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ABSTRACT cerned with the relationship of these factors to precise
Requirements engineering is concerned with the elicitationspecifications of software behavior, and to their evolution
of high-level goals to be achieved by the envisioned systempver time and across software families. This general defini-
the refinement of such goals and their operationalizationtion, borrowed from [Zav97a], stresses the leading part
into specifications of services and constraints, and theplayed by goals during requirements elaboration. Goals drive
assignment of responsibilities for the resulting requirementsihe” elaboration of requirements to support them [Ros77,
to agents such as huma_ns, devices, and software. . Dar91, Rub92]; they provide a completeness criterion for the
Requirements engineering processes often result in goalseq irements specification --the specification is complete if

requirements and assumptions about agent behavior that ar, P .
too ideal; some of them are likely to be not satisfied from 4l stated goals are met by the specification [Yue87]; they

time to time in the running system due to unexpected agenProvide a rationale for requirements --a requirement exists
behavior. The lack of anticipation of exceptional behaviors Pecause of some underlying goal which provides a base for it
results in unrealistic, unachievable and/or incomplete[Dar91, Som97]; goals represent the roots for detecting con-
requirements. As a consequence, the software developeflicts among requirements and for resolving them eventually
from those requirements will not be robust enough and will [Rob89, Lam98b]; goals are generally more stable than the
inevitably result in poor performance or failures, sometimesrequirements to achieve them [Ant94]. In short, requirements
with critical consequences on the environment. "imp|ement" goa|s much the same way as programs imp|e_
The paper presents formal techniques for reasoning abouhent design specifications.

obstacles to the satisfaction of goals, requirements, and

assumptions elaborated in the requirements engineeringpoals are to be achieved by the various agents operating
process. A first set of techniques allow obstacles to be gentogether in thecompositesystem; such agents include soft-
erated systematically from goal formulations and domainware components that exist or are to be developed, external
properties. A second set of techniques allow resolutions tojevices, and humans in the environment [Fea87, Fic92]. The
be generated once the obstacles have been identifiegdicitation of functional and non-functional goals, their orga-
thereby. : . .___._nization into a coherent structure, and their operationaliza-
Our techniques are based on a temporal logic formalizationjqp, jntg requirements to be assigned to the various agents is

of goals and domain properties; they are integrated into ai ; ; :
existing method for goal-oriented requirements elaboratiorr1lhus a central aspect of requirements engineering [Dar93,

with the aim of deriving more realistic, complete and robust 'V'Y'99]- Various t_echnlques ha_ve been_ proposed to support
requirements specifications. this processQualitative reasoningechniques may be used
A key principle in this paper is to handle exceptions at {0 determine the degree to which high-level goals are satis-
requirements engineering time and at the goal level, so thaficed/denied by lower-level goals and requirements [Myl92].
more freedom is left for resolving them in a satisfactory When goals can be formalizefiirmal reasoningechniques
way. The various techniques proposed are illustrated angre expected to do more. For example, the correctness of
assessed in the context of a real safety-critical system.  goal refinements/operationalizations may be verified
[Dar96]; more constructively, such refinements/operational-

KEYWORDS . . . . izations may be derived formally [Dar93, Fea95, Dar96].
Goal-oriented requirements engineering, high-level excep-

tion handling, obstacle-based requirements transformation:,T.Ormal goal modlels [naygté% us;ld to_detecthand resolve an'
defensive requirements specification, specification refinedlIcts among goals [Lam98b]. Planning techniques may be

ment, lightweight formal methods. used to generate admissible scenarios showing that some
desirable goal is not achieved by the system specified, and
1. INTRODUCTION propose resolution actions [And89, Fic92]. Conversely,

Requirements engineering (RE) is the branch of softwan%ijed""rat'\/et.gOalI spec!][lca:!ons rTf1ay be |_nferrLed |gguct|vely
engineering concerned with the real-world goals for, func- fom operational specifications of scenarios [Lam98c].

tions of, and constraints on software systems. It is also condne major problem requirements engineers are faced with is
To appear in IEEE Transactions on Software Engineering, that first-sketch specifications of goals, requirements and
Special Issue on Exception Handling, 2000. assumptions tend to be too ideal; such assertions are likely to

This paper is a revised, expanded version of a paper appearing inbe occasionally violated in the running system due to unex-
the Proceedings of ICSE’98 - 20th International Conference on ~ pected behavior of agents like humans, devices, or software
Software Engineering, Kyoto, ACM-IEEE, April 1998.



components [Lam95, Pot95, Fea98]. This general problem iBack to the example of the ideal goal namedieve[Revie-
not really handled by current requirements elaboration methwReturnedinFourweeks], our aim is to derive obstacle specifi-
ods. cations from a precise specification of this goal and from

Consider an ambulance dispatching system, for example; properties of the domain; one.would there_by expe(_:t to obtain
first-sketch goal such aghieve[MobilizedAmbulancePromptlyAt- obstacles such as, e.glrpqg_BellefAbputDeadl|ne Or ReviewRe-
Incident] is overideal and likely to be violated from time to QuestLost (under responsibility oReviewer agents)unprocess-

time --because of, e.g., allocation of a vehicle not closedblePostscriptFile (under respon§|b|I|ty ofuthor agents); and
enough to the incident location; or too long allocation time; SO on. From there one would like to resolve those obstacles,
or imprecise or confused location; etc. In an electronic€-8:» Py weakening the original goal formulation and propa-
reviewing system for a scientific journal, a first-sketch goal9ating the weakened version in the goal refinement graph; by
such asichieve[ReviewReturnedinFourWeeks] OF an assumption |ntr0(_j_ucmg new goals ar?d operathnallzatlons to overcome
such asReviewerReliable are straightforward examples of O Mitigate the obstacles; by changing agent assignments so
overideal statements that are likely to be violated on occathat the obstacle may no longer occur; and so on.

sion; the same might be true for a security goal suaha@s A key principle here is to handle abnormal agent behavior at
tain[ReviewerAnonymity]. In & resource management system, arequirements engineering time aatl the goal level.This

goal such asichieve[RequestedResourceUsed] OF @n assump-  principle is consistent with recommendations from analysis
tion such asRequestPendingUntiluse are also overideal as of software requirements errors [Lut93]. Exception handling
requesting agents may change their mind and no longer wisgchniques are usually introduced at later stages of the soft-
to use the requested resource even if the latter becomes avajfare lifecycle, such as architectural design or programming,
able. In a meeting scheduler system, a goal such aghere the boundary between the software and its environ-
Achieve[ParticipantsTimeConstraintsProvided] is likely to be vio-  ment has been decided and cannot be reconsidered, and
lated, e.g., for participants that do not check their email reguwhere the requirements specifications are postulated correct
larly thereby missing invitations to meetings and requests fognd complete [And81, Bor85, Per89, Cri91, Ros92, Jal94,
providing their time constraints. In a control system, a goalcrigs, Aro98, Gar99]. In contrast, we perform systematic
such asmaintain[AlarmissuedWhenAbnormalCondition] might be  opstacle analysis at the much earlier stage of requirements
violated sometimes due to unavailable data, device failure Oéngineering, from goal formulations, so that more freedom is
deactivation by malicious agents. left on adequate ways of handling obstacles to goals --like,
Overidealization of goals, requirements and assumption€.g., considering alternative requirements or alternative
results in run-time inconsistencies between the specificatioagent assignments that result in different system proposals,
of the system and its actual behavior. The lack of anticipain which more or less functionality is automated and in
tion of exceptional circumstances may thus lead to unrealiswhich the interaction between the software and its environ-
tic, unachievable and/or incomplete requirements. As anent may be quite different.

consequence, the software developed from those requirgphe integration of obstacle analysis into the requirements

ments will inevitably result in failures, sometimes with criti- engineering process is detailed in the paper in the context of
cal consequences on the environment. the KAOS methodology for goal-oriented requirements elab-
The purpose of this paper is to introduce systematic techeration [Dar93, Lam95, Dar96]. In [Lam98b], we have
niques for deidealizing goals, assumptions and requirementshown that obstacle analysis can be seen as a degenerate case
and to integrate such techniques in a goal-oriented requiresf conflict analysis; an obstacle amounts to a condition for
ments elaboration method in order to derive more completeonflict between N goals within the domain under consider-
and realistic requirements, from which more robust systemation, where N=1. As a consequence, there are generic simi-
can be built. larities between the respective identification/resolution

Our approach is based on the concepblostaclefirst intro-  techniques. However, handling exceptions to the achieve-
duced in [Pot95]. Obstacles are a dual notion to goals; whilénent of a single goal and handling conflicts between multi-

goals capture desired conditions, obstacles capture undesple stakeholders’ goals correspond to different problems and
able (but nevertheless possible) ones. An obstacle obstrudi@ci of concern for the requirements engineer. As will be

some goal, that is, when the obstacle gets true the goal m&gen in the paper, the generic identification/resolution mech-
not be achieved. The term “obstacle” is thus introduced her@nisms yield different instantiations and specializations for
to denote agoal-orientedabstraction, at the requirements obstacle analysis and for conflict analysis.

engineering level, of various notions that have been studiegpe rest of the paper is organized as follows. Section 2 sum-
extensively in specific areas - such bazardsthat may  mgarizes some background material on KAOS that will be
obstruct safety goals [Lev95] dhreatsthat may obstruct seq in the sequel. Section 3 introduces obstacles to goals
security goals [Amo94] -, or in later phases of the softwareynq provides a formal characterization of this concept,
lifecycle - such adaults that may prevent a program from jycjyding the notion of completeness of a set of obstacles.
achieving its specification [Cri95, Gar99]. Section 4 discusses a modified goal-oriented requirements
The paper presents a formalization of this notion of obstacleglaboration process that integrates obstacle analysis. Section
a set of techniques for systematic generation of obstacles presents techniques for generating obstacles from goal for-
from goal specifications and domain properties; and a set ahulations. Section 6 then presents techniques for transform-
alternative operators that transform goal specifications so dag goals, requirements and/or assumptions so as to resolve
to resolve the obstacles generated. the obstacles generated. The various techniques presented in



the paper are illustrated and assessed in Section 7 by ambjects in the environment and the state of their representa-
obstacle analysis of a real safety-critical system for whichtion in the software; other sub-categories inclusiety-
failure stories have been published [LAS93, Fin96]. SomeGoals, SecurityGoals, PerformanceGoals, and so on.

