
Goal-Oriented Requirements Enginering:
A Roundtrip from Research to Practice

Axel van Lamsweerde
Université catholique de Louvain

B-1348 Louvain-la-Neuve (Belgium)

avl@info.ucl.ac.be

Abstract

The software industry is more than ever facing the
challenge of delivering WYGIWYW software (What You
Get Is What You Want). A well-structured document
specifying adequate, complete, consistent, precise, and
measurable requirements is a critical prerequisite for
such software. Goals have been recognized to be among
the driving forces for requirements elicitation,
elaboration, organization, analysis, negotiation,
documentation, and evolution.
Growing experience with goal-oriented requirements
engineering suggests synergistic links between research
in this area and good practice. We discuss one journey
along this road from influencing ideas and research
results to tool developments to good practice in industrial
projects. On the way, we discuss some lessons learnt,
obstacles to technonogy transfer, and challenges for
better requirements engineering research and practice.

1. Introduction
Goal-oriented requirements engineering (GORE) is con-
cerned with the use of goals for eliciting, elaborating,
structuring, specifying, analyzing, negotiating, document-
ing, and modifying requirements [14]. Such use is based
on a multi-view model showing how goals, objects,
agents, scenarios, operations, and domain properties are
inter-related in the system-as-is and the system-to-be.
Goals are prescriptive statements of intent whose
satisfaction requires the cooperation of agents (or active
components) in the software and its environment. Goals
may be organized in AND/OR structures that capture how
they are being refined or abstracted. Such structures form
the skeleton of goal models; goals there range from high-
level, strategic objectives to fine-grained, technical
prescriptions that can be assigned as responsibilities of
single agents. The latter may be requirements on the
software-to-be or expectations on its environment.

Goals may refer to functional concerns or quality
attributes. A functional goal typically captures some
maximal set of desired scenarios; it can be established in a
clear-cut sense. In a GORE process, functional goals are
used to build operational models such as use cases, state
machine models, and the like. A quality goal typically
captures some preferred behaviors among those captured
by functional goals; in general it cannot be established in
a clear-cut sense. In a GORE process, quality goals are
used to compare alternative options and select preferred
ones, and to impose further constraints on goal
operationalizations.
Goals, agents, and scenarios are thus intrinsically inter-
related; they form a synergistic triangle on which RE
activities may be articulated.
GORE processes are in general a mix of bottom-up and
top-down sub-processes as goal models are built by
asking WHY and HOW questions about source material
obtained from interviews, available documents, etc.

2. GORE Research at a Glance

Seminal RE papers already put WHY concerns at the very
heart of the RE process [31]; they were thereby echoing
earlier system engineering methodologies such as, e.g.,
participative analysis [24]. Yue was probably the first to
argue that the integration of explicit goal representations
in requirements models provides criteria for requirements
pertinence and completeness [32]. While the AND/OR
structuring of goals, their operationalization, and their
association with agents were fairly familiar notions in
artificial intelligence [26, 23], Feather was probably the
first to provide a precise semantic foundation for goal
responsibility assignment in multi-agent systems [7].
Two complementary frameworks emerged for goal-based
RE: a formal one [5] and a qualitative one [25]. The
former was more focussed on goal satisfaction and the
systematic building of complete, conflict-free goal-based

Keynote paper, Proc. RE’04: 12th IEEE International Requirements Engineering Conference, Kyoto, September 2004.

requirements models; the latter was more focussed on
quality goal satisficing and the qualitative assessment of
alternative goal-based requirements models.
A lot of research was then undertaken in the goal-agent-
scenario triangle, e.g., to explicitly model agent
dependencies in goal satisficing [33], derive goal
refinements that are provably complete [6] and realizable
by agents [18], derive goal operationalizations [19],
identify goals from scenarios [12, 30], handle obstacles to
goal satisfaction [28, 1, 13], manage conflicting goals
[11], monitor goal violation scenarios at run time [8],
negotiate goal-based requirements [3], reuse goal
taxonomies and specifications [1, 22], model and reason
about security requirements [2, 21, 16], reason about
partal goal satisfaction [20], and assess or derive software
architectures from goal-based requirements [9, 15].

