig. 5 — Alternative agent assignments

The global architecture of a meeting scheduler based on e-mail communication for
getting participants constraints will be different from one based on the participant
electronic agendas. There will be architectural differences between a version where
meeting initiators are taking responsibility for handling constraint requests and a
more automated version where a software component ConstraintRequestor will be
responsible for this. [Lam00a] shows an example where two alternative goal
refinements for a train control system lead to completely different architectures —
from centralized to fully distributed.

3 From softwar e requirementsto softwar e specifications

Requirements are formulated in terms of objects in the real world, in a vocabulary
accessible to stakeholders [Jac95]; they capture required relations between objects in
the environment that are monitored and controlled by the software, respectively
[Par95].

Software specifications are formulated in terms of objects manipulated by the

software, in a vocabulary accessible to programmers; they capture required relations
between input and output software objects.

In our meeting scheduling example, consider the following requirement assignable to



some component of the meeting scheduler software:

Requirement Achieve [ConstraintsRequested]
FormalSpec " m: Meeting, p: Participant:
Requested (m) Ulnvited (p, m) P s ConstrRequested (p)

In this formulation, the associations Requested, Invited and ConstrRequested correspond
to phenomena that are observable in the environment. They need to be mapped to
software input-ouput variables to produce, e.g., the following target software
specification:

" m: MeetingClass, p: ParticipantClass

MeetRequest (m) Up in InviteeList (m) P agrs ConstrReqSent (p)

Software specifications may be derived from reguirements systematically as follows.

1. Trandlate all goals assigned to software agents into the vocabulary of the
software-to-be by introduction of software input-output variables;

2. Map relevant elements of the (domain) object model to their images in the
software’ s object model;

3. Introduce (non-functional) accuracy goals requiring the mapping to be
consistent, that is, the state of software variables and database elements must
accurately reflect the state of the corresponding monitored/controlled objects
they represent [Dar93];

4. Introduce input/output agents to be responsible for such accuracy goas —
typically, sensors, actuators or other environment agents.

For our above example, the accuracy goalswill be

" m: Meeting, m': MeetingClass, p: Participant, p": ParticipantClass
Mapping (m, m’) U Mapping (p, p’) P

MeetRequest (m) U Requested (m)

p'in InviteeList (m") U Invited (p, m)

ConstrReqgSent (p) U ConstrRequested (p)

The first two equivalences will be assigned as expectations, e.g., to the Meetinglnitiator

agent (she has to include p' in the software input variable InviteeList iff that person is

really among those expected to attend the meeting) whereas the third equivalence will
be assigned as expectation, e.g., to the Communicationinfrastructure agent.

Serious system failures are often caused by accuracy goal violations arising from
environment agents not filling their expectations [Jac95, Lam00c]. If Req denotes the
set of requirements assigned to software agents, Exp the set of expectations assigned
to environment agents, Dom the set of domain properties, Soft the set of software
specifications, Acc the set of accuracy goals, and G the set of goals under
consideration, the following satisfaction relations must hold for every requirement
req inReqandgoal g inG:

Soft, Acc, Dom |= req with Soft, Acc, Dom [ false
Req, Exp, Dom |= g with Req, Exp, Dom [t false



4  From softwar e specsto abstract dataflow ar chitectures

From now on all the elaborated requirements and derived software specifications will
be assumed to be non-conflicting as conflicts have been managed upstream in the
requirements engineering process [Lam98d].

A first architectural draft is obtained from data dependencies among the software
agents assigned to functional requirements. These agents become architectural
components statically linked through dataflow connectors; there is no other
“interaction” among the agents. In the transformation, the alternative of fine-grained
components C associated with specific functional goals is preferred so as to address
the non-functional softgoal Maximize [Cohesion (C)].

The procedure for deriving a dataflow architectural draft from our goal, agent and
operation modelsisasfollows.

1. For each functional goal assigned to the software-to-be, define one component
regrouping a software agent dedicated to the goal together with the various
operations operationalizing the goal and performed by the agent. The agent’s
interface is defined by the sets of variables the agent monitors and controls,
respectively; such variables are derived from the goal assertion [Let02a]
reformulated in terms of software variables according to the mapping defined in
the previous step (see Section 3).

2. For each pair of componentsC1 and C2, derive a dataflow connector from C1 to
C2 labelled with variable d iff d is among C1's controlled variables and C2's
monitored variables:

DataFlow (d, C1,C2) U Controls (C1, d) U Monitors (C2, d)
Fig. 6 shows a partial result of step 1 for a portion of the goal graph in Fig.1; Fig. 7
shows the dataflow architectural draft resulting from step 2.

