Building For mal Requirements Models
for Reliable Software'

Axel van Lamsweerde

Université catholique de Louvain, Département d’ Ingénierie Informatique
B-1348 Louvain-la-Neuve (Belgium)
avl@info.ucl.ac.be

Abstract. Requirements engineering (RE) is concerned with the elicitation of the
goals to be achieved by the system envisioned, the operationaization of such
goals into specifications of services and constraints, and the assignment of
responsibilities for the resulting requirements to agents such as humans, devices,
and software. Getting high-quality requirements is difficult and critical. Recent
surveys have confirmed the growing recognition of RE as an area of primary
concern in software engineering research and practice.

The paper first briefly introduces RE by discussing its main motivations,
objectives, activities, and chalenges. The role of rich models as a common
interface to al RE processes is emphasized. We review various techniques
available to date for system modeling, from semi-formal to formal, and discuss
their relative strengths and weaknesses when applied during the RE stage of the
software lifecycle.

The paper then discusses some recent efforts to overcome such problems through
RE-specific techniques for goal-oriented elaboration of requirements,
multiparadigm specification, the integration of non-functional requirements, the
anticipation of abnormal agent behaviors, and the management of conflicting
requirements.

1 Introduction

The requirements problem is among the oldest in software engineering. An early
empirical study over a variety of software projects revealed that inadequate,
inconsistent, incomplete, or ambiguous requirements are numerous and have a critical
impact on the quality of the resulting software [Bel76]. Late correction of
requirements errors was observed to be incredibly expensive [Boe81]. A consensus
has been growing that engineering high-quality requirements is difficult; as Brooks
noted in his landmark paper on the essence and accidents of software engineering,
“the hardest single part of building a software system is deciding precisely what to
build” [Bro87].

In spite of such early recognition, the requirements problem is still with us —
more than ever. A recent survey over 8000 projects in 350 US companies showed

! Invited Paper, appeared in Reliable Software Technologies, Ada-Europe 2001,
Springer-Verlag Lecture Notes in Computer Science, LNCS 2043, May 2001.

that only 16% of them were considered to be successful; 33% of them failed while
51% were in the space between, providing only partial functionalties, with major cost
overruns and late deliveries. [Stad5]; when asked about the main reasons for this,
50% of the project managers mentioned poor requirements as the major source of
failure. An independent survey of 3800 European organizations in 17 countries
confirmed this; when asked where their main software problems are, more than half
of the managers mentioned requirements specification and requirements management
in first position [ESI96]. The problem gets even more serious in areas where
reliability is a key concern. Many accidents in the safety-critical systems literature
have been attributed to poor requirements engineering [Lev95s].

Software requirements should thus be engineered with great care and precision.
Methods should therefore be used to elicit them in a systematic way, organize themin
a coherent structure, and check them against desired qualities such as compl eteness,
consistency, and adequacy with respect to the real needs.

In spite of much recent interest in RE, the current state of the art in RE methods
isdtill fairly limited [Lam2Ka]. There are many reasons for this, notably,

e thebroad scope and inherent complexity of the RE process,

e some frequent misunderstanding of what the basic notions are really about
(such as “requirements’, “consistency”, or “completeness’),

e thelack of abstraction of most software modeling techniques when used for
engineering requirements,

e the lack of support for reasoning about the software-to-be and its
environment taken together,

e the natural propensity to invent new notations and a posteriori checking
techniques rather than constructive approaches,

e the conflicting concerns of formality (for analyzability) and simplicity (for
usability).

This paper elaborates on some of the issues raised in this list. Section 2 introduces
the scope and concerns of RE; we discuss the role of “rich” models as a common
interface to the multiple activities involved in the RE process. Section 3 briefly
reviews the main software modeling techniques available to date, from semi-formal
to formal; we argue that these techniques while appropriate for the later stages of
software design are not the ones needed in the context of engineering regquirements.
The second part of the paper then outlines an approach aimed at supporting the
elaboration, structuring, and analysis of requirements models [Dar93, Lam98a,
Lam2Kc]. The approach combines a goal-oriented method for deriving requirements
and responsibility assignments from system objectives (Section 4), a systematic
technique for generating exceptional behaviors to be handled in order to produce
more complete and realistic requirements (Section 5), and a systematic technique for
detecting and resolving conflicts among requirements as they usually arise from
multiple viewpoints among the stakehol ders involved (Section 6).

2 What IsRE Really About?

The RE process addresses three kinds of intertwined issues.

e WHY issues. The goals for a new system need to be identified, analyzed, and
refined. Such goals are usually obtained by analyzing problems with the current
situation, identifying new opportunities, exploring scenarios of interaction, and
so on. Beside functional goals (e.g., satisfaction of requests, information of the
state of affairs) there are many non-functional ones (e.g., safety, security,
performance, evolvability, etc.). The identification and refinement of such goals
usually makes heavy use of domain-specific knowledge.

e WHAT issues: The requirements operationalizing the various goals identified
need to be defined precisely and related to each other; in paralel, the
assumptions made in the operationalization process need to be made explicit and
documented. Beside functional requirements about services to be provided there
is awide spectrum of non-functional requirements about quality of service.

e WHO issues: The requirements need to be assigned as contractual obligations
among the various agents forming the composite system-to-be. These include the
software to be developed, human agents, sensors/actuators, existing software,
etc. The boundary between the software-to-be and its environment results from
this distribution of responsibilities; different agent assignments define different
system proposals.

Requirements engineering is thus by no means limited to WHAT issues as often

suggested in the literature on software specifications.

In view of some confusions being frequently made, it is also worth clarifying
what requirements are really about.