3. How about GORE Practice ?

Standards such as IEEE Std-830 and books by
practitioners such as [4] suggest that goal orientation is
not wishful thinking. In fact, GORE projects have been
undertaken in various industrial settings.

Domain System
Telecom Phone service through TV cable
Air traffic control Inter-controller communication support

(preliminary study)
Air traffic control Conflict handling between ground and

on board collision avoidance systems
(preliminary study)

Aerospace Design of test suites for rocket launch
Steel industry Integrated production management
Automotive industry Production scheduling; inter-facility

order processing
Publishing Copyright tracking & management
Press Newspaper back office system
Food industry Supermarket discount management
Pharmaceutics Drug dispatching & tracking
Pharmaceutics E-learning service for salesmen
Health care Patient clinical summary
Health care Hospital emergency service support
Natural language pocessing Web page translator

Table 1: A sample of KAOS projects at CEDITI

In particular, the KAOS method [14, 17] has been applied
in about 20 industrial projects at CEDITI (a UCL
university spin-off), in a wide variety of domains, to
engineer requirements for fairly different types of
systems. The method has also been used to build goal-
oriented models for various strategic planning and
business process reengineering projects, to reengineer
unintelligible requirements documents, and to generate
calls for tenders and tender evaluation forms in a large
international organization.

Table 1 illustrates the diversity of domains and systems
for which KAOS has been used. Table 2 gives an idea of
the size of the goal-based requirements models that were
constructed in some of these projects (referred to by
letters for confidentiality reasons).

Concept type A B C D E F G
Goal 370 56 141 341 640 171 151

Requirement 160 50 164 256 440 311 108
Agent 80 24 32 8 315 116 21
Entity 240 123 106 102 215 166 127

Association 90 71 48 13 77 126 5
Operation NA 59 42 NA 86 36 80
Table 2: Number of modelled concepts for systems A-G

Those GORE projects had two main deliverables:
• the requirements model composed of the goal, agent,

object and operation models, in HTML format,
• a model-driven requirements document, in some

prescribed format (e.g., IEEE Std-830 standard).
The size of the requirements document was typically
ranging from 100 to 300 pages.
Medium-size projects typically range from 3 to 8 person-
months, with 1-2 consultants working over a period of 2-5
months. Table 3 shows a typical distribution of efforts for
such projects by RE activity type. Variations on those
figures depend on domain expertise, analyst profile, and
how well-defined the problem to be solved is. Based on
Table 3 we use to estimate the effort required for model
building as twice the effort required for stakeholder
interviews.

Interviews 16 %
Transcripts, summaries, and elicitation from
additional sources

27 %

Modeling goals, objects, agents and operations 33 %
Model validation with stakeholders, negotiation of
alternatives, revision and documentation

9 %

Others 15%
Table 3: Workload distribution by GORE activity type

4. The Need for Effective Tool Support
Several of the research efforts mentioned in Section 2 led
to research tool prototypes. For industrial GORE projects,
professional tools are required that scale up to the size of
project deliverables and can be used by non-experts.
In our case, the successful completion of GORE projects
would not have been possible without a fully reworked,
professional version of the GRAIL research prototype. The
Objectiver toolset provides a GORE model editor, a model
browser, a model analyzer, and a requirements document
generator [27]. The model editor maintains multiple