relat_ed work is discussed in Section 8 before concluding 5o refinement ends up when terminal goals are reached:
Section 9. these are goals assignable to individual agents. A terminal
goal can thus be formulated in terms of states controllable b
2. GOAL-ORIENTED RE WITH KAOS some individual agent. Aequirement is a terminal goal g
The KAOS methodology is aimed at supporting the wholeassigned to an agent in the software-to-be.aésumption is
process of requirements elaboration - from the high-leveb terminal goal assigned to an agent in the environment.
goals to be achieved to the requirements, objects and operbhlike requirements, assumptions cannot be enforced in
tions to be assigned to the various agents in the composigeneral. Terminal goals are in tuAMND/OR operationalized
system. The methodology provides a specification languagdy operations and objects through strengthenings of their
an elaboration method, and tool support. To make the pap&tomain pre/postconditions and invariants, respectively, and
self-contained, we recall some of the features that will bethrough obligations expressed by trigger conditions. Alterna-
used later in the paper; see [Dar93, Lam95, Dar96, Dar98jve ways of assigning responsible agents to a terminal goal

for details. are captured througl®oR responsibility links. The actual
, assignment of an agent to the operations that operationalize
2.1 Concepts and terminology the terminal goal is captured in correspondipgrforms

An object is a thing of interest in the composite system links.

whose instances may evolve from state to state. Objects age gomain property is a property about objects or operations
characterized by attributes and invariant assertions. They, the environment which holds independently of the soft-
may be organized in inheritance hierarchies. ity is an  \yare-to-be. Domain properties include physical laws
autonomous object. Aelationship is an object dependent on [pargs], regulations, constraints imposed by environmental
other objects it links. Arventis an instantaneous object.  agents [Lev95] --in short, indicative statements of domain
An operation is an input-output relation over objects; opera- knowledge [Jac93, Zav97b]. In KAOS, domain properties
tion applications define state transitions. Operations arare captured by domain invariants attached to objects and by
characterized by pre-, post-, and trigger conditions. A dis-domain pre-/postconditions attached to operations.

tinction is made betweedomainpre/postconditions, which A scenario is a domain-consistent sequence of state transi-
capture the elementary state transitions defined by operatigfpns controlled by corresponding agent instances; domain-
applications in the domain, andquiredpre/postconditions, consistency means that the operation associated with a state
which capture additional strengthenings to ensure that thgansition is applied in a state satisfying its domain precondi-
requirements are met. tion together with the various domain invariants attached to
An agent is an active object which acts as processor forthe corresponding objects, with a resulting state satisfying its
some operations. An agepérforms an operation if itis allo-  domain postcondition.

cated to it; the agenthonitors/controls an object if the states e

of the object are observable/controllable by it. Agents may?-2 The specification language

be humans, devices, programs, etc. Each construct in the KAOS language has a two-level

A goal is an objective the composite system should meet; i€neric structure: an outer semantic net layer [Bra85] for
captures a set of desired behaviors of the composite systefd€claring a concept, its attributes and its various links to
AND-refinement links relate a goal to a set of subgoals Other concepts; an inner formal assertion layerfésmally
(called refinement); this means that satisfying all subgoals iflefiningthe concept. The declaration level is used for con-
the refinement is a sufficient condition for satisfying the ceptual modeling (through a concrete graphical syntax),
goal. OR-refinement links relate a goal to an alternative set requirements traceability (through semantic net navigation)
of refinements; this means that satisfying one of the refine@nd specification reuse (through queries) [Dar98]. The asser-
ments is a sufficient condition for satisfying the goal. Thetion level is optional and used for formal reasoning [Dar93,
goal refinement structure for a given system can be reprd2ar96, Mas97, Fea98, Lam98b, Lam98c].

sented by ar\ND/OR directed acyclic graph [Nil71]. Goals The generic structure of a KAOS construct is instantiated to
concern the objects they refer to. A goal may additionally be specific types of links and assertion languages according to
characterized by ariority attribute whose values specify the the specific type of the concept being specified. For example,
extent to which the goal is mandatory or optional. consider the following goal specification for an ambulance
Goals are classified according to the category of requiredispatching system:

ments they will drive about the agents concerned. Functional Goal Achieve [AmbulanceMobilization]

goals result in functional requirements. For examplajs- Concerns Call, Ambulance, Incident

factionGoals are functional goals concerned with satisfying  Refines Ambulancelntervention

agent requestdnformationGoals are goals concerned with RefinedTo  IncidentFiled, AmbulanceAllocated,

keeping agents informed about object states. Likewise, non- AllocatedAmbulanceMobilized

functional goals result in non-functional requirements. For InformaiDef For every responded call about an incident, an
example AccuracyGoals are non-functional goals concerned  STEulance abie o arive i e notent scene witin L miues

with maintaining the consistency between the state of  be less than 3 minutes [ORCON standard, 3005].
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FormalDef O cl: Call, inc: Incident strong implication.

Eezpondme g.(/izqglﬁ:r?i (cl, inc) Beside the agent-related classification of goals introduced in
<3m Section 2.1, goals in KAOS are also classified according to

Mobilized (a, inc) . .
7+ [Available (a) 1 TimeDist (a.Loc, inc.Loc) 11] the pattern of temporal behavior they capture:
Achieve: c0O 0T

The declaration part of this specification introduces a con- C )

g L . ease:. COO-T
cept of type Yoal”, named AmbulanceMobilization, stating a o
target property that should eventually hold¢hieve” verb), Maintain: ¢ TWN,CO T
refering to objects such &l or Ambulance, refining the par- Avoid:  CL - TWN,CL =T
ent goalAmbulancelntervention, refined into subgoalscident- N these patternsC, T, andN denote some current, target,
Filed, AmbulanceAllocated and AllocatedAmbulanceMobilized, and ~ and new condition, respectively. (We avoid the classical
defined by some informal statement. (The semantic net layegafety/liveness terminology here to avoid confusions with
is represented in textual form in this paper for reasons ofafetyGoals.)

space limitations; the reader may refer to [Dar98] to sean requirements engineering we often need to introduce real-
what the alternative graphical concrete syntax looks like.) time restrictions. Bounded versions of the above temporal
The optional assertion part in the specification above definegperators are therefore introduced, in the style advocated by
the goalachieve]AmbulanceMobilization] in formal terms usinga  [Koy92], such as

real-time temporal logic inspired from [Koy92]. In this paper o_; (some time in the future within deadline )

we will use the following classical operators for temporal p_, (aways in the future up to deadiine d)

referencing [Man92]: . .
9l ] To define such operators, the temporal structares

O (in the next state) * (inthe previous state) enriched with a metric domain and a temporal distance
O (some time in the future) 4 (some time in the past) function dist: TxT — D which has all desired properties of a
O (always in the future) m (always in the past) metrics [Koy92]. We will take
W (always in the future unless) U (always in the future until) T the set of naturals
. . . . D: { d | there exists a natural n such thatd = n x u},
Formal assertions are interpreted over historical sequences where U denotes some chosen time unit
of states. Each assertion is in general satisfied by somedist(, j): |[j-i|xu
sequences and falsified by some other sequences. The NOR3ultiple units can be used --e. (second)m (minute, see
tion _ the AmbulanceMobilization goal above)d (day), etc; these are
HIDEP implicitly converted into some smallest unit. Theoperator

is used to express that assertiois satisfied by history at  then yields the nearest subsequent time position according to
time positioni (i O T), whereT denotes a linear temporal this smallest unit.

structure assumed to be discrete for sake of simplicity. Werhe semantics of the real-time operators is then defined
will also use the notation P for (H, 0) £ P. accordingly, e.g.

States are glqbal; thetateof the composite system at SOME ()£ o_ P iff (H,]) =P forsomej iwithdistG,j) d
time positioni is the aggregation of the local states of all its =
objects at that time position. The state of an individual object
instanceob at some time position is defined as a mappingIn the above goal declaration @fmbulanceMobilization, the
from ob to the set of values of alily's attributes and links at conjunction of the assertions formalizing the subgoesds
that time position. In the context of KAOS requirements, andentFiled, AmbulanceAllocated and AllocatedAmbulanceMobilized
historical sequence of states defines a behavior produced iyust entail the formal assertion of the parent goetulance-

(H,i)E OgPiff (H,j)|=Pforallj isuch thatdist(, j) <d

a scenario. Mobilization they refine together. Every formal goal refinement
The semantics of the above temporal operators is thef{lUS generates a corresponding proof obligation [Dar96].
defined as usual [Man92], e.g., In the formal assertion of the goainbulanceMobilization, the

predicatemobilized(a,inc) means that, in the current state, an

H)FOP iff (H, next(i)) E P ! : oh .
H)E iff  (H, next(i) £ instance of thevobilized relationship links variables andinc

(H)FOP iff (H,])F Pforsomej i of sort Ambulance and Incident, respectively. Themobilized
H)EOP iff (Hj)EPforallj i relationship andambulance entity are defined in other sec-
(H, ) E PUQ iff there existsaj isuch that (H, )E Q tions of the specification, e.g.,
and for every k,i k<j, (H, KE P Entity Ambulance
(H, ) E PWQ iff (H,i)EPUQor(H,i)EOP Has Loc: Location, Dest: Location, ...
. Relationship Mobilized
Note thatO P amounts toPW false. We will also use the Links Am%ulance {card 0:1}, Incident {card O:N}
standard logical connectiveS (and) O (or), = (not), — InformalDef An ambulance is mobilized for some incident iff a
(implies), ~ (equivalent) (I (strongly implies) = (strongly crew is assigned to it and its destination is the incident’s loca-
equivalent)with tion. _ _
. Domlnvar Oa: Ambulance, inc: Incident
POQ iff oe-0q Mobilized (a, inc) = (Ocr: Crew) Assigned (cr, a)
P-Qiff OP-Q) Oa.Dest = inc.Loc

Note thus that there is an implicit outBroperator in every  Thecrew type might in turn be declared by
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Agent Crew _ meaningful to the goals. Goal formulations refer to desired
Has Free: Boolean, Paramedics: Boolean or forbidden states that are reachable through state transi-

, . . tions; the latter correspond to applications of operations.

In the Qeclaratlons abpveoc is declared as an attribute of  The principle is to specify such state transitions as domain
the entity Ambulance (this attribute was used in the formal pre- and postconditions of operations thereby identified,

definition of the goakmbulanceMobilization); Free is declared and to identify the agents that could perform these opera-
as an attribute of the agetrew. tions.