A first important distinction must be made between requirements and domain
properties [Jac95, Par95]. Physical laws, organizational policies, regulations, or
definitions of objects or operations in the environment are not requirements. For
example, the precondition that the doors must be closed for an operation OpenDoors to
be applied in a train control system is a domain property, not a requirement; on
another hand, a precondition requiring that the train be at some station is a
reguirement on that same operation in order to achieve the goal of safe transportation.

A second important distinction must be made between requirements and software
specifications. Requirements are formulated in terms of objects in the real world, in a
vocabulary accessible to stakeholders [Jac95]; they capture required relations
between objects in the environment that are monitored and controlled by the
software, respectively [Par95]. Software specifications are formulated in terms of
objects manipulated by the software, in avocabulary accessible to programmers; they
capture required relations between input and output software objects. Accuracy goals
are non-functional goals at the boundary between the software and the environment
that require the state of input/output software objects to accurately reflect the state of
the corresponding monitored/controlled objects they represent [Myl92, Dar93]. In our
train example, there should be an accuracy goa stating that the (physical) doors are
open iff the corresponding Doors.State software variable has the value ‘open’.

A third distinction has to be made between requirements and assumptions.
Although they are both optative properties, requirements are to be enforced by the
software whereas assumptions can be enforced by agents in the environment only
[Lam98a]. For example, the software can enforce that trains be at station when doors
get open, but cannot enforce that passengers get in.

If R denotes the set of requirements, As the set of assumptions, D the set of
domain properties, Sthe set of software specifications, Ac the set of accuracy goals,
and G the set of goals under consideration, the following satisfaction relations must
hold:

S, Ac, D =R withS, Ac, D [+ false
R,As,D|=G withR, As, D |& false

The reasons why RE is such a complex step of the software lifecycle should now
appear in this overall setting.

e Thescope of RE isfairly broad. It addresses two systems —the system as it is and
the system as it will be. It includes the software to be developed but also for the
environment in which the software will operate. The latter may embody complex
organizational policies or physical phenomena that need to be taken into account.
The scope also covers a whole range of concerns and descriptions, from very
high-level objectives to low-level constraints and from the initially vague to the
eventually precise, sometimes formal.

e The RE process is composed of multiple intertwined subprocesses such as
domain analysis, stakeholder analysis, €licitation of goals and scenarios,
exploration of alternatives, risk analysis, negotiation, documentation of choices,
specification, validation and verification, and change management.

o Usualy there are many different parties involved which do not necessarily share
the same objectives and background —clients, domain experts, managers,
analysts, developers, etc.

e The large number and diversity of raised concerns inevitably leads to conflicts
that need to be detected and resolved appropriately. In our train control example,
the goal of safe transportation requires trains not to be too close to each other
which conflicts with the goal of serving more passengers. In an electronic
payment system, anonymity and accountability are conflicting goals, security
through passwords conflicts with usability, and so on. Requirements engineers
live in a world where conflicts are the rule, not the exception; conflict
management is a driving force of the RE process.

e There are many other types of errors and deficiencies a requirements
specification can contain beside conflicts and inconsistencies; some of them may
be critical, such as incompleteness, inadequacies, or ambiguities; others, such as
noises, overspecifications, forward references, or wishful thinking, are generally
less severe but hamper understandability and generate new problems [Mey85].
Errors in requirements specifications are known to be numerous, persistent,
expensive, and dangerous [Boe81, Lev95].

Rich models appear to be the best interfaces to the various RE subprocesses
mentioned above. They provide a structured way of capturing the output of domain
analysis and goal/requirement €licitation; they offer good support for exploring
alternatives and negotiating choices; they provide structure to complex specifications
and individual units for their compositional analysis, they may guide further
elicitation, specification, and analysis. Models also provide the basis for documenta-
tion and evolution.

3 Candidate Techniques for Requirements Modeling and
Specification

If modeling turns out to be a core activity in the RE process, the basic questions to be

addressed are:

e what aspects to model in the WHY-WHAT-WHO range,
e how to model such aspects,

e how to define the model precisely,

e how to reason about the model.

The answer to the first question determines the ontology of conceptual units in terms
of which models will be built - e.g., data, operations, events, goals, agents, and so
forth. The answer to the second question determines the structuring relationships in
terms of which such units will be composed and linked together - e.g., input/output,
trigger, generalization, refinement, responsibility assignment, and so forth. The
answer to the third question determines the informal, semi-formal, or formal
specification technique used to define the properties of model components precisely.
The answer to the fourth question determines the kind of reasoning technique
available for the purpose of elicitation, specification, and analysis.

As will be seen below, the main candidate approaches for requirements modeling
and specification are limited to WHAT aspects only. We review them briefly before
arguing about their limitation for RE tasks.

3.1 Semi-Formal Approaches

The principle here is to formally declare conceptual units and their links; the
properties of such units and links are generally asserted informally. We just list some
of the main standard techniques.

Entity-Relationship Diagrams. The conceptual units denote autonomous classes of
objects of interest with distinct identities and shared features; the conceptual links
denote subordinate classes of objects of interest. Both can be characterized by
attributes with specific value ranges. Diagrams can be hierarchically structured
through specialization mechanisms. Figure 1 depicts a fragment for our train control
example.

Figure 1 — Entities and relationships

State Transition Diagrams. The conceptual units denote object states of interest
whereas the conceptual links denote guarded transitions triggered by events.
Diagrams can be hierarchically structured through various paralel composition
mechanisms. Figure 2 depicts a fragment for our train control example.

go [At station or sem off] ¥
stopped | moving
stop [In station or sem on]
open < SN} P-| closed
op [At station]

Figure 2 — States and transitions

Dataflow Diagrams. The conceptual units denote operations of interest whereas the
conceptua links denote input/output data flows. Diagrams can be hierarchically
structured through functional decomposition mechanisms Figure 3 depicts a fragment

sensor

for our train control example.
generate
speed info
get
location info /
generate
door info

doorState
Figure 3 — Operations and data flows

controller

\

loc

The strengths of semi-formal approaches are fairly obvious:
e graphical notations are easier to use and communicate;

o (different kinds of diagrams may provide complementary views of the same
system; such views can be related to each other through inter-view consistency
rules[Nus94].