consistent views of the goal, obstacle, object, agent and
operation sub-models through several components: a
diagram editor, a textual annotator, an explorer managing
hierarchical views with drag-and-drop facilities, and a text
editor that allows foreign texts (such as interview
transcripts or other source material) to be integrated,
edited and hyperlinked to model elements. The model
browser is typically used during validation meetings; it
allows stakeholders to navigate through complex models
by clicking on diagrams/annotations, following
hyperlinks, zooming in and out, etc. The model analyzer
allows the analyst to issue predefined or specific queries
about the model for completeness/consistency checking;
to extract model fragments for sub-model visualization,
use case generation, requirements document generation,
fragment reuse; etc. The document generator produces a
requirements document in RTF or PDF format whose
section-subsection structure is generated from the goal
refinement graph and from templates reflecting company-
specific standards. This structure is filled in with a
glossary of terms generated from the object model, textual
annotations retrieved from the model, and figures selected
by the user through drag-and-drop from the goal, object,
agent and operation sub-models.
The Objectiver toolset has been recently enriched with
formal analysis tools that allow partial GORE model
fragments to be animated and model checked [29]. These
tools are being experimented on a few mission-critical
projects; they assume that goals and operationalizations
are formalized, when and where needed, in a real-time
linear temporal logic [13].

5. Lessons Learnt From a GORE Research-
Practice Roundrip

Our experience has convinced us that RE research, tool
development, and practice should be highly intertwined.
In most of the projects we were involved so far, the
customers agreed that the requirements document
produced was incomparably better, thanks to the
technology being used, than what they had seen before.
Conversely, the techniques, heuristics, and tools resulting
from research were significantly refined, simplified and
polished over the years thanks to project feedback.
A rich, multi-view model clearly appeared to be the core
RE artifact on which elicitation, specification, analysis,
negotiation, documentation and evolution is articulated.
This proved to be the case both in projects being
developed in-house and in projects being outsourced. The
model must be comprehensible to stakeholders and
decision makers; it has therefore to be made of the right
abstractions, supplemented with good concrete examples.

According to our experience, the goal-agent-scenario
triangle proved to be really effective. In particular, we
repeatedly observed that a well-structured goal model
provides an ideal communication interface between
business managers and software engineers. Decision
makers looked at goal models carefully, paying special
attention to alternative goal refinements,
operationalizations and responsibility assignments; they
did not care too much about UML object models;
annotated goal diagrams were found to be more helpful
for focussed brainstorming, validation, negotiation, and
decision making than fairly vague use case diagrams.
Goal models turned out to be quite helpful in producing
more robust requirements, through obstacle analysis [13],
and in identifying and resolving conflicting concerns [11].
While essential in mission-critical projects, goal-based
anticipation of what could go wrong was also effective in
many other projects to discover missing requirements.
Another appreciated feature of our GORE models was
their built-in vertical traceability – from strategic business
objectives to technical requirements to precise
specifications to architectural design choices. The ability
to capture multiple system versions within the same
model through multiple paths of the goal AND/OR graph
(e.g., the system as-is, to-be, and likely-to-be-next) was
felt very helpful in some cases.
The diversity of RE projects in type, size, and focus call
for highly flexible technologies. We felt that a “multi-
button” method and tool that by default supports graphical
and textual specifications, plus formal specifications only
when and where needed for incremental analysis of
critical model fragments, is a promising step in that
direction. The majority of projects did dot involve formal
analysis; even then, however, the informal use of our
formal refinement patterns [6, 18] proved to be very
helpful in guiding the goal refinement/abstraction process,
pointing out missing goals, and exploring overlooked
alternatives.
In the end, what bothers customers the most is the quality
of project deliverables. The model-driven requirements
document generated with our tool was perceived as the
main success indicator in many projects.
Building “good” GORE models is critical and far from
trivial. More support is needed for guiding non-skilled
analysts in the elaboration of adequate, consistent and
complete models bottom-up (from concrete scenarios and
examples) and top-down (from abstract concerns); such
support might be provided through additional modeling
heuristics, patterns, and dedicated analysis tools allowing
the analyst to “play” with model fragments.
Another significant problem raised in several projects was
the lack of simple yet precise reasoning schemes for

coping with goals that can be satisfied only partially – in
X% of the cases, say.