/ MeetingScheduledEffectively /

/ MeetingRequestlnitiated / / ParticipantsConstraintKnown/ / MeetingPlanned / {MeetingNotiﬁed /

ConstraintsRequested/ /ConstraintsCoIIected/

O
ConstraintRequestol

/ ConstraintsReceived / / ConstraintsMerged /
Monitors MeetRequest [InvList]

Controls ConstrRegSent [InvList] O
ConstraintsMerger

S~o X Participant
= Monitors ConstrRegSent [InvList]7 Monitors ConstrRegSent, ParticipantConstr

ControlsParticipantConstr - -~~~ 47 Controls CongtrTable

~

Fig. 6 — Assigned agents, their interfaces and data dependencies



The arrows in Fig. 7 denote dataflow connectors, they are labelled with
corresponding data. Note that the ConstraintRequestor agent’s interface in Fig. 6 was
derived from the monitored and controlled conditions in the functional spec of the
goal ConstraintRequested given in Section 3 and assigned to that agent.

F-Meetinglnitiator

MeetRequest
[InvList]

=X Participant

Notif [d, loc,
ConstrTable]

MeetingNotifier

ConstrRegSent
[InvLj

|ConstraintRequestor| ParticipantConst
articipantConstr
Plan[d, loc,

ConstrReqSen\
[invLis] ConstrTable]
| ConstraintsMerger|4> MeetingPlanner
ConstrTable
[InvList]

Fig. 7 — Derived dataflow architecture

In the dataflow architecture derived, each component is specified by the specification
of the goal assigned to it together with the pre/trigger/post-conditions of the various
operations operationalizing that goal.

When these specifications are formalized, our FAUST tools on top of the GRAIL
environment [Dar98] can check at this abstract architecture level that the components
together achieve higher-level goals from the goal graph, with counter-example
scenarios being generated if this is not the case (we currently use bounded SAT
solvers to do this). It can also generate state machines from the pre/trigger/post-
condition specifications and animate them to vizualize whether the components
behave as expected.

5 Style-based architecture refinement to meet architectural
constraints

The initial abstract architecture obtained in Section 4 defines our refinement space.
Before exploring alternative ways of refining components and connectors locally, this
space may need to be globally constrained by architectural requirements. The latter
typically arise from domain-specific features of environment agents or relationships
among them, e.g., the distribution of human agents, organizational data or physical
devicesthe software is controlling (see Section 2.1).

Our proposal here is to refine the dataflow architecture by imposing “suitable”
architectural styles, that is, styles whose underlying (soft)goals match the
architectural constraints. This requires such styles to be documented by applicability
conditions (such as domain properties and the softgoals they are addressing [Gro01])
and effect conditions on the resulting architecture.

Thisstep is currently fairly qualitative but can be made systematic through the use of
transformation rules.

Fig. 8 shows atransformation rule for the introduction of the event-based style.



- Distributed (EventProducer,
/AvoidKknows (G, Q)] / m
z

d1

d2

Fig. 8 — Introducing an event-based architectural style

The “home” notation is used there to denote a domain property. Standard arrows still
denote dataflow connectors; a grey dashed arrow labelled by ?d means that the
source component registers interest to the target component for events corresponding
to productions of d; a grey arrow labelled by 'd means that the source component
notifies the interested target component of events corresponding to productions of d.
The latter events carry corresponding value for d.

Fig. 9 outlines a portion of the result of applying the style-based transformation in
Fig. 8 to the abstract dataflow architecturein Fig. 7.

%-Meetinglnitiator

MeetRequest
[InvList]

FrontEndMtl | e

X Participant

Constr RegSent
[InvList]

Notif [d, loc,

CongtrTable]
ectReq

N
? M:eetﬁa/

ConstraintRequestor
| | Const/r/ ?

/
/

| ConstraintsMerger| | MeetingPlanner |

Fig. 9 — Style-based architecture to meet architectural constraints



Note that there are still data flowing through the gray event notification arrows as the
events carry the corresponding data among their attributes. There is in fact a proof
obligation that refinements must preserve the properties of more abstract connectors
and components. In this case, an abstract dataflow channel between two components
must be preserved either directly or indirectly through intermediate components (e.g.,
the EventBroker here).

6 Pattern-based architecture refinement to achieve non-
functional requirements

Once an abstract dataflow architecture has been refined to meet architectural
constraints it needs to be refined further in order to achieve the other types of non-
functional goals, that is, quality-of-service goals and development goals. For
example, the event broker in Fig. 9 should be split up into several brokers handling
different kinds of eventsif the development goal Maximize[Cohesion(EventBroker)] is
to be achieved. Thisisthe next step of our derivation process.