These strengths together with notational standardization are probably the main
reasons for the current popularity of UML [Rum99].

On the down side, these approaches have strong limitations:
e ingenera they can only cope with functional aspects;

e since they only capture declaration-level features of a system, they generally
support highly limited forms of specification and analysis;

e the box-and-arrow semantics of their graphical notations is most often fairly
fuzzy; the same model may often be interpreted in different ways by different
people.

3.2 Formal Approaches

The principle here is to model a system in terms of structured collections of
declarations and assertions, both specified in a formal language, which provides a
precise syntax, semantics, and proof theory. The standard approaches here differ
according to the specification paradigm they rely on (see [Lam2Kb] for more details
and references).

History-Based Specification. A system is characterized by its maximal set of
admissible behaviors over time. The properties of interest are specified by temporal
logic assertions about system objects; such assertions involve operators referring to
past, current and future states. The assertions are interpreted over time structures
which can be discrete, dense or continuous. Most often it is necessary to specify
properties over time bounds; real-time temporal logics are therefore necessary. In our
train control example, we could specify a progress requirement about trains moving
from one station to the other, such as

Vtr: Train, st: Station
At(tr, st) = Q< At (tr, next(st))
Our requirement of doors staying closed between stations would be specified by

Vtr: Train, st: Station
e At (tr, st) A m At (tr, st) =
tr.Doors = “closed” U At (tr, next(st))

In the assertion above, O<t means “some time in the future before deadline T" [Koy92]
whereas the e« and U temporal operators mean “in the previous state” and “awaysin the
future until”, respectively [Man92].

Built-in historical references allow the specifier to avoid introducing extra variables
for encoding the past or the future in behavioral requirements; this paradigm seems
thus particularly appropriate for the early stages of requirements specification.

State-Based Specification. Instead of characterizing the admissible system histories,
one may characterize the admissible system states at some arbitrary snapshot. The
properties of interest are specified by invariants constraining the system objects at
any snapshot, and by pre- and post-assertions constraining the application of system
operations at any snapshot. In our train control example, we could specify the
operation to control door openings by a Z schema [Pot96] such as

OpenDoors

A TrainSystem
st?: Station

| Doors = “closed " A At (tr, st?)

| Doors’ = “open”

The state-based paradigm is more operational than the previous one; it seems more
appropriate for the later stages of requirements specification where specific software
services have been elicited from more abstract requirements.

Transition-Based Specification. Instead of characterizing admissible system
histories or system states, one may characterize the required transitions from state
class to state class. The properties of interest are specified by a set of transition
functions; the transition function for a system object gives, for each input state and
triggering event, the corresponding output state. The occurrence of atriggering event
is a sufficient condition for the corresponding transition to take place (unlike a
precondition, it captures an obligation); necessary preconditions may also be
specified to guard the transition. In our train control example, we could specify the
required dynamics of doors by a SCR table [Par95, Heit96] such as

Old Mode Event | New Mode
open | @T TimeOut closed
closed | @T AtStation open

Functional Specification. The principle here is to specify a system as a structured
set of mathematical functions. Two approaches may be distinguished.

Algebraic specification. The functions are grouped by object types that appear in
their domain or codomain, thereby defining abstract data types. The properties of
interest are then specified as conditional equations that capture the effect of
composing functions. In the context of our train control example, we might introduce
asignature such as

WhichTrain: Blocks —Trains

EnterBlock: Trains x Blocks — Blocks
together with alaw of composition such as

WhichTrain (EnterBlock (tr, bl)) = tr

Higher-Order Functions. The functions are grouped into logical theories. Such
theories contain type definitions, variable declarations, and axioms defining the
various functions in the theory. Functions may have other functions as arguments
which significantly increases the power of the language. In the context of our train
control example, we might introduce a PV'S [Owr95] function specification such as

TRACKING: TYPE = [Blocks —Trains]
trk: VAR TRACKING
AddTrain: [TRACKING, Blocks, Trains — TRACKING]

AddTrain (trk, bl, tr) = trk WITH [(bl) :=tr]

Operational Specification. Much closer to the programming level, a system may be
characterized as a collection of concurrent processes that can be executed by some
more or less abstract machine. Operational techniques such as Petri nets or process
algebrasrely on this general paradigm.

Formal approaches have numerous strengths:

they offer precise rules of interpretation of statements;

they support much more sophisticated forms of analysis, e.g., animation,
algorithmic verification such as model checking, or deductive verification;

they alow other useful products to be generated automatically, e.g.,
counterexamples, failure scenarios, test cases, proof obligations, refinements,
code fragments, and so on.

On the down side, these approaches are not really accessible to practitioners. Formal
specifications are hard to write, read, and communicate. Writing the input required by
analysis tools is generally difficult, error-prone and thus requires high expertise;
coping with their output is generally hard as well.

3.3

Common I nadeguaciesto RE Needs

Popular semi-formal and formal approaches both have common limitations with
respect to the nature and scope of RE discussed in Section 2.

Restricted scope. The approaches outined above address WHAT issues only;
they do not cover WHY and WHO issues. RE methods need richer ontologies
than those based on programming abstractions (viz. data, operation or state). To
address WHY and WHO issues, RE ontologies must offer higher-level
abstractions such as goals, goa refinements, agents, responsibility assignments,
and so forth.