As mentioned earlier, operations are specified formally by, Operationalization: derive strengthened pre-, post, and
pre- and postconditions in the state-based style [Pot91], e.9..trigger conditions on operations, and strengthened invari-

Operation Mobilize ants on objects, in order to ensure that all terminal goals
lcr;ptut Ip;lr?q%ntl e{lz::ge I{r;g} amb}, Mobilized are met. A number of formal derivation rules are available
utpu u S , L1V4 : H :
DomPre - (Ja: Ambulance) Mobilized (a, inc) to support the operationalization process [Dar93].
DomPost Mobilized (amb, inc) » Responsibility assignmen(a) identify alternative respon-

Note that the invariant defining theobilized relationship is sibilities for terminal goals; (b) make decisions among
not a requirement, but a domain property; it specifies what refinement, operationalization, and responsibility alterna-
being mobilized does precisely mean in the domain. The pre- tives, so as to reinforce non-functional goals [Myl92] --
and postcondition of the operatiombilize above are domain  €.9., goals related to reliability, performance, cost reduc-
properties as well; they capture corresponding elementary tion, load reduction, and so on; (c) assign the operations to
state transitions in the domain, namely, from a state where agents that can commit to guarantee the terminal goals in
no ambulance is mobilized to a state where some ambulancethe alternatives selected. The boundary between the sys-
is mobilized. The software requirements are found in the ter- tem and its environment is obtained as a result of this pro-
minal goals assigned to agents in the software-to-be, and incess, and the various terminal goals become requirements
the additional pre-, post-, and trigger conditions that need to or assumptions depending on the assignment made.

strengthen the corresponding domain conditions in order tqpe steps above are ordered by data dependencies; they may

ensure all such goals [Dar93, Dar95]. Assuming Ah®u-  pe running concurrently, with possible backtracking at every
lanceMobilization goal is assigned to the dispatching softwarestep_

one would derive from the above formal assertion for that

goal: goal elaboration

Operation Mobilize

RequiredPre for AmbulanceMobilization:

Available (amb) O TimeDist (amb.Loc, inc.Loc) 11 Cobject/operation Capt@'e
RequiredTrig for AmbulanceMobilization: =
® 3, (Ocl: Call) Responded (cl) O About (cl, inc) data dependency
The trigger condition captures an obligation to trigger the @oal Operationalizat@

operation as soon as the condition gets true and provided the
domain precondition is true. The specification will be consis-

tent provided the trigger condition and required precondi- Qesponsibility assignm§1t
tions are together true in the operation’s initial state.

. Figure 1 - Goal-oriented requirements elaboration
2.3 The elaboration method
Figure 1 outlines the major steps that may be followed ta3. GOAL OBSTRUCTION BY OBSTACLES

elaborate KAOS specifications from high-level goals. (Sec-ry;s section formally defines obstacles, their relationship to
tion 4 will discuss how obstacle analysis enter into this pro-

goals, and their refinement links; a criterion is provided for a
cess model.) set of obstacles to be complete; a general taxonomy of obsta-
+ Goal elaboration:elaborate the goaND/OR structure by  cles is then suggested. In the sequel, the general term “goal”
defining goals and their refinement links until assignablewill be used indifferently for a high-level goal, a requirement
goals are reached. The process of identifying goals, definassigned to an agent in the software-to-be, or an assumption
ing them precisely, and relating them through refinementssigned to an agent in the environment.
links is in general a combination of top-down and bottom-
up subprocesses [Lam95]; offspring goals are identified by.1 Obstacles to goals
asking How questions about goals already identified semantically speaking, a goal defines a set of desired behav-
whereas parent goals are identified by aski@r ques-  jors, where a behavior is a temporal sequence of states (see
tions about goals and operational requirements alreadgection 2.2). A positive scenario is a sequence of state transi-
identified. tions, controlled by corresponding agent instances, that pro-
Object captureidentify the objects involved in goal for- duces such a desired behavior (see Section 2.1). Goal
mulations, define their conceptual links, and describe theirefinement yields sufficient subgoals for the goal to be
domain properties by invariants. achieved.

 Operation captureidentify object state transitions that are Likewise, an obstacle defines a set of undesirable behaviors;
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a negative scenario produces a behavior in this set. Goalllows for the same obstacle to obstruct several different
obstruction yields sufficient obstacles for the goal to be vio-goals; examples of this will be seen later on in the paper.

lated; the negation of such obstacles yields necessary pre-is also worth noticing that, sincéchieve/Cease and/ain-

conditions for the goal to be achieved. tain/Avoid goals all have the general formGC, an obstacle
Let G be a goal andom a set of domain properties. An to such goals will always have the general far@cC; in the
assertiorO is said to be ambstacleto G in Domiff the fol- sequel,GC andOC will be called goal and obstacle condi-
lowing conditions hold: tion, respectively.

1.{O,Dom} | = G (obstruction

3.2 Completeness of a set of obstacles

2.{O, Dom} | false (domain-consistendy iy en some goal formulation, defensive requirements speci-
Condition(1) states that the negation of the goal is a logicalfication would require as many meaningful obstacles as pos-
consequence of the theory comprising the obstacle specificgible to be identified for that goal; completeness is desirable
tion and the set of domain properties available; condi@®n -at least for high-priority goals such as, esgfety goals.
states that the obstacle may not be logically inconsistent wit set of obstacles Q ..., O, to goal G in Dom isdomain-

the domain theory. Clearly, it makes no sense to reason abou | th G iff the followi dition holds:
obstacles that are inconsistent with the domain. In terms of®MPletewith respect to G 1ff the following condition holds:

behaviors, the consistency condition is semantically equiva- {-04,...,7Q, Dom}|= G (domain-completeneps
lent to This condition intuitively means that if none of the obstacles
2. There exists a scenaBproducing a behavid in the set may occur then the goal is satisfied.
suchthat  H O (feasibility) It is most important to note that completeness is a notion rel-

This condition now states that the obstacle specification igtive to what is known about the domain. To make this clear,
satisfiable through one behavior at least, produced by #et us consider the following example introduced in [Jac95]
(domain-consistent) scenario of agent cooperation. after a real plane incident. The goal

As a first simple example, consider a library system and the  MovingOnRunway O ReverseThrustEnabled

following high-level goal stating that every book requestcan e AND-refined, using the milestone refinement pattern
should eventually be satisfied: [Dar96], into two subgoals:

Goal Achieve [BookRequestSatisfied]

RefinedTo SatisfiedWhenAvailable, CopyEventuallyAvailable, MovmgOnRgnway 0 WheelsTurning (Ass)
RequestPending WheelsTurning O ReverseThrustEnabled  (Rq)
FormalDef [ bor: Borrower, b: Book The second subgoal is a requirement assigned to a software
Requesting (bor, b) agent; the first subgoal is an assumption assigned to an envi-
0 ¢ (Obc: BookCpy) [Copy (be, b) O Gets (bor, bc)] ronment agent. Assumptigxsswill be violated iff
An obstructing obstacle to that goal might be specified by ¢ (MovingOnRunway 0= WheelsTurning)  (N-Ass)
the following assertion: Assume now that the following necessary conditions for
Obor: Borrower, b: Book wheels to be turning are known in the domain:
¢ { Requesting (bor, b) .
00 (O bc: BookCpy) [Copy (bc, b) O - Gets (bor, bc)] } WheelsTurning O WheelsOut (b1)
. . . WheelsTurning O -~ WheelsBlocked D2
Condition (1) trivially holds as the assertion amounts to the "9 ) (b2)
WheelsTurning O - Aquaplaning (D3)

negation of the goal (remember ti/at Q iff O (P - Q), and ) )
-0 (P - Q) iff o (P 0~ Q)). This obstructing assertion is satis- The following obstacles can then be seen to obstAsstin

fiable, e.g., through the classical starvation scenario [Dij71fhat domain since each of them then entdilAss

in which, each time a copy of a requested book becomes ¢ (MovingOnRunway O - WheelsOut) (01)
available, this copy gets borrowed in the next state by a bor- ¢ (MovingonRunway [ WheelsBlocked) (02)
rower different from the requesting agent. o (MovingOnRunway 0 Aquaplaning) (03)

To further illustrate the need for conditiq@), consider the | order to check the domain completeness of these obstacles
following goal for some device control system (expressed ifye take their negation:

propositional terms for simplicity):

) ] MovingOnRunway 0 WheelsOut (N-01)
Running O PressureTooLow 00 AlarmRaised MovingOnRunway [ - WheelsBlocked (N-02)
It is easy to see that conditiqa) would be satisfied by the MovingOnRunway [ ~ Aquaplaning (N-03)

candidate obstacle _ Back to the definition of domain-completeness one can see
PressureTooLow U Startup O - AlarmRaised that the set of obstacles {01, 02, O3} will be complete or

~ ¢ [Running [1PressureTool.ow U Startup] not dependent on whether or not the following property is
which logically entails the negation of the goal above; how-known in the domain:

ever this candidate_is inconsistent With_ the domain property MovingOnRunway
stating that the device cannot be both in startup and running  gwheelsout [~ WheelsBlocked [~ Aquaplaning ~ (D4)
modes: 0 WheelsTurning
Running O - Startup Obstacle completeness thus really depends on what valid
Note that the above definition of an obstructing obstacleproperties are known in the domain.
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3.3 Obstacle refinement * Hazard obstacles are obstacles that obstsagity goals;

Like goals, obstacles may be refinetlvD-refinement links ~ « Threat obstacles are obstacles that obstsactrity goals.

mgﬁt@ﬁi ﬁ?e(;tr’g?ﬁ; g%?sseitHOf %lébggﬁg%cslf;cfggl:ﬁdcgmg‘“h obstacle categories may be further specialized into sub-
); fying !:ategories --e.Qgndiscretion and Corruption obstacles are sub-

?ha;'%rg slfailsgflg?rl:fnnte%);?Iltilr?l?slrr]ntaherg?arpeag]nfzrb:?zat::slfeyltgg categories ofThreat obstacles that obstruct goals in the
! Y Confidentiality and Integrity subcategories ofecurity goals,

an alternative set of refinements; this means that SatiSfyi.nf;’espectively [Amo94]wrongBelief obstacles form a subcate-
one of the refinements is a sufficient condition in the domamgOry of Inaceurac obstécIeS' and so on
for satisfying the obstacle. The obstacle refinement structur y ' '

for a given goal may thus be represented bysaD/OR  Knowing the (sub)category of a goal may prompt a search
directed acyclic graph. for obstructing obstacles in the corresponding category.