6. Challenges
Wide variations in software development practices have
been observed [10]. The road from best practice to normal
practice is long and has many obstacles. There are
numerous reasons for this, e.g., progress in RE activities
are felt to be harder to measure than other software
lifecycle activities; the benefits of using RE technologies
are felt to be hard to measure as well; investment in such
technologies need to be made without guarantee of
successful project development (if any); requirements
documents are generally perceived as big, complex,
outdated, and too far away from the executable products
customers are paying for; requirements quality does not
tell much about the quality of the executable product.
The experience briefly outlined in this paper may provide
some hope that such obstacles can be overcome on a
larger scale in the future.

Acknowledgement. Thanks to the many agents involved in the
KAOS project at UCL, CEDITI and CETIC as researchers,
consultants or tool developers, in particular, D. Ballant, C.
Belpaire, S. Brohez, R. Darimont, R. De Landtsheer, E. Delor,
D. Genard, D. Janssens, E. Letier, P. Massonet, J.F. Molderez,
C. Nève, C. Ponsard, A. Rifaut, J.L. Roussel, P. Stadnik, H.
Tran Van, A. Vanbrabant, and L. Willemet. Warm thanks are
especially due to Robert Darimont for providing project figures.

References
[1] A.I. Anton & C. Potts, “The Use of Goals to Surface Requirements
for Evolving Systems”, Proc. ICSE-98: 20th Intl Conf. on Software
Enginering , Kyoto, April 1998.
[2] A. Anton, J. Earp and A. Reese, “Analyzing Website Privacy
Requirements Using a Privacy Goal Taxonomy”, Proc. RE’02 – Intl.
Requirements Engineering Conf., Essen, Sept. 2002.
[3] B. W. Boehm, P. Bose, E. Horowitz, & M. J. Lee, “Soft ware
Requirements Negotiation and Renegotiation Aids: A Theory-W Based
Spiral Approach”, Proc. ICSE-17: 17th Intl. Conf. on Software
Engineering, Seattle, 1995.
[4] A. Cockburn, Writing Effective Use Cases. Addison-Wesley, 2001.
[5] A. Dardenne, A. van Lamsweerde and S. Fickas, “Goal-Directed
Requirements Acquisition”, Science of Computer Programming, Vol.
20, 1993, 3-50.
[6] R. Darimont & A. van Lamsweerde, “Formal Refinement Patterns
for Goal-Driven Requirements Elaboration”, Proc. FSE’4: 4th ACM
Symp. on Foundations of Software Engineering, Oct. 1996.
[7] M. Feather, “Language Support for the Specification and
Development of Composite Systems”, ACM Trans. on Pro gramming
Languages and Systems 9(2), Apr. 87, 198-234.
[8] M. Feather, S. Fickas, A. van Lamsweerde & C. Ponsard,
“Reconciling System Requirements and Runtime Behaviour”, Proc.
IWSSD’98 - 9th Intl. Workshop on Software Specification and Design,
Isobe, IEEE CS Press, April 1998.
[9] D. Gross & E. Yu, “From Non-Functional Requirements to Design
through Patterns”, Requirements Engineering Jl. Vol. 6, 2001, 18-36.