Alternative choices out of the picture. The above approaches do not allow
aternatives to be represented, related to each other, and compared for selection.
RE methods must provide support for reasoning about alternative goal
refinements, alternative conflict resolutions, alternative responsibility
assignments, and so forth.

Non-functional aspects out of the picture. The above approaches generally do
not consider non-functional concerns. The latter form an important part of any
regquirements specification and play a prominent role in alternative selection,
conflict management, and architecture derivation. RE methods must provide
support for representing and reasoning about them.

Poor separation of concerns. The above techniques in general make no
distinction between domain properties, requirements, assumptions, and software
specifications. In the above Z schema, for example, the domain property Doors =
“closed * and the requirement At (tr, st?) have the same status. As discussed in
Section 2, such distinctions are important in RE.

Monolithic frameworks. With the techniques above there is no way to be formal
at some critical places and semi-formal at others, or to combine multiple
specification paradigms. In order to be usable, flexible, and customizable to
specific types of concerns, RE methods should ideally be “multi-button”, that is,
support multiparadigm specification and integrate multiple forms of reasoning —
from qualitative to formal, and from lightweight to heavyweight when needed.

e Poor guidance. Most techniques essentially provide sets of notations and tools
for a posteriori analysis. Therefore they tend to induce an approach of
elaborating models and specifications by iterative debugging. In view of the
inherent complexity of the RE process, one should ideally favor a more
constructive approach in which the quality of the requirements model and
specification obtained is guaranteed by the method followed.

4 Shiftingto Goal-Oriented RE

This section reviews some attempts to address those inadequacies, with special
emphasis on a goal -oriented approach we have devel oped for that purpose.

Broadly speaking, a goal corresponds to an objective the system should achieve
through cooperation of agents in the software-to-be and in the environment. It may
refer to afunctional or a non-functional concern.

Goals play a prominent role in the RE process [Dar93, Lam98a]. They drive the
elaboration of requirements to support them. They provide a completeness criterion
for the requirements specification; the specification is complete if al stated goals are
met by the specification [Yue87]. Goals are generally more stable than the
requirements to achieve them. They provide a rationale for requirements, a
requirement exists because of some underlying goal which provides a base for it. In
short, requirements “implement” goals much the same way as programs implement
design specifications.

Goal-oriented approaches to RE are therefore receiving growing attention. Two
complementary frameworks have been proposed for integrating goals and goal
refinement in requirements models: a formal framework and a qualitative one.

In the formal framework [Dar93], goas can be specified semi-formally or
formally. Goal refinements are captured through AND/OR graphs. AND-refinement
links relate a goal to a set of subgoals (called refinement); this means that satisfying
all subgoals in the refinement is a sufficient condition for satisfying the goal. OR-
refinement links relate a goal to an aternative set of refinements; this means that
satisfying one of the refinements is a sufficient condition for satisfying the goal.
AND/OR operationalization links are also introduced to relate goals to requirements
on operations objects; AND/OR responsibility links are introduced to relate
primitive goals to individual agents. Goals are formalized in a real-time temporal
logic whereas operations/objects are formalized by invariants and pre/post-
conditions. Formal schemes are available for reasoning about goal refinement
[Dar96], operationalization [Dar93, Let01l], conflict [Lam98a], obstruction
[Lam2KCc], assignment to agents [LetO1], inference from scenarios [Lam98b], and
acquisition by analogy [Mas97].

In the qualitative framework [Myl92], weaker link types are introduced to relate
“soft” goals [Myl92]. The idea is that such goals cannot be said to be satisfied in a
clear-cut sense. Instead of goal satisfaction, goal satisficing is introduced to express
that lower-level goals or requirements are expected to achieve the goa within
acceptable limits, rather than absolutely. A subgoal is then said to contribute partially
to the goal, regardless of other subgoals; it may contribute positively or negatively. If

a goal is AND-decomposed into subgoals and all subgoals are satisficed, then the
goa is satisficeable; but if a subgoa is denied then the goal is deniable. If a goal
contributes negatively to another goal and the former is satisficed, then the latter is
deniable. In the AND/OR goal graph, goals are specified by names, parameters, and
degrees of satisficing/denial by child goals. This framework is particularly well-
suited for high-level goals that cannot be formalized . It can be used for evaluating
alternative goal refinements. A qualitative labeling procedure may determine the
degree to which a goa is satisficed/denied by lower-level requirements, by
propagating such information along positive/negative support linksin the goal graph.

The formal framework gave rise to the KAOS method for eliciting, specifying,
and analyzing goals, requirements, scenarios, and responsibility assignments. Our
aim here is to briefly suggest how the method works using a few excerpts from the
requirements elaboration for a non-trivial, safety-critical system: the Bay Area Rapid
Transit system [BART99, Let2K, Lam2Ka].

Figure 4 summarizes the steps of the method by showing the corresponding sub-
models obtained. The goal refinement graph is elaborated by eliciting goals from
available sources and asking why and how questions (goal elaboration step); objects,
relationships and attributes are derived from the goal specifications (object modeling
step); agents are identified, alternative responsibility assignments are explored, and
agent interfaces are derived (responsibility assignment step); operations and their
domain pre- and postconditions are identified from the goal specifications, and
strengthened pre-/postconditions and trigger conditions are derived so as to ensure
the corresponding goals (operationalization step). These steps are not strictly
sequential as progress in one step may prompt parallel progress in the next one or
backtracking to a previous one.