A set of obstacles Q ..., O, is an AND-refinementof an More specific goal subcategories W|_II of course resu_It in
b | i the followi diti hold: more focussed search for corresponding obstacles. This pro-
obstacle O iff the following conditions hold: _ vides the basis for heuristic identification of obstacles, as
1. {0,00,0..00, bom} | O (entailmen} discussed in Section 5.4.

2. {0,00,0...00,, Dom} | false (consistency)

o e ) 3.5 Goal obstruction vs. goals divergence
In general one is interested in minimal AND-refinements, in

which case the following condition has to be added: In the context of handling conflicts between multiple goals,
N L we have introduced in [Lam98b] the notion of divergent
3. forall i {L};0;, Dom} | O (minimality) goals. Goals G1, G2, ..., Gn are said toddeergentiff there
A set of obstacles Q ..., G, is anOR-refinemenbf an obsta-  exists a boundary condition that makes them logically incon-
cle O iff the following conditions hold: sistent with each other in the domain considered. We have
1. for all i {O; , Dom} |= O (entailmen} shown that an obstacle corresponds to a boundary condition
. ' _ for the degenerate case where n=1. As a consequence, there
2. foralli: {O; , Dom} | false (consistency) are generic principles common to obstacle identification/res-

In general one is interested in complete OR-refinements iwlution and divergence identification/resolution. However,
which case the domain-completeness condition has to bieandling exceptions to the achievement of a single goal and
added: handling conflicts between multiple stakeholders’ goals cor-
3. {~0;0..0-Q, Dom}|== O (completeness)  respond to different problems and foci of concern for the
requirements engineer. For example, the above notions of
: : completeness and refinement are specifically introduced for
\(/:vci)trﬁFr):eeStSegtFigzﬂggrrnngirr]ltccgrrgrp])(reis?#%hglﬁ_:ger\gi:e?tﬁ):;ﬁ?;?esg obstacle analysis. The classification of obstacles and the heu-
" ristic rules for their identification is specific to obstacle anal-
One may sometimes wish to consider all disjoint alternativeysis (see Section 5.4). As will be seen below, the common
subobstacles of an obstacle; the following additional condigeneric principles for identification/resolution yield specific
tion has to be added in such cases: instantiations and specializations for obstacle analysis. For
4. foralli j:{Q, o} Dom} |= false (disjointness) example, the goal regression procedure can be simplified

Section 5.3 will present a rich set of complete and disjointS€€ Section 5.1); the completion procedure is specific to
obstacle refinement patterns. obstacle analysis (see Section 5.2); obstruction refinement

. o _ i patterns are different from divergence patterns (see Section
Chaining the definitions in Sections 3.1 and 3.3 leads to thg; 3),

following straightforward proposition:

If O’ is a subobstacle within an OR-refinement of an obstaclet. INTEGRATING OBSTACLES IN THE RE PROCESS
O that obstructs some goal G, then O’ obstructs G as well.

In the plane landing example above, the{gst, 02, O3)is a

First-sketch specifications of goals, requirements and
3.4 Classifying obstacles assumptions tend to be too ideal; they are likely to be occa-
ionally violated in the running system due to unexpected
gent behavior [Lam95, Pot95]. The objective of obstacle
nalysis is to anticipate exceptional behaviors in order to

As mentioned in Section 2.1, goals are classified by type o
requirements they will drive about the agents concerned. Fof

each goal category, corresponding obstacle categories M%rive more complete and realistic goals, requirements and
be defined. For example, assumptions

* Non-satisfaction obstacles are obstacles that obstruct the safy gefensive extension of the goal-oriented process model
isfaction of agent requests (thatsatisfaction goals); outlined in Section 2.3 is depicted in Figure 2. (As in Figure

* Non-information obstacles are obstacles that obstruct thel, the arrows indicate data dependencies.) The main differ-
generic goal of making agents informed about object statesnce is theobstacle analysis lootroduced in the upper
(that is,Information goals); right part.

* Inaccuracy Obstacles are obstacles that obstruct the considDuring elaboration of the goal graph by elicitation and by
tency between the state of objects in the environment antefinement, obstacles are generated from goal specifications.
the state of their representation in the software (that isSuch obstacles may be recursively refined --see the right cir-
Accuracy goals); cle arrow in Figure 2. (Section 5 will discuss techniques for



supporting the obstacle identification/refinement process.)

O

@bject/operation captge

goal elaboration

(obstacle identificat@
)

obstacle resolutioy

(goal operationalizat@1

Qesponsibility assignm@ﬂ

Fig. 2 - Obstacle analysis in goal-oriented requirements elaboration

The generated obstacles are resolved which results in a goal
structure updated with new goals and/or transformed ver-
sions of existing ones. The resolution of an obstacle may be
subdivided into two steps [Eas94]: the generation of alterna-
tive resolutions, and the selection of one among the alterna-
tives considered. (Section 6 will discuss different operators

for resolution generation.)

The new goal specifications obtained by resolution may in
turn trigger a new iteration of goal elaboration and obstacle
analysis. Goals obtained from obstacle resolution may also
refer to new objects/operations and require specific opera-

tionalizations.
A number of questions arise from this process model.
» Obstacle identification:From which goals in the goal

graph should obstacles be generated? For some given goal

how extensive should obstacle generation be?

— The more specific the goal is, the more specific its

obstructing obstacles will be. A high-level goal will
produce high-level obstacles which will need to be

refined significantly into sub-obstacles in order to iden-
tify precise circumstances whose feasibility might be

prevention, goal substitution, agent substitution, goal
deidealization, or object transformation; obstacle reduc-
tion; and obstacle tolerance, with substrategies such as
obstacle mitigation or goal restoration. (Some of these
strategies have been studied in other contexts of handling
problematic situations --e.g., deadlocks in parallel systems
[Cof71]; exceptions and faults in fault-tolerant systems
[And81, Cri91, Jal94, Gar99]; feature interaction in tele-
communication systems [Kec98]; inconsistencies in soft-
ware development [Nus96]; or conflicts between
requirements [Rob97, Lam98b]).

— The range of strategies to consider and the selection of
a specific strategy to apply will depend on the likeli-
hood of occurrence of the obstacle, on the impact of
such occurrence (in number of goals being obstructed
by the obstacle), and on the severity of the conse-
guences of such occurrence (in terms of priority of the
goals being obstructed). Risk analysis and domain-spe-
cific cost-benefit analysis need to be deployed in order
to provide a definite answer. Such analysis is outside
the scope of this paper.

— The selection of a specific resolution should not be
done too early in the goal/obstacle analysis process. An
obstacle identified at some point may turn out to be
more severe later on (e.g., because it then appears to
also obstruct new important goals being elicited). Pre-
mature decisions may stifle the consideration of alter-
natives that may appear to be more appropriate later on
in the process [Eas94].

» Goal-obstacle analysis iterationVhen should the inter-
twined processes of goal elaboration and obstacle analysis
stop?

The goal-obstacle analysis loop in Figure 2 may terminate
as soon as the obstacles that remain are considered accept-
able without any resolution. Risk analysis needs again to
be carried out together with cost-benefit analysis in order
to determine acceptability tresholds.

assessed through negative scenarios of agent behavigtome of the issues above will be addressed in a more spe-
It is much easier and preferable to elicit/refine what iscific way for the obstacle analysis of the London Ambulance

wanted than what isot wanted. We therefore recom- System in Section 7.

mend that obstacles be identified fraerminal goals
assignable to individual agents.

5. GENERATING OBSTACLES

— The extensiveness of obstacle identification willAccording to the definition in Section 3.1, the identification
depend on the category and priority of the goal beingof obstacles obstructing some given goal in the considered
obstructed. For example, obstacle identification shouldlomain proceeds by iteration of two steps:

be exhaustive foBafety or Security goals; higher-pri-

lower-priority ones. Domain-specific cost-benefit anal-
ysis needs to be carried out to decide when the obstac
identification process should terminate.

 Obstacle resolutionFor some given obstacle, how exten-

>  g0: lighe (1) Given the goal specification, find some assertion that may
ority goals deserve more extensive identification than

obstruct it;

Check that the candidate obstacle thereby obtained is con-
sistent with the domain theory available.

Step (2) corresponds to a classical consistency checking
roblem in logic; it can be carried out using deductive verifi-

sive should the generatio_n of altern_ative resolutions be2tion techniques (e.g., [Man96], [Owr95]). Alternatively
For some set of alternative resolutions, how and wheryne may check the satisfiability of the candidate obstacle in

should a specific resolution be selected?

the domain by finding out some negative scenario (see the

As will be seen in Section 6, the generation of alternativefeasibility condition in Section 3.1). This can be done manu-
resolutions correspond to the application of different stratally [Pot95], with some formal support as shown below, or
egies for resolving obstacles. The strategies include obstarsing automated techniques based on planning [Fic92] or
cle elimination, with substrategies such as obstaclenodel checking [Hol97, McM93, Jac96]; in the latter case

8



some operational model of the system needs to be available (01) ¢ [m: Meeting, p: Participant

. | O Inf O i
We therefore concentrate on stgpand present techniques Dm;'}de?_'éﬁ)a;n()m) Sorénffvézig;)t ( C;r)“?emem (p.m)
for deriving candidate obstacles whose domain consistency/ B B P

feasibility needs to be subsequently checked. We succedhis obstacle covers two situations, namely, one where some
sively discuss: meeting never takes place and the other where a participant

. . invited to a meeting whose date/location was first convenient
» aformal calculus of preconditions for obstruction, to her is no longer convenient when the meeting takes place.
« the use of formal obstruction patterns to shortcut formalUsing the OR-refinement techniques decribed in Section 5.3

derivations, we will thereby obtain two subobstacles that could be named

. - . . MeetingPostponedindefinitely and LastMinutelmpediment , respec-
 the use of identification heuristics based on obstacle clas- grostp y P b

sifications as a cheap, informal alternative to formal tech-ively' Scenarios salisfying their respective assertion are
nigues P, straightforward in this case.