[10] C. Jones, “Variations in Software Development Practices”, IEEE
Software, Dec. 2003.
[11] A. van Lamsweerde, R. Darimont and E. Letier, “Managing Con-
flicts in Goal-Driven Requirements Engineering”, IEEE Trans. on Sof-
ware. Engineering , Nov. 1998.
[12] A. van Lamsweerde & L. Willemet, “Inferring Declarative
Requirements Specifications from Operational Scenarios”, IEEE Trans.
on Sofware. Engineering , Dec. 1998.
[13] A. van Lamsweerde & E. Letier, “Handling Obstacles in Goal-
Oriented Requirements Engineering”, IEEE Transactions on Software
Engineering, Oct. 2000.
[14] A. van Lamsweerde , “Goal-Oriented Requirements Engineering: A
Guided Tour”, Proc. RE’01: 5th Intl. Symp. Req. Eng., Aug. 2001.
[15] A. van Lamsweerde, “From System Goals to Software
Architecture”, in Formal Methods for Software Architectures, M.
Bernardo & P. Inverardi (eds.), LNCS 2804, Springer-Verlag, 2003.
[16] A. van Lamsweerde, “Elaborating Security Requirements by
Construction of Intentional Anti-Models”, Proc. ICSE’04: 26th Intl.
Conf. on Software Engineering, May 2004.
[17] A. van Lamsweerde, Goal-Oriented Requirements Engineering:
From System Objectives to UML Models to Precise Software
Specifications. Wiley, 2005.
[18] E. Letier & A. van Lamsweerde, “Agent-Based Tactics for Goal-
Oriented Requirements Elaboration”, Proc. ICSE’02: 24th Intl. Conf. on
Software Engineering , May 2002.
[19] E. Letier & A. van Lamsweerde, “Deriving Operational Software
Specifications from System Goals”, Proc. FSE’10: 10th ACM Symp. on
the Foundations of Software Engineering, Charleston, Nov. 2002.
[20] E. Letier & A. van Lamsweerde, “Reasoning about Partial Goal
Satisfaction for Requirements and Design Engineering”, Proc. FSE’12:
12th ACM Symp. on the Foundations of Software Eng. , Nov. 2004.
[21] L. Liu, E. Yu and J. Mylopoulos, “Security and Privacy
Requirements Analysis within a Social Setting”, Proc. RE’03: Intl.
Requirements Engineering Conf., Sept. 2003.
[22] P. Massonet and A. van Lamsweerde, “Analogical Reuse of
Requirements Frameworks”, Proc. RE-97: 3rd Int. Symp. on
Requirements Engineering , Annapolis, 1997, 26-37.
[23] J. Mostow, “A Problem Solver for Making Advice Operational”,
Proc. AAAI-83, Morgan Kaufman, 1983, 279-283.
[24] E. Munford, “Participative Systems Design: Structure and Method”,
Systems, Objectives, Solutions, Vol. 1, North-Holland, 1981, 5-19.
[25] Mylopoulos, J., Chung, L., Nixon, B., “Representing and Using
Nonfunctional Requirements: A Process-Oriented Approach”, IEEE
Trans. on Sofware. Engineering, Vol. 18 No. 6, June 1992.
[26] N.J. Nilsson, Problem-Solving Methods in Artificial Intelligence,
McGraw-Hill, 1971.
[27] http://www.objectiver.com.
[28] C. Potts, “Using Schematic Scenarios to Understand User Needs”,
Proc. DIS’95 - ACM Symp. Designing Interactive Systems: Processes,
Practices and Techniques, Univ. Michigan, Aug. 1995.
[29] A. Rifaut et al, “FAUST: Formal Analysis of Goal-Oriented
Requirements Using Specification Tools”, Proc. RE’03, Sept. 2003.
[30] C. Rolland, C. Souveyet & C. Ben Achour, “Guiding Goal Mod-
eling Using Scenarios”, IEEE Trans. Sofware Eng. , Dec. 1998.
[31] D.T. Ross, K.E. Schoman, “Structured Analysis for Requirements
Definition”, IEEE Transactions on Software Eng., Vol. 3, No. 1, 1977.
[32] K. Yue, “What Does It Mean to Say that a Specification is Com-
plete?”, Proc. IWSSD-4: 4th Intl. Workshop on Software Specification &
Design, IEEE, Monterey, 1987.
[33] E.S.K. Yu, "Modelling Organizations for Information Systems
Requirements Engineering", Proc. RE'93: 1st Intl Symp. on Require-
ments Engineering , IEEE, 1993.