goal model

NoTrainCollision

object model 4/ \ responsibility model
SafeAcceler @

operational model

Figure 4 — Goal-oriented RE with KAOS

Goal ldentification from the Initial Document. A first set of goals is identified
from a first readi ng of the available source [BART99] by searching for intentional
keywords such as “objective’, “purpose”’, “intent”, “concern”, “in order to”, etc. A
number of soft goas are thereby |dent|f|ed, edg., ServeMorePassengers",
“NewTracksAdded”, “Minimize[DevelopmentCosts]”, “Minimize[DistanceBetweenTrains]”,
“SafeTransportation”, etc. These goals are qualitatively related to each other through
support links: Contributes (+), ContributesStrongly (++), Conflicts (-),
ConflictsStrongly (- -). These weights are used to select among alternatives. Where
possible, keywords from the semi-formal layer of the KAOS language are used to
indicate the goal category. The Maintain and Avoid keywords specify “aways’ goals
having the temporal patternQ (P — Q) and A (P — — Q), respectively. The Achieve
keyword specifies “eventually” goals having the pattern P = ¢ Q. The “-*
connective denotes logical implication; Q (P — Q) is denoted by P = Q for short.

Figure 5 shows the result of this first elicitation. Clouds denote soft-goals,
parallelograms denote formalizable goals, arrows denote goal-subgoal links, and a
double line linking arrows denotes an OR-refinement into alternative subgoals.

ServeMorePassengers
Min[OperationCost]

SafeTransport

/Avoid[TrainEnteringCIosedGate] /

”w "o

Min[DeviptCost]
NewTracksAdded

Min[DistanceBetwTrains]

!

Max[TrainSpeed]

‘!

/ Maintain[WCS-DistBethrains}// Maintain[BIockSpeedLimit]/

Figure 5 — Preliminary goal graph for the BART system

Formalizing Goals and Deriving the Object Model. The object modeling step can
start as soon as goals can be formulated precisely enough. The principle here is to
identify objects, relationships and attributes from goal specifications. Consider, for
example, the goal Maintain[BlockSpeedLimit] at the bottom of Figure 5. It may be
specified as follows:

Goal Maintain[BlockSpeedLimit]
InformalDef A train should stay below the maximum speed the track segment can handle.
FormalDef V tr: Train, bl: Block:
On(tr, bl) = tr.Speed < bl.SpeedLimit

From the predicate, objects, and attributes appearing in this goal formalization we
derive the following portion of the object model:

Train Block

Speed : SpeedUnit SpeedLimit : SpeedUnit

Similarly, the other goal at the bottom of Figure 5 is specified as follows:

Goal Maintain[WCS-DistBetweenTrains]
InformalDef A train should never get so close to a train in front so that if the train in front stops
suddenly (e.g., derailment) the next train would hit it.
FormalDef V trl, tr2: Train :
Following (trl, tr2) = trl.Loc - tr2.Loc > tr1.WCS-Dist

(The InformalDef statements in those goal definitions are taken literally from the initial
document; wcs-Dist denotes the physical worst-case stopping distance based on the
physical speed of the train.) This new goal specification allows the above portion of
the object model to be enriched with Loc and wcs-Dist attributes for the Train object
together with a reflexive Following relationship on it. Goals thus provide a precise
driving criterion for identifying elements of the object model.

Eliciting More Abstract Goals by WHY Questions. It is often the case that higher-
level goals underpinning goals easily identified from initial sources are kept implicit
in such sources. They may, however, be useful for finding out other important
subgoals of the higher-level goa that were missing for the higher-level goa to be
achieved.

Higher-level goals are identified by asking WHY questions about the goals
available. For example, asking aWHY question about the goal
Maintain[WCS-DistBetweenTrains]
yields the parent goal
Avoid[TrainCollision]
On another hand, asking aWHY question about the goal
Avoid[TrainEnteringClosedGate]
yields the parent goal
Avoid[TrainOnSwitchinWrongPosition].

The formalizations of this parent goa and of the initial subgoal
Avoid[TrainEnteringClosedGate] match the root and one of the two child nodes of a
formal refinement pattern from our pattern library [Dar96, Let2K]. This pattern, pre-
proved once for all to produce a correct and complete goal refinement using a
temporal logic verifier, reveals by reinstantiation that the companion subgoa was
missing from theinitial document, that is, the goal

Maintain[GateClosedWhenSwitchinWrongPosition].

Missing goals can thus be discovered formally by a combination of WHY questions
and refinement patterns.

Eliciting M ore Concrete Goals by HOW Questions. Goals need to be refined until
subgoals are reached that can be assigned to individua agents in the software-to-be
and in the environment. Terminal goals become requirements in the former case and
assumptionsin the latter.
More concrete subgoals are elicited by asking HOW questions. For example, a HOW
guestion about the goal

Maintain[WCS-DistBetweenTrains]
Yields the following three companion subgoals:

Maintain [SafeSpeed/AccelerationCommanded],

Maintain [SafeTrainResponseToCommand],

Maintain [NoSuddenStopOfPrecedingTrain].
The formalization of these subgoals may be used to formally prove that together they
entail the father goal Maintain[WwCS-DistBetweenTrains] formalized above [Let2K].
These subgoals have to be refined in turn until assignable subgoals are reached. A
complete refinement tree may be found in [Lam2Ka].

Exploring Alternative Responsibility Assignments. The responsibility assignment
step relies on precise formulations of goas from the goa elaboration step.
Assignments of individual agents to terminal goals in the refinement graph are
captured by AND/OR responsibility links. For example, the initial BART document
suggests assigning the Accuracy goal
Maintain[AccurateSpeed/PositionEstimates]
to the TrackingSystem agent, the goal
Maintain[SafeTrainResponseToCommand]
to the OnBoardTrainController agent, and the goal
Maintain[SafeCmdMsg]
to the Speed/AccelerationControlSystem agent.
Alternative goal refinements and agent assignments could be explored. For
example, the parent goal
Maintain[WCS-DistBetweenTrains]
may alternatively be refined by the following three Maintain subgoals:
PreceedingTrainSpeed/PositionkKnownToFollowing Train,
SafeAccelerationBasedOnPreceedingTrainSpeed/Position,
NoSuddenStopOfPreceedingTrain
The second subgoal could now be assigned to the onBoardTrainController agent. This
alternative responsibility assignment would produce a fully distributed system.
Qualitative reasoning techniques in the style of [Myl99] might then be applied to the
soft goals identified in Figure 5 to help selecting the most preferable responsibility
assignment.