' Assuming the domain theory takes the form of a set of rules

5.1 Regressing goal negations A O C, atemporal logic variant of the regression procedure

The first technique is based on the obstruction conditiorfoUnd in [Lam91] can be described as follows.
defining an obstacle in Section 3.1. Given the goal assertion /nitial step:

G, it consists of calculating preconditions for obtaining the take O:=-G

negation— G from the domain theory. Every precondition inductive step:

obtained defines a candidate obstacle. This may be achieved let A O C be the domain rule selected,

using a regression procedure which can be seen as a counter- with C matching some somesubformula L in O whose
part of Dijkstra’s precondition calculus [Gri81] for declara- occurrences in O are all positive;

tive representations. Variants of this procedure have been then K:=mgu(L,C);

used in Al planning [Wal77], in explanation-based learning O=0[L/AH

[Lam91], and in requirements engineering to identify diver-This procedure relies on the following definitions and nota-
gent goals [Lam98b]. We first explain the general procedurdions:

before showing how it can be specialized and simplified for — for a formula schemé(u) with one or more occurrences
obstacle generation. of the sentence symbaol an occurrence af is said to be
Consider a meeting scheduler system and the goal stating Positive in¢ if it does not occur in a subformula of the
that intended people should participate to meetings they are form p « g and it is embedded in an even (explicit or

aware of and which fit their constraints: implicit) number of negations;
Goal Achieve [InformedParticipantsAttendance] — mgu (F1, F2) denotes the most general unifierofindr2;
FormalDef 00 m: Meeting, p: Participant — FEu denotes the result of applying the substitutions from
Intended (p, m) O Informed (p, m) O Convenient (p, m) unifierutor;
O ¢ Participates(p, m) — F[F1/F2] denotes the result of replacing every occurrence
The initialization step of the regression procedure consists of of FLin formular by F2.
taking the negation of that goal which yields The soundness of the regression procedure follows from a
(NG) ¢ Om: Meeting, p: Participant monotonicity property of temporal logic [Man92, p.203]:
Intended (p, m) O Informed (p, m) 0 Convenient (p, m) If all occurrences of in ¢(u) are positive, then
00 - Participates(p, m) ®0 - e 0 @)
(Such initialization may already produce precise, feasible s valid.
obstacles in some cases, see other examples below.) Every iteration in the regression procedure produces poten-

Suppose now that the domain theory contains the f0||OWin€{ia”y finer obstacles to the goal under consideration; it is up
property: o the specifier to decide when to stop, dependent on whether

0 m: Meeting, p: Participant the obstat_:les qbtained are mea_ningful and precise_ganough ®

- " _ to easily identify scenarios satisfying them, and (ii) to see
Participates(p, m) [ Holds (m) U Convenient (p. m) appropriate ways of resolving them through strategies dis-
This domain property states that a necessary condition for aussed in Section 6.

person to participate in a meeting is that the meeting is beingh the example above only one iteration was performed.
held and its date/location is convenient to her. A logicallyRegressing obstacl@1) above further through a domain

equivalent formulation is obtained by contraposition: property like
(D) O m: Meeting, p: Participant Convenient (p, m) 0 m.Date in p.Constraints
- [ Holds (m) O Convenient (p, m) ] O - Participates(p, m) Om.Location in p.Constraints

The consequent i) unifies with a litteral in(NG); regress- would have produced finer sub-obstacles to the ge_lalave

ing (NG) through (D) then amounts to replacing inG) the  [InformedParticipantsAttendance], r]amely, the date being no
matching consequent {p) by the corresponding antecedent. longer convenient or the location being no longer convenient
We have thereby formally derived the following potential When the meeting takes place.

obstacle: Exploring the space of potential obstacles derivable from the



domain theory is achieved yacktrackingon each domain TW N. For the plane landing example in Section 3.2, it gen-
rule applied to select another applicable one. After havingerates the obstacles O1, 02, and O3 to the assumpiisin
selected rulgD) in the example above, one could select thea straightforward way.

following other domain rule stating that another necessaryn practice, the domain theory does not necessarily need to
condition for participation is that the meeting date the partic,g very rich at the beginning. Given a target condiffoin a
ipant has in mind corresponds to the actual date of the meefja| such as € ¢ T, the requirements engineer miagre-

ing:
(D) 0O m: Meeting, p: Participant
Participates(p, m) O UM: Beliefy(m.Date = M) Um.Date = M

The deonticBelief,q construct in this formalization is often

used to captur@ccuracy goals andnaccuracy obstacles; it is
linked to thexnows,q construct by the following property:

Knows,g(P) = Beliefyg(P) OP

whereag denotes an agent instaneea fact, and the KAOS
built-in predicatexnows,,(P) means that the truth value ef

mentally elicit necessary conditiofar T by interaction with
domain experts and clients.

To give a more extensive idea of the space of obstacles that
can be generated systematically using this technique, Figure
3 shows a goadnD-refinement tree, derived by instantiation

of a frequent refinement pattern from [Dar96], together with
corresponding obstacles that were generated by regression
(universal quantifiers have been left implicit).

5.2 Completing a set of obstacles

in ag's local memory coincides with the actual truth value of The domain-completeness condition in Section 3.2 suggests

P.

Regressing the goal negatignG) above through property

(D) now yields the following new obstacle:
(02) ¢ Om: Meeting, p: Participant
Intended (p, m) O Informed (p, m) O Convenient (p, m)
0 O OM: - [ Belief,(m.Date = M) ODm.Date = M ]

This obstacle, in thenaccuracy category, could be namewdr-
ticipantBelievesWrongDate.

a procedure for completing a set of obstacleg Q, Q,
already identified for some goal G.
As noted in Section 3.1, G has the general formGC
whereas @has the general formmOGC;. The completion pro-
cedure can be described as follows.
1. Form the complementary assertion
O*= ¢ (=-GCO-0C,0...0-0Cy);

2. Check the consistency of O* with Dom;

Further backtracking on other applicable rules would gener- 3 it o* is domain-consistent and too unspecific, regress it through

ate other obstacles obstructing the gaaldieve[InformedPartic-
ipantsAttendance] such as, €.0. ParticipantNotInformedInTime,
InvitationNotKnown, etc.

Intended (p, m) O ¢ Participates(p, m)

Intended(p,m)
O Informed(p,m)
O Convenient(p,m)
0 ¢ Participates(p,m)

Intended(p,m)
0 ¢ [ Informed(p,m)
O Convenient(p,m)]

N

O Om, p:
Intended(p,m)
00 - Convenient(p,m)

Intended(p,m)
0 O Intended(p,m)

O Om, p:
Intended(p,m)
00 = Informed(p,m)

¢ Om, p:
Intended(p,m)
¢ = Intended(p,m)

LastMinutelmpediment
ParticipantBelievesWrongDate

ParticipantNotInformedInTime
InvitationNotKnown
MeetingPostponedindefinitely

Fig. 3 - Goal refinement and obstacles derived by regression

The examples above exhibisanplified procedure for gen-
erating obstacles tachieve goals of the form C ¢ T:

1. Negate the goal, which yields a pattern ¢ (C OO = T);

2. Find necessary conditions for the target condition T in the
domain theory;

3. Replace the negated target condition in the pattern resulting
from step 1 by the negated necessary conditions found; each
such replacement yields a potential obstacle. If needed, apply
steps 2, 3 recursively.

Dom or generate subobstacles using refinement patterns, to
yield finer obstacles SO* ;

4. If needed, apply steps 1-3 recursively to the SO*'s.
It is easy to check that the the set {O*;Q.., Q;} obtained
by Step 1 satisfies the domain-completeness condition in
Section 3.2 in which the domain is temporarily not consid-
ered. Considering the domain in the next steps allows O* to
be checked for consistency and refined if necessary. A fre-
guent simplification arises from Step 3 when O* has the
form P 0 P1 and a domain property is found having the form
PO P1. A one-step regression then yields P,

Back to the plane landing example in Section 3.2, Step 1 of
the completion procedure applied to the assumption

MovingOnRunway O WheelsTurning (Ass)
and the obstructing obstacles
¢ (MovingOnRunway - WheelsOut) (01)
0 (MovingOnRunway [0 WheelsBlocked) (02)
0 (MovingOnRunway [ Aquaplaning) (03)

yields

O0= ¢ (MovingOnRunway [1- WheelsTurning

0OWheelsOut [ - WheelsBlocked [0 - Aquaplaning)

This candidate obstacle is inconsistent with the domain if
property(D4) is found inDom (see Section 3.2). If not, fur-
ther regression/refinement throu@fom should be under-
taken to find out more specific causes/subobstacles of O* in
order to complete the s@D1)-(03). Such refinement may be
driven by patterns as we discuss now.

5.3 Using obstruction refinement patterns

A dual version of this simplified procedure can be used forAs introduced in Section 3.3, obstacles may AND/OR-

goals having thevaintain patterns Q1 T,CO O T, or CO
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refined into subobstaclesAND-refinements yield more



“primitive” obstacles, that is, obstacles for which (i) negative respectively.

scenarios can be found more easily to show their feasibility,

and (ii) effective ways of resolving them can be envisioned o(COo-T)
more easily. On another hand, domain-complererefine- Z

ments are in general desirable for critical goals; they yield a
domain-complete set of alternative subobstacles that can b

IToP| IO(CDEI—'m [ToP] |eCoDl-TU-P])

made disjoint if necessary. (1-step regression) (starvation)
Section 5.1 already contained examples of obstacle refine- lm

ments. The obstacleastMinutelmpediment was in fact OR-

refined into two alternative subobstacles using the domain

theory, namely, the date being no longer convenanthe COOTO (-TWM) | IO_(C 0o - M)
location being no longer convenient. Figure 3 also shows an (milestone)

example ofOR-refinement of the obstacle obstructing the
goal in the middle of the goal tree; this obstacle, not explic-
itly represented there, has been formaiig-refined into the
two subobstacles in the middle (which could be nameet- 0(Coo-T) 0oe-m
ingNeverNotified and MeetingNeverConvenient, respectively).