Many quality-of-service goals impose constraints on component interaction. For
example, security goals restrict interactions to limit information flows along
channels; accuracy goals impose interactions to maintain a consistent state between
related objects; usability requirements put constraints on information presentation
and dialogs. Development goals such as Minimize[Coupling(C1,C2)] or
InformationHidden(C1,C2) also impose specific constraints on the way the
corresponding components may interact. On another hand, some non-functional goals
impose constraints on single components only, e.g., Maximize[Cohesion(C)].
The next refinement step works on a more local basis than the previous one to
“inject” quality-of-service and development goals within pairs of components
(connector refinement) or single components (component refinement). The procedure
isasfollows. (We use NFG as an abbreviation for “ quality-of-service or devel opment
god”.)
1. For each terminal NFG in the goal refinement graph G,

identify all specific connectors and components G may constrain;

instantiate G to those connectors and components (if necessary).

2. For each NFG-constrained connector or component, refine it to meet the
instantiated NFGs associated with it; use architectural refinement patterns to
drive the refinement asfollows:

access a refinement pattern catalog where each pattern is a rewrite rule
consisting of a source architectural fragment, a target architectural fragment
refining that source, and a set of NFG goals achieved by the target,

select patterns whose source and NFG goals match the connector/components
and the instantiated NFGs associated with them, respectively;

if there are several matching patterns, select a most preferred one based on
NFG prioritization and tradeoff analysis (qualitative reasoning may be used
to support this [Gro01]);



apply the selected matching refinement pattern instantiated to the NFG-
constrained connector or component to produce a new architectural fragment
replacing the connector and connected components.

As a first example, consider the NoReadUpNoWriteDown pattern for confidentiality
goals based on the Bell-LaPadula multi-level security model [Rie99]. Fig. 10 shows a
formal representation of it. Note that the required postcondition of the refining
component SecurityFilter is derived formally from the confidentiality goal specification
using our formal operationalization patterns [LetO0b].

Security

Q
Confidentiality
O
/-] / Avoid [ClassifiedDataFlowing (C1, C2)] /
Cl SecurityFilter
&l I B

ReqgPost for Avoid [ClassifiedDataFlowing] :
d’.Label £ C2.Clearance

" d: Data
Flows (d, C1,C2) b @ (d.Label > C2.Clearance)

Fig. 10 — TheNoReadUpNoWriteDown pattern for confidentiality goals

Let usnow illustrate a pattern-based architectural refinement of the architectural draft
for our meeting scheduling software obtained in Fig. 9.

Step 1 above resultsin localizing the impact of the confidentiality goal
Avoid [ParticipantConstraintsknownToNonlnitiatorParticipants]

from the full goal graph on the dataflow connector between the MeetingPlanner
component and the MeetingNotifier component via the EventBroker component (see Figs.
7 and 9). In step 2 the NoReadUpNoWriteDown pattern is seen to be matching by
considering two disclosure levels: one for meeting initiators, the other for normal
participants.

The application of the intantiated pattern results in the introduction of a new
component between the EventBroker and the MeetingNotifier:

ParticipantConstraintsFilter

that will ensure that participants constraints are filtered for normal participants from
the data PlanningDetails attached to the event Notif transmitted from the MeetingPlanner
to the MeetingNotifier via the EventBroker.

Fig. 11 and Fig. 12 suggest a sample of architectural patterns for quality-of-service
and development goals, respectively. For our meeting scheduling software, the first
pattern in Fig. 12 might be used to introduce a ConstraintsTable abstract data type
component for use by the ConstraintsMerger and Planner components.
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Fig. 11 — Architectural refinement patterns for quality-of-service goals
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Fig. 12 — Architectural refinement patterns for development goals



7 Conclusion

We presented a systematic, incremental approach to deriving software architecture
from system goals. The approach is grounded on the KAOS goal-oriented method for
reguirements engineering with the intent of exporting the virtues of goal orientation
for constructive guidance of software architects in their design task. It mixes
qualitative and formal reasoning towards the attainment of software architectures that
meet both functional and non-functional requirements.

The architectural refinement of connectors and components is explicitly linked to the
non-functional goals the refinement aims to achieve. This means that architectural
views according to corresponding non-functional features (e.g., Security views or
fault tolerance views) are easily extracted through query systems such as the one
provided by the GRAIL environment [Dar98].

This approach leaves alot of questions open for further investigation though.

Up to what extent can the qualitative reasoning involved in architectural refinement
be made more formal is an issue to be clarified if more sophisticated tool support is
to be provided during the derivation process. In particular, the current style-based
way of introducing architectural constraints leaves a lot of room for further
improvement.

The proposed approach is purely refinement-based. This is clearly insufficient in a
number of situations where architectural features need to be propagated bottom-up,
e.g., from middleware requirements. A complementary, dual approach based on
abstraction patterns might be worth investigating to address this problem.

Inits current form, our approach does not reach the point where interaction protocols
are detailed precisely. Our intent is to integrate previous, good-old-time results to
formally derive such protocols, in particular through fixpoint computation of
deadlock-free and starvation-free synchronizing schemes that achieve the goals
[Lam79].
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