Deriving Agent I nterfaces. Once terminal subgoals have been assigned to individual
software or environmental agents, the interfaces of each agent in terms of monitored
and controlled variables can be derived systematically from the goal specifications.
The formal technique is described in [LetO1]; we just suggest the idea here on a

simple example. Consider the goal Maintain[SafeCmdMsg] that has been assigned to the
Speed/AccelerationControlSystem agent. We give its general form here for sake of
simplicity:
Goal Maintain[SafeCmdMsg]
FormalDef ¥V cm: CommandMessage, trl, tr2: Train

Sent (cm, trl) A Following (trl, tr2) A Refers (cm, tr2.Info)
= cm.Accel < F (trl, tr2) A cm.Speed > G (trl)

To fulfil its responsibility for this goal the Speed/AccelerationControlSystem agent must
be able to evaluate the goal antecedent and establish the goal consequent. The agent’s
monitored variable is therefore Train.nfo whereas its controlled variables are
CommandMessage.Accel and CommandMessage.Speed. The latter will in turn become
monitored variables of the OnBoardTrainController agent, by similar analysis.

Identifying Operations. The fina operationalization step starts by identifying the
operations relevant to goals and defining their domain pre- and postconditions. Goals
refer to specific state transitions; for each such transition an operation causing it is
identified; its domain pre- and postcondition captures the state transition. For the goal
Maintain[SafeCmdMsg] formalized above we get, for example,

Operation SendCommandMessage
Input Train {arg tr}
Output ComandMessage {res cm}
DomPre — Sent (cm, tr)
DomPost Sent (cm, tr)
This definition minimally captures what any sending of a command to atrain is about
in the domain considered; it does not ensure any of the goalsit should contribute to.

Operationalizing Goals. The next operationalization sub-step is to strengthen such
domain conditions so that the various goals linked to the operation are ensured. For
goals assigned to software agents, this step produces requirements on the operations
for the corresponding goals to be achieved. Derivation rules for an operationalization
caculus are available [Dar93, Let01]. In our example, they yield the following
requirements that strengthen the domain pre- and postconditions:

Operation SendCommandMessage
Input ...; Output ...
DomPre ...; DomPost ...
RegPost for SafeCmdMsg:
Following (tr, t2)
— cm.Accel < F (tr, tr2) A cm.Speed > G (tr)
ReqTrig for CmdMsgSentIinTime:
M55 — 3 cm’: CommandMessage:
Sent (cm’, tr)
(The trigger condition captures an obligation to trigger the operation as soon as the
condition gets true, and provided the domain precondition is true. In the example
above the condition says that no command has been sent in every past state up to one
half-second [BART99].)

Using a mix of semi-formal and formal techniques for goal-oriented requirements
elaboration, we have reached the level at which most formal specification techniques
would start.

5 Analyzing Obstacles to Requirements Satisfaction

First-sketch specifications of goals, requirements and assumptions are often too ideal;
they are likely to be violated from time to time in the running system due to
unexpected behavior of agents. The lack of anticipation of exceptional behaviors may
result in unrealistic, unachievable and/or incomplete requirements. We capture such
exceptiona behaviors by formal assertions called obstacles to goal satisfaction.

An obstacle O is said to obstruct agoal G iff

{O,Dom} |F -G obstruction
Dom|#= - O domain consistency

Obstacles need to be identified and resolved at RE time in order to produce
robustness regquirements and hence more reliable software. We have developed a set
of formal and heuristic techniques for:

e the abductive generation of obstacles from goal specifications and domain
properties,

e the systematic generation of various types of obstacle resolution, e.g., goal
substitution, agent substitution, goal weakening, goa restoration, obstacle
mitigation, or obstacle prevention.

The interested reader may refer to [Lam2Kc] for details. We just illustrate a few

results from obstacle analysis for some of the terminal goals in the goal refinement

graph of the BART system.

The following obstacles were generated to obstruct the subgoal

Achieve[CommandMsglssuedInTime]:

CommandMsgNotissued,

CommandMsglssuedLate,

CommandMsgSentToWrongTrain
For the companion subgoa Achieve[CommandMsgDeliveredinTime] we similarly
generated obstacles such as:

CommandMsgDeliveredLate,

CommandMsgCorrupted
The last companion subgoal Maintain[SafeCmdMsg] may be obstructed by the condition

UnsafeAcceleration,
and so on. The obstacle generation process for a single goa results in a goal-
anchored fault-tree, that is, a refinement tree whose root is the goa negation.
Compared with standard fault-tree analysis [Lev95], obstacle analysis is goal-
oriented, formal, and produces obstacle trees that are provably complete with respect
to what is known about the domain [Lam2Kc].

Alternative obstacle resolutions may then be generated to produce new or alternative
requirements. For example, the obstacle CommandMsgSentLate above could be

resolved by an aternative design in which accelerations are calculated by the on-
board train controller instead; this would correspond to a goal substitution strategy.
The obstacle UnsafeAcceleration above could be resolved by assigning the
responsibility for the subgoa SafeAcceleratonCommanded of the goal
Maintain[SafeCmdMsg] tO the VitalStationComputer agent instead [BART99]; this would
correspond to an agent substitution strategy. An obstacle mitigation strategy could be
applied to resolve the obstacle outOfDateTraininfo obstructing the accuracy goa Main-
tain[AccurateSpeed/PositionEstimates], by introducing a new subgoal of the goal
Avoid[TrainCollisions], namely, the goal Avoid[CollisionWhenOutOfDateTrainInfo]. This new
goa has to be refined in turn, e.g., by subgoals requiring full braking when the
message origination time tag has expired.