The latter subobstacles may be refined in turn. Similarly, the [0 0-T]| [o(CDOoB)| [BO o-T| [o(CO0B)
obstaclerarticipantBelievesWrongDate that was derived in Sec-

Fig.4 - AND-refinement patterns for obstacles to the goal CO ¢ T

: : : . i 1-state back
tion 5.1 could beOR-refined into alternative subobstacles (baCkWérd chain) (1-state back)

like WrongDateCommunicated, ParticipantConfusesDates, €tc. Fig.5 - AND-refinement patterns for obstacles to the goal C0 O T
The AND/OR refinement of obstacles may be seen as a for-

mal, goal-orientedform of fault-tree analysis [Lev95] or ¢CO(=NU(=ND=T))

threat-tree analysis [Amo094]. Such analysis is usually done

in an informal way through interaction with domain experts

and clients; our aim here is to derive complete fault/threat- IM ©(CO(~-NU(=NOB))

trees formally. (1-step regression)

The regression procedure in Section 5.1 is a first technique t8ig. 6 - AND-refinement pattern for obstacles to the goal CO TW N

achieve this; alternatively, one may use obstacle refinement

patterns to shortcut the formal derivations involved in theTherootassertion in eachND-tree corresponds to the nega-
regression procedure. tion of the goal being obstructed. (Remember that there is an

implicit outer O-operator in every strong implication; this
The general principle is similar to goal refinement patternsauses the outer-operator to appear there.) Theft child
[Dar96] and divergence detection patterns [Lam98b]. Aassertion may correspond to a domain property, to another
library of generic refinement patterns is built; each pattern isequirement/assumption, or to a companion subobstacle. In
a refinement tree where the root is a generic assertion to ke 1-step regression andstarvation patterns, it will typically
refined and the leaves are generic refining assertions. The@rrespond to a domain rulelT P. In themilestone pattern,
correctness of each pattern is proved formaifce and for it defines a necessary milsto for reaching the target
all. predicatel. The left child assertion often guides the identifi-

) e cation of the subobstacle captured by tight child asser-
The patterns for goal obstruction are specific in that the rootg,

of refinement trees are negated goals. The genera_uon bstacle refinement patterns may thus help identifying both
(sub)obstacles to some goal then proceeds by selecting P& ibobstaclesand domain propertiesAlso note that thel-

terns whose root matches the negation of that goal, and béﬁep regression pattern in Figures 4 and 6 correspond to the

instantiating the leaves accordingly. The requirements engkeqression procedure in Section 5.1 where only one iteration
neer is thus relieved of the technical task of doing the formals performed.

derivations required in Section 5.1. The patterns can be se

e : i -
as high-level inference rules for deriving finer obstacles. AS an example of using thetarvation patter in Figure 4,

consider a general resource management system and the goal
All obstruction patterns in this paper were proved formally O u: User, r: Resource
correct using the STeP verification tool [Man96]. As we will Requesting (u, r) L ¢ Allocated (r, u)
see, the notion of correctness is different AD- andOR- ~ The domain property
refinement patterns. We discuss them successively. Allocated (r, u) O - Ou’ u: Allocated (r u’)
suggests reusing tlsearvation pattern with instantiations
C: Requesting (u, r)
Figures 4-6 show a sample of frequéND-refinement pat-  T: Allocated (r, u) , P: = Ou’ u: Allocated (r u’)
terns for obstacles that obstrusthieve and Maintain goals, = The following starvation obstacle has been thereby derived:

5.3.1AND-refinement patterns
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¢ Ou: User, r: Resource

Requesting (u, r) 00 [ - Allocated (r, u)U [’ u: Allocated (r u’) | assertions subobstacle
As an example of using the 1-step regression pattern in Fi QUCO 0-Q, ¢o[pPOQOC]
ure 6, consider the LAS ambulance dispatching syste POCOoP
[LAS93] and the goal stating that an ambulance allocated 10 QOCOo0-Q, 0[=POQOC]

an incident should remain allocated to that incident until i

. e X -POCOOP

has arrived at the incident scene. This goal may be formal °

ized by -POCOOP, O[~-PDO-QOC]
0 a: Ambulance, inc: Incident -QOCO 0-Q

Allocation (a, inc) O Allocation (a, inc) W Intervention (a, inc)

We know from the domain that an ambulance can be allo
cated to at most one incident at a time:

TABLE 3. Patterns of obstacles to the godl (P - Q)

Allocation (a, inc) O - Oinc’ inc: Allocation (a, inc’) assertion subobstacle
This property suggests using the 1-step regression pattq backstate | p0 o-q Op
with the following instantiations
C: Allocation (a, inc), T Allocation (a, inc) TABLE 4. Patterns of obstacles to the goal g
N: Intervention (a, inc) , B: Dinc’ inc: Allocation (a, inc’) A more extensive set of obstacD-refinement patterns is
The following subobstacle is thereby derived: given in Tables 1-4. Each table corresponds to a specific kind
6 Da: Ambulance, inc: Incident of goal. Each row in a table representsfD-refinement of
Allocation (a, inc) the negation of the goal associated with the table. The lower
00 Intervention (a, inc) U arow is in a table, the more specific the corresponding asser-
- Intervention (a, inc) O0inc’  inc: Allocation (a, inc’) tion and subobstacle are. The assertions in the first column

may represent a domain property, a requirement or a com-

This obstacle captures a situation in which an ambulancg, i '\ \hobstacle. Table 4 may be seen to correspond to the
allocated to an incident becomes allocated to another incig, .\ v 4" construction of a fault-tree from a state machine
dent before its intervention at the first one.

[Rat96]; p andqg are intended to be state predicates there.

All AND-refinement patterns in Tables 1-4 were proved cor-

assertion subobstacle rect using STeP [Man96] --by this we mean that the entail-
1-step regress| SO P O[ROO-P] ment and consistency conditions in Section 3.3 were
sop O[RO(=SUD=P)] formally verified.
starvation | SO P O[ROO(=SU=P)] Section 7 will illustrate the use of various patterns from
missing source| RO SO P O[RO-P] Tables 1-4.
non- RO¢SO PWs O[RDO 5.3.2 Complet®R+efinement patterns
persistence -sU@EPO-S)] . . .
on- R00S D OIRO(~SU-P)] Figures 7 shows a pattern for refining the obstruction of an

Achieve goalR O ¢ Sinto a complete set of disjoint alterna-

ist . ; o
persistence PW (P DS) tive subobstacles (see Section 3.3 for the definition of com-

milestone | ROOSO -SWM | O[ROO-M] pleteness and disjointness). The goal negati1 0 - S)is
blocking BO O-S O[RO(-SUIB)] AND-refined into two child nodes; the left child assertion
substituion | SO 0-SOm=S | O[RO0S] may t_)e a dor_nain property, an assumptio_n ora re_quirem_ent
, 5 o (in this case it defines what a milestone is); the right child
strengthening | RO S O [ROD-P] node is aroR-node refined into two alternative subobstacles.
O P OPW S)]
starvation ROOSO O[RO(-SUO-P])] 0o(COo-T)
O [P OPW S)]
ROOSD O[RO
0[P OPW )] (~sU(~s00-P)] COOTO (GTWM) | S

TABLE 1. Patterns of obstacles to the go&® 0 ¢ S |° Coo =~ M)l I<> COGMUMOD=T) )]I

(milestone)
assertion subobstacle ) )
Fig. 7 - OR-refinement pattern for obstacles tothe goal CO ¢ T

1-stepregress| QO C O[PO¢-C]

backward | CO ¢-Q O[PDOOC] As an example of using this pattern, consider the meeting
l-stateback | CO 0-0Q O[POOC] scheduler system again and the goal stating that participants’

time/location constraints should be provided if requested
TABLE 2. Patterns of obstacles to the goa# 0 0 Q [Lam95]:
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O m: Meeting, p: Participant
obstacle

O[ROI-Q2]

obstacle
O[RI-Q1]

assertion

An obvious milestone condition for a participant to provid Lo R U
her constraints is that a request for constraints is reaching TagLE 6. Obstacle OR-refinement for the goall (P - Q)
her. This suggests using tmelestone pattern in Figure 7
with the following instantiations:

ConstraintsRequested (p, m) O ¢ ConstraintsProvided (p, m)

These examples suggest tlla¢ more an obstacle is refined
the closer one gets to an explicit scenarf@bstacle refine-
ment patterns may thus be used for suggesting feasible sce-
narios as well.

The milestone pattern then generates the formalized domal)g more extensive set of complete and disjad-refinement

property patterns is given in Tables 5-6. Each table corresponds to a
0 m: Meeting, p: Participant specific kind of goal. Each row in a table represents a refine-

ment of the negation of the goal associated with the table;

the thick vertical line separator representsAdND whereas

the double line separators representtét Some of the pat-

together with a complete set of alternative subobstacles tgerns in these tables will be used in the obstacle analysis for

the goal above: the London Ambulance System in Section 7.

C: ConstraintsRequested (p, m) T: ConstraintsProvided (p, m)
M: RequestReaches (p, m)

ConstraintsRequested (p, m) [J¢ ConstraintsProvided (p, m)
O [ - ConstraintsProvided (p, m) W RequestReaches (p, m) ]

¢ Om: Meeting, p: Participant All OR+efinement patterns in Tables 5-6 were proved correct

ConstraintsRequested (p, m) 0 0 - RequestReaches (p, m) using STeP [Man96] --by this we mean that the entailment,
or consistency, disjointness, and domain-completeness condi-
tions in Section 3.3 were formally verified. In the latter case,
the formulas in the assertion column were taken as generic
domain property forming Dom.

¢ Om: Meeting, p: Participant
ConstraintsRequested (p, m) O

~ RequestReaches (p, m)U! 5.4 Informal obstacle identification

RequestReaches (p, m) 0O - ConstraintsProvided (p, m .. . .
a (P, m) (P, m) Informal heuristics may be used to help identify obstacles

The refinement may then proceed further to find out finekyithout necessarily having to go through formal techniques
subobstacles in each alternative; this will yield causes for &very time. Although they are easier to deploy, the result will
request not reaching an invited participant and causes for ge much less accurate, and not guaranteed to be formally
participant not providing her constraints in spite of thecorrect and complete.

request having reached her, respectively. Such heuristics are rules of thumb taking the forif:the

specification has such or such characteridfies) consider

assertion obstacle obstacle obstacle such or such type of obstacle to it". The general principle is
s-poo|o(ROO-P] [[0[ROD-Q] ||O[R somewhat s.lr-n-llar in spirit to the use of HAZOP-like guide-
00P 000 words for eliciting hazards [Lev95] or, more generally, to the
00-(PO0Q)] use of safety checklists [Jaf91, Som97].
sop O[ROO-P] || O[ROOP Our heuristics are based on goal/obstacle classifications (see
00-S] S_ectlon 3.4), on formal_ obstrpc_tlon patterns we have identi-
=T OIRD O[RDOOP fied, and on past experience in identifying obstacles. General
~sUO-P] 00-S] heuristics are independent of any particular class of goals;
more specific heuristics are associated with some specific
soPpP O[RO g[RV\?PDS class.
- sU - P
O sU=PI D(D _.(5] ) General heuristicsefer to the KAOS meta-model only (see
RO0S O[RO=P] O[ROP the concepts defined in Section 2.1). Here are a few exam-
0p 00-S] ples to illustrate the approach.
ROOS O[RO=-SsU O[ROPWS « If anagent has tomonitor/control someobject in order to
oPWSs (-PO-9) 00-S] guarantee theoal it is assigned to then consider the fol-
R00sO | O[RO=-SU O[ROO-S lowing types of obstacles:
PW (PCS) - P] OPW (PIS) ] — InfoUnavailable: the necessary information about the
ROOS O[ROO-M] || O[RO=MU object state is not available to tlagent,
0 -~ SWMm MOO-9)] — InfoNotInTime: the necessary information about the
BOO-S | 0[RO=-SUB] |[¢[ROO=S object state is available too late;
0-BW 5] — WrongBelief: the necessary information about thigect
POO-S | O[ROOP] O[ROO=S state as recorded in tlhgent's memory is different from
Om-S 00-P] the actual state of this object. (In the meeting scheduler