6 Handling Conflicting Requirements

As mentioned before, requirements engineers live in a world where conflicts are the
rule, not the exception [Eas94]. Conflicts generally arise from multiple viewpoints
and concerns. They must be detected and eventually resolved even though they may
be temporarily useful for eliciting further information [Hun98]. In [Lam98] we have
studied various forms of conflict and, in particular, a weak form called divergence
which occurs frequently in practice.

The goals G,, ..., G, are said to be divergent iff there exists a non-trivia boundary
condition B such that :

{ B,ViG,Dom} |= false inconsistency
{ B, Vi. Gj, Dom} |# false minimality

(“Non-trivial” means that B is different from the bottom false and the complement —
Vi G)). Note that the traditional case of conflict, in the sense of logical inconsistency,
amounts to a particular case of divergence.

Divergences need to be identified and resolved at RE time in order to eventually
produce consistent requirements and hence more reliable software. We have also
developed a set of formal and heuristic techniques for:

e the abductive generation of boundary conditions from goal specifications and
domain properties,

e the systematic generation of various types of divergence resolution.

The interested reader may refer to [Lam98] for details. The initial BART document
suggests an interesting example of divergence [BART99, p.13]. Roughly speaking,
the train commanded speed may not be too high, because otherwise it forces the
distance between trains to be too high, in order to achieve the
DistancelncreasedWithCommandedSpeed subgoal of the SafeTransportation goal; on the
other hand, the commanded speed may not be too low, in order to achieve the
LimitedAccelerAbove7mphOfPhysicalSpeed subgoal of the SmoothMove goal. There seems
to be a flavor of divergence here. We therefore look at the formalization of the
suspect goals:
Goal Maintain [CmdedSpeedCloseToPhysicalSpeed]
FormalDef V tr: Train

tr.CmAccel> 0 = tr.CmSpeed < tr.Speed + f (dist-to-obstacle)

and
Goal Maintain [CmdedSpeedAbove7mphOfPhysicalSpeed]

FormalDef V tr: Train
tr.CmAccel> 0 = tr.CmSpeed > tr.Speed + 7
These two goals are formally detected to be divergent using the regression technique
described in [Lam98]. The generated boundary condition for making them logically
inconsistent is

O3 tr: Train
tr.CmAccel>0 A f (dist-to-obstacle) <7

The resolution operators from [Lam98] may be used to generate alternative
resolutions; in this case one should keep the safety goal as it is and weaken the other
conflicting goal to remove the divergence:
Goal Maintain [CmdedSpeedAbove7mphOfPhysicalSpeed]
FormalDef V tr: Train
tr.CmAccel> 0 = tr.CmSpeed >tr.Speed + 7 v f (dist-to-obstacle) <7

7 Conclusion

Standard modeling and specification techniques were reviewed in this paper to argue
that most of them are inappropriate to the scope, concerns, processes, and actors
involved in requirements engineering. Although they provide useful paradigms for
RE methodol ogies, these techniques provide too low-level ontologies, do not support
the representation and exploration of alternatives, mix up different kinds of
assertions, are too monolithic, and provide little guidance in the requirements
elaboration process.

We used a real, complex safety-critical system as a running example to show the
benefits of a constructive, multiparadigm, and goal-oriented approach to
requirements modeling, specification and analysis. The key points illustrated are the
following:

e object models and operational requirements can be derived constructively
from goal specifications;

e gods provide the rationale for the requirements that operationalize them, and
a correctness criterion for requirements compl eteness;

e the goa refinement structure provides a rich way of structuring the entire
reguirements document;

e dternative system proposals are explored by alternative goal refinements and
assignments,

e a multiparadigm, multibutton framework allows one to combine different
levels of expression and reasoning: semi-formal for modeling and navigation,
qualitative for selection among alternatives, and formal, when needed, for
more accurate reasoning;

e goal formalization allows RE-specific types of analysisto be carried out, such
as
- checking the correctness and completeness of a goal refinement,
- completing an incomplete refinement,
- generating obstacles to requirements satisfaction, and resolutions to yield
new requirements for more robust systems,
- generating boundary conditions for conflict among requirements together
with aternative resolutions.
Goals, especialy non-functional ones, may also play aleading role in the process of
deriving a software architecture from requirements, and of defining architectural
views [Lam98a]. Goal-based reasoning is thus central to RE but also to architectural
design. From our experience in using KAOS in awide variety of industrial projects at
our tech transfer institute, we have observed that domain experts, managers, and
decision makers are in fact much more interested by goal structures than, e.g., UML
models. Getting such early involvement and feedback turns out to be crucia to the
development of reliable software, as the empirical studies mentioned at the beginning
of this paper suggest.

References

[BART99] Bay Area Rapid Transit District, Advance Automated Train Control System, Case
Study Description. Sandia National Labs, http://www.hcecs.sandia.gov/bart.htm.

[Bel76] T.E. Bell and T.A. Thayer, “Software Requirements: Are They Really a Problem?’,
Proc. ICSE-2: 2™ Intrnational Conference on Software Enginering, San Francisco, 1976,
61-68.

[BoeB8l] B.W. Boehm, Software Engineering Economics. Prentice-Hall, 1981.

[Bro87] F.P. Brooks “No Silver Bullet: Essence and Accidents of Software Engineering”.
IEEE Computer, Vol. 20 No. 4, April 1987, pp. 10-19.

[Dar93] A. Dardenne, A. van Lamsweerde and S. Fickas, “Goal-Directed Requirements
Acquisition”, Science of Computer Programming, Vol. 20, 1993, 3-50.

[Dar96] R. Darimont and A. van Lamsweerde, “Forma Refinement Patterns for Goal-Driven
Requirements Elaboration”, Proc. FSE'4 - Fourth ACM SIGSOFT Symposium on the
Foundations of Software Engineering, San Francisco, October 1996, 179-190.

[Eas94] S. Easterbrook, “Resolving Requirements Conflicts with Computer-Supported
Negotiation”. In Requirements Engineering: Social and Technical Issues, M. Jirotka and J.
Goguen (Eds.), Academic Press, 1994, 41-65.

[ESI96] European Software Institute, “European User Survey Anaysis’, Report USV_EUR
2.1, ESPITI Project, January 1996.

[Heit96] C. Heitmeyer, R. Jeffords and B. Labaw, “Automated Consistency Checking of
Requirements Specificatons’, ACM Transactions on Software Engineering and
Methodology Vol. 5 No. 3, July 1996, 231-261.

[Hun98] A. Hunter and B. Nuseibeh, “Managing Inconsistent Specifications: Reasoning,
Anaysisand Action”, ACM Transactions on Software Engineering and Methodology, Vol.
7 No. 4. October 1998, 335-367.

[Jac95] M. Jackson, Software Requirements & Specifications - A Lexicon of Practice,
Principles and Pejudices. ACM Press, Addison-Wesley, 1995.

[Koy92] R. Koymans, Specifying message passing and time-critical systems with temporal
logic, LNCS 651, Springer-Verlag, 1992.

[Lam98a] A. van Lamsweerde, R. Darimont and E. Letier, “Managing Conflicts in Goal-
Driven Requirements Engineering”, IEEE Trans. on Sofware. Engineering, Special Issue
on Inconsistency Management in Software Development, November 1998.

[Lam98b] A. van Lamsweerde and L. Willemet, "Inferring Declarative Requirements
Specifications from Operational Scenarios', IEEE Trans. on Sofware. Engineering,
Special Issue on Scenario Management, December 1998, 1089-1114.

[Lam2Ka] A. van Lamsweerde, “Requirements Engineering in the Year 00: A Research
Perspective’, Keynote paper, Proc. ICSE'2000 - 22™ Intl. Conference on Software
Engineering, IEEE Press, June 2000.

[Lam2Kb] A. van Lamsweerde, “Formal Specification: a Roadmap”. In The Future of
Software Engineering, A. Finkelstein (ed.), ACM Press, 2000.

[Lam2Kc] A. van Lamsweerde and E. Letier, “Handling Obstacles in Goal-Oriented
Requirements Engineering”, |EEE Transactions on Software Engineering, Special Issue
on Exception Handling, October 2000.

[Let2K]pE. Letier and A. van Lamsweerde, “KAOS in Action: the BART System”. IFIP
WG2.9 meeting, Flims, http:// www.cis.gsu.edu/~wrobinso/ifip2_9/Flims00.

[LetO1] E. Letier, Reasoning About Agents in Goal-Oriented Requirements Engineering. PhD
Thesis, University of Louvain, 2001.

[Levo5] N. Leveson, Safeware - System Safety and Computers. Addison-Wesley, 1995.

[Man92] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems,
Springer-Verlag, 1992.

[Mas97] P. Massonet and A. van Lamsweerde, “Analogica Reuse of Requirements
Frameworks’, Proc. RE-97 - 3rd Int. Symp. on Requirements Engineering, Annapolis,
1997, 26-37.

[Mey85] B. Meyer, “On Formaism in Specifications’, IEEE Software, Vol. 2 No. 1, January
1985, 6-26.

[Myl92] Mylopoulos, J.,, Chung, L., Nixon, B., “Representing and Using Nonfunctional
Requirements: A Process-Oriented Approach”, IEEE Trans. on Sofware. Engineering,
Vol. 18 No. 6, June 1992, pp. 483-497.

[Myl99] J. Mylopoulos, L. Chung and E. Yu, "From Object-Oriented to Goal-Oriented
Requirements Analysis’, Communications of the ACM, Vol. 42 No. 1, January 1999, 31-
37.

[Nus94] B. Nuseibeh, J. Kramer and A. Finkelstein, “A Framework for Expressing the
Relationships Between Multiple Views in Requirements Specifications’, |EEE
Transactions on Software Engineering, Vol. 20 No. 10, October 1994, 760-773.

[Owr95] S. Owre, J. Rushby, and N. Shankar, “Forma Verification for Fault-Tolerant
Architectures. Prolegomena to the Design of PVS’, IEEE Transactions on Software
Engineering Vol. 21 No. 2, Feb. 95, 107-125.

[Par95] D.L. Parnas and J. Madey, “Functional Documents for Computer Systems”, Science of
Computer Programming, Vol. 25, 1995, 41-61.

[Pot96] B. Potter, J. Sinclair and D. Till, An Introduction to Formal Specification and Z.
Second edition, Prentice Hall, 1996.

[Rum99] J. Rumbaugh, I. Jacobson and G Booch, The Unified Modeling Language Reference
Manual. Addison-Wesley, Object Technology Series, 1999.

[Sta95] The Standish Group, “ Software Chaos’, http:// www.standishgroup.com/chaos.html.

[YueB7] K. Yue, “What Does It Mean to Say that a Specification is Complete?’, Proc. IWSSD-
4, Fourth International Workshop on Software Specification and Design, |EEE, 1987.