TABLE 5. Obstacle OR-refinement for the goaR 0 ¢ S
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example, this heuristics might have helped identifying
obstacles likeParticipantBelievesWrongDate --see Section



5.1, for an electronic reviewing process an obstacle likeMore specific heuristicsefer to goal classifications. Here are
ReviewerBelievesWrongDeadline could be identified in a afew examples.

similar way.) * If a MessageDeliveredoal in the Informationgoal category
The WrongBelief obstacle class can be further refined into is consideredhen consider obstacles likélessageUndeliv-
subclasses such as: ered MessageDeliveredAtWrongPlaceMessageDeliveredAt-
— WrongInfoProvided: the necessary information pro- WrongTimeMessageCorruptedand so on.

vided by anothergent about theobject state is incor- .« |f agoal being considered is in th&timulusResponse cate-

rect (possible refinements for this obstacle are, e.g., too gory, then consider the following types of obstacles:

high or too low values for asbject attribute); — Stimulusignored, ToolLatePickUp, IncorrectValue, or

— InfoCorrupted: the information from the provider has StimuliConfused obstacles to the abstract g&imulus-
been corrupted by anothagent; PickedUp;
- |nfOOUtDated: the |nf0rmat|on prOVIded tO thwent |S —_ NoResponse’ ResponseTooLate’ Response|gn0red, or
no longer correct at the time of use; WrongResponse obstacles to the abstract companion
— InfoForgotten: the information provided to thegent is goalResponseProvided.
no longer available at the time of use; Obstacles can also be identified by analogy with obstacles in

— Wronginference: theagent has made a wrong inference similar systems, using analogical reuse techniques [Mas97].
from the information available;

— InfoConfusion: the agent confuses the necessary infor- 6. RESOLVING OBSTACLES

mation about thebject state with some other informa- The generated obstacles need to be resolved in some way or

tion. another. As discussed in Section 4, the resolution process
InfoConfusion obstacles can be refined in turn, e.g., covers two aspects: tlgenerationof alternative resolutions
and theselectionof one resolution among those identified.
information about theobject state with information  YWhich resolution to apply and when to apply it will depend

aboutanotherinstance of object within the same class N fisk/cost-benefit analysis based on the likelihood of
[Potos]; occurrence of the obstacle and on the severity of its conse-

guences. We will not discuss selection tactics here; we con-
centrate on the generation of alternative resolutions.

Such resolutions correspond to differesttategiesthat may
terms of which values of arobject attribute are be applied. They can be classified into three broad classes
dependent on whether the obstacle is eliminated (Section
expressed. 6.1), reduced (Section 6.2), or tolerated (Section 6.3). Some
In the meeting scheduler example, these heuristics migh#f these strategies have been studied in other contexts of
have helped identify several obstacles among those deriveghndling problematic situations --e.g., deadlocks in parallel
formally, e.g., participants confusing meetings or datessystems [Cof71]; exceptions and faults in fault-tolerant sys-
meeting initiators confusing participants which results intems [And81, Cri91, Jal94, Gar99]; feature interaction in
wrong people being invited, confusion in constraints, etc. Inelecommunication systems [Kec98]; inconsistencies in soft-
an ambulance dispatching system, an obstacle like an ambware development [Nus96]; or conflicts between require-
lance going to a wrong place could be identified thereby. ments [Rob97, Lam98b]. The objective here is to specialize
An important specialization dffoConfusion obstacles in the ~Such strategies to the resolution of obstacles to goals during
aviation domain is ModeConfusion where pilot agents requirements engineering, and to make them explicit in
become confused about what the cockpit software agent #&rms of specification transformation rules in the formal
doing; obstacles in this category receive increasing attentioffamework of temporal logic.
as they have been recognized to be responsible for a signifiFhe obstacle resolution process will result in a transformed
cant number of critical incidents [But98]. goal structure, transformed requirements specifications, and

« If anagent requires someesource in order to guarantee transformed domain properties in some cases.
thegoal it is assigned to then consider obstacles in the fol-

lowing categories:ResourceUnavailable, ResourceToolL- o ] »
ate, ResourceOutOfOrder, WrongResource, ~ Eliminating an obstacle requires one among the conditions

ResourceConfusion, and so on. defining an obstructing obstacle in Section 3.1 to be inhib-
. o ited; the obstruction should be avoided or the obstacle should
* If a persistent condition is necessary to reachtéiget o made inconsistent/unfeasible within the domain. The

condition from thesource condition in anAchieve goal,  girategies below address one of the conditions or the other.
then consider an obstacle in which the persistent condition

becomes false before reaching the target condition. 6.1.1 Goal substitution

The latter heuristic rule corresponds to a natural languag@ most effective way of resolving an obstacle is to identify
rephrasing of thenissing persistence pattern in Table 1; it analternative goal refinemerior some higher-level goal, in
suggests how similar heuristics can be formulated from thevhich the obstructed goal and obstructing obstacle are no
other patterns. longer present . In the meeting scheduler example, one may

— InstanceConfusion: the agent confuses the necessary

— ValueConfusion: the agent confuses different values
for an attribute of the sanubject;

— UnitConfusion: the agent confuses different units in

6.1 Obstacle Elimination
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eliminate the obstacleklectronicAgendaNotMaintained that ~ AND/OR refinement and obstacle analysis may then be
obstructs the goatlectronicAgendaUpToDate by choosing an  applied to the new goal in turn.

alternative refinement for the father gopérticipantsCon- Back to our meeting scheduler example, consider the obsta-
straintsKnown (_see Figl!re 8); the alternative _905" refinementgq MeetingForgotten that obstructs the goalchieve [Informed-
consists in introducing the two companion _gOE{iSn- ParticipantsAttendance] in Figure 3. The prevention strategy
straintsRequested (under responsibility of the meeting sched- yields the new goahvoid [MeetingForgotten]. The latter may
uling software) andcConstraintsProvided (still under joint  ihen pe refined into a requiremesthieve [MeetingReminded]

responsibility of participants and the email system). under responsibility of the meeting scheduling software.
Choosing an alternative goal refinement will in general resulAnother example of obstacle prevention in a train control
in a different design for the composite system. system is the introduction of an automatic brake facility

(with corresponding goals and agents) to prevent trains from
exceeding their speed limit.

It may turn out, after checking with domain experts, that the

/ assertior - OC introduced for obstacle prevention is not a
goal/requirement but a domain property that was missing

from the domain theorypom, making it possible to infer the

|ParticipantsConstraintsKnown |

ElectronicAgenda [ Constraintsknown| [Constraints | [Constraints obstacleO by regression. In such cases the domain theory
UpToDate FromAgenda Requested | | Provided will be updated instead of the goal structure.
¢obstr cts Obstacle anticipatioris a substrategy for refining obstacle
: Y prevention goals. It is applicable when some persistent con-
dition P can be found such th& must persist during some
) o time interval for the obstacle condition OC to become true:
Fig. 8 - Goal substitution
OC D .Sd P
6.1.2 Agent substitution In such a case, the obstacle prevention goal may be refined
Another way of overcoming the obstacle is to consilesr-  BY introducing the subgoal
native agent assignmens® that the obstacle scenario may G : PO Oy -P

no longer occur. This will in general result in different sys- For obstacles tSecurity goals, for example, one might have
tem proposals, in which more or less functionality is auto- following instantiations:

mated and in which the interaction between the software anHA'e ollowing instantiations:

its environment may be quite different. OC: InformationCorruptedByAgent

Back to our meeting scheduler example, one might over- P+ IntrusionUndetected

come the obstaclearticipantNotResponsive to the goalCon- Obstacle anticipation patterns may be used when an event
straintsProvided by assigning the responsibility for that goal to can be identified that necessarily precedes the truth of the
the participant'ssecretary instead (to overcome subobstacles obstacle condition.

such aEmailNotCheckedRegularly Or ParticipantTooBusy), Of by . o

assigning the responsibility for the goahrticipantscon-  6-1.4 Goal Deidealization

straintsRequested to the meeting initiator (rather than the |t is often the case that obstacles are found to obstruct first-
meeting scheduling software) --through email, phone callssketch goal formulations because the latter are too ideal.
etc. Such goal formulations should then be deidealized so that
In the electronic reviewing example, one could introduce ghey cover the behaviors captured by the obstacle. The prin-
software agent for checking that no occurrences of théiple is totransform the goabeing obstructed in order to
reviewer's name are found in the review (to overcome themake the obstruction disappear.
obstacleNonAnonymousReview); a software agent for check- Let us suggest the technique on an example first.

ing destination tables (to overcome the obstatigsageSent-  consjder the obstackerticipantNotinformedinTime in Figure 3

ToWrongPerson); and so on. which obstructs the goal

Agent substitution may entail goal substitution and Vvice- |ntended (p, m) O Informed (p, m) O Convenient (p, m)

versa. O ¢ Participates(p, m)

6.1.3 Obstacle prevention The idea is to make the obstructed goal more liberal, that is,
to weaken it so that it covers the obstacle. In this case the

This_stratter?)/t IﬁSOhl/)e? thle gbstruqﬁogdﬁding anew goal  4oa| weakening is achieved by strengthening its antecedent:
requiring that the obstacie be avoided. Intended (p, m) O InformedInTime (p, m) O Convenient (p, m)

Remember that a goal G has the general far®C whereas 0 ¢ Participates(p, m)

an obstacle O to G has the general far@C. To prevent O 1he predicatenformedinTime (p, m) is derived from the corre-
from being ever satisfied, the followingvoid goal is thus sponding obstacle; it requires participants to be kept

introduced: informed during a time period starting at leastlays before
G~ 0o-0C the meeting date:
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InformedinTime (p, M) = B¢ (1m pate - Ng) INformed (p, m) cated to her/it. The new conditid?WV S that strengthens the

Once this more liberal goal is obtained, the predicates thantecedent has to be propagated into the goial-tree. The
were transformed to weaken the goal are to be propagated §pals that refer to this new predicate as target condition
the goal tree to replace their older version everywhere; thighight be operationalized through a reservation procedure.
generally results in strengthened brother goals and weakengf) 5 pomain transformation

higher-level goals. The result of the change propagation in

the tree shown in Figure 3 will produce a strengthened goal NS Strategy consists in transforming the domain within
in the middle of the tree, namely, which the software-to-be operates so as to make the obstruc-

tion disappear. The set of domain properties is modified so as

. S o to make the obstacle either inconsistent with the domain (see
The deidealization procedure is similar to the one used fof,e domain-consistency condition in Section 3.1) or no

weakening divergent goals [Lam98b]. It is simpler here aggnger obstructing the goal (see the obstruction condition in
only one goal assertion has to be considered for weakeninggction 3.1).

The procedure has two steps: . . . .
L ) . . As an illustration of the first case, consider the goal
(1) Weaken the goal specification to obtain a more liberal version

that covers the obstacle. Syntactic generalization operators can Ach|evg[A||ocatedAmbuIanceMoblllzed] n .an ambulance dis-

be used here such as adding a disjunct, removing a conjunct, patching system. One obstacle to this goal corresponds to the

or adding a conjunct in the antecedent of an implication. situation where an ambulance crew decides to mobilize

(2) Propagate the predicate changes in the goal AND-tree in which another ambulance than the one allocated by the system. The

the weakened goal is involved, by replacing every occurrence domain property making this possible is that mobilization

of the old predicates by the new ones. orders received by crews at ambulance stations mention the
The cardinality transformations in [Fea93] may be seen as tcident location. The obstacle can then be eliminated by
particular form of syntactic generalization in step 1 of thistransforming the mobilization order so that it does no longer
simplified procedure. Step 2 can be done simply by updatingnention the incident location; the latter information would
the instantiations of the goal refinement patterns used tthen be provided by a mobile data terminal inside the ambu-
build the goal graph, when such patterns have been usddnce.

[Dar9e6]. As an illustration of the second case, we can prevent the
Goal deidealization patternsnay also be used as formal obstacle InconvenientLocation from obstructing the goal
support to the deidealization process. Given the obstructeiformedparticipantsAttendance in the meeting scheduler sys-
goal and the obstructing obstacle, they yield deidealized verem by transforming the domain so that videoconferencing is
sions of the goal. To illustrate the approach, Table 7 givesnade possible; the conjun@tLocation in p.Constraints would
some patterns for some of the obstacles from Table 1. then be dropped from the domain property stating necessary
conditions for meetings to be convenient (see Section 5.1).

Intended(p, m) O ¢ [ InformedInTime (p, m) O Convenient(p, m) ]

goal obstacle deidealized goal 6.2 Obstacle Reduction
RO OS [ O[RO-P] ROPO 0S The difference between this class of strategies and the previ-
ROOS | O[ROD-P] ROPWS)O 0S ous one is that here one triesreluce the occurrences of the

obstacleinstead of eliminating them completely.

Strategies that act on the motivation of human agents are
instances of this class. The principle is to reduce the situa-
RO ¢s | O[ROO(~-SU-P)] | ROO(PW(PLS) tions in which an agent acts abnormally or irresponsibly

bos either by dissuasion or by providing rewards. For instance,

many library systems issue fines to dissuade borrowers from
late returns; insurance systems provide premium reduction
for good customers; some transportation companies issue
Yewards for crews arriving on time; and so on.

ROOS | O[RO(-SU=P)] ROPWS)O ¢S
RO¢OS [ ¢O[RO(-SUO-P)] | ROOOPOOS

TABLE 7. Deidealization patterns for Achieve goals

At the end of Section 5.3.1 we considered the resource ma
agemenftachieve goal
O u: User, r; Resource 6.3 Obstacle Tolerance

Requesting (u, r) . ¢ Allocated (r, u), In cases where the obstacle cannot be thoroughly avoided, or

and generated the starvation obstacle where avoiding it is simply too costly or not worthy, one may
¢ Ou: User, r: Resource specify which behaviors will be admissible or tolerated in
Requesting (u, r) OO [ = Allocated (r, u)U [’ u: Allocated (1 u’) | the presence of the obstacle.

The goal and starvation obstacle match the last row of Tabl

1€ . W Ol 1aDIg 3 1 Goal restoration
7; we thereby generate the deidealized goal specification i i ) ] ]
O u: User, r: Resource A first strategy consists adding a new goastating that if

Requesting (u, 1) 0 (= [’ u: Allocated(u’)W Allocated(r,u) the obstacle conditio@C becomes true then the obstructed
0 0 Allocated (r, u) ' goal assertioi® should be satisfied again in some reasonably

The new goal version states thétthe user requests the near future. This new goal thus takes Assieve form

resource and the resource is subsequently kept unallocated G* OCD oG
unless allocated to her/ihien the resource is eventually allo- This strategy could be followed for the obstaclaperLost
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that obstructs the goalchieve[ReviewReturned]. A subgoal 6.3.3 Do-nothing

refining the restoration goal will behieve[LostPaperResent]. For non-critical obstacles whose consequences have no sig-
6.3.2 Obstacle mitigation nificant impact on the performance of the system a last strat-

) L egy is of course to tolerate its occurrences without any
Another alternative strategy to obstacle elimination is to seekaso|ution action.

effective ways of mitigating the consequences of the obsta-

cle. The principle is toadd a new goalto attenuate the 7. OgsTACLE ANALYSIS FOR A REAL SAFETY-CRITI-
effects of obstacle occurrences. Two forms of mitigation can -, sysTewm

be distinguished. ) o i
o L . . The purpose of this section is to illustrate and assess the var-
Weak mitigatiorconsists in ensuring some weakened version, ;s techniques presented in this paper through obstacle

G’ of the obstructed goal G whenever the obstacle conditiony 5 ysis of a real safety-critical system for which failure sto-
OC becomes true. A weak mitigation goal thus has the formjas have been published [LAS93, Fin96].

G oco e From the documentation available in the Inquiry Report on
where G’ is a deidealized version of G obtained using thehe London Ambulance System [LAS93], we reverse engi-
specification transformations described in Section 6.1.4. neered the goal graph for this system. We started from the

To illustrate this, consider the obstadlestMinuteimpediment ~ COMMoONsense, high-level gaatidentResolved and refined it

generated in Section 5.1. The introduction of the weak miti-Progressively. In addition, a number of goals were elicited
gation goal from explicit or implicit formulations in the Inquiry Report.

Formalizing goal specifications and domain properties, and
i . N applying formal refinement patterns [Dar96] led us to find
will ensure a weaker version of the gmairmedPartlupantsAt- out missing goa's‘ Objects and their re'ationshipS, opera-

Achieve [ImpedimentNotified]

tendance in Section 5.1, namely, tions, and domain properties emerged gradually as goals
Intended (p, m) O Informed (p, m) O Convenient (p, m) were refined. Agents were identified as active objects among
O ¢ [ Participates(p, m) O Excused (p, m)] them --the Computer-Aided Despatch softwa@ap), the

(Note that in this case an obstacle prevention alternative tdutomatic Vehicle Location SystemAYLS), the resource
such weak mitigation would yield a goal likehieve [Meet-  allocator RA), the control assistant who handles emergency
ingReplanned].) calls CA), the radio operator, the communication infrastruc-
Strong mitigationconsists in ensuring some parent goal ' ture, the station printer, the mobile data terminab(r), and

of G whenever the obstacle condition OC becomes true, ifi ' _ambulance Crew. Goal refinement te(minated' when
spite of G being obstructed. A strong mitigation goal thus'€quirements ?‘Ss'g”eo' to taD and assumptions aSS|gne_d
has the form to the agents in the environment were obtained as terminal

goals. Figures 10-12 in Appendix 1 provide excerpts from

Gn och¢@ the goal structure. Note the importance Aafcuracy goals
where the obstructed goal G is a subgoal of G'. (bottom of Figure 10 and Figure 12).
Figure 9 illustrates this on a mine pump system examplébstacles were then derived systematically for each terminal
[J0s95]. The goahvoid[MinerinOverfloodedMine] strongly miti-  goal. Many of them were formalized; a mix of regression,

gates the obstaclexcessivewaterFlow that obstructs the goal obstruction patterns and informal heuristics from Section 5
WaterFlowLimited by guaranteeing that the parent goal were used. We then compared the list of potential obstacles
Avoid[MinerDrowning] Will be satisfied. thereby obtained with the scenarios which actually occurred
during the two system failures in October-November 1992.
While our obstacles cover the various problems that occured
during those failures (notablynaccuracy problems), they
also cover many other problems that could (but did not)
| Avoid[MineOverflooded] | occur --see the comparison tables below. Finally we explored

the space of possible resolutions by application of the strate-
gies discussed in Section 6.

| Avoid[MinerDrowning]

|Avoid[MinerInOverroodedMine]|

|WaterExtracted| |WaterF|owLimited| 7.1 Obstacle generation

mitigates ] o ]
Let us illustrate some of the formal derivations first. Con-
obstruct lAIarmIssued||MinerOutAfterAIarm| sider the terminal goahcidentResolvedByintervention appear-
(ExcessiveWaterFlow) ing at level 2 of the goal tree in Figure 9:

Goal Achieve [IncidentResolvedBylIntervention]
UnderResponsibility AmbulanceCrew
The distinction between strong and weak mitigation some- Refines IncidentResolved _
what corresponds, at the requirements engineering level, to FormalDef [ a: Ambulance, inc: Incident ,
two different, sometimes confused notions of fault tolerance Intervention (a, inc) [ ¢ Resolved (inc)
[Cri91]: one where the program meets its specification inApplying the regression procedure, we negate this goal to
spite of faults, and the other where the program meets produce the high-level obstaaleidentNotResolvedByinterven-
weaker version of the specification. tion:

Fig. 9 - Obstacle mitigation
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¢ Oa: Ambulance, inc: Incident
Intervention (a, inc) O O - Resolved (inc)

We regress this obstacle through domain properties that pro- ~

vides necessary conditions for incident resolution:

Resolved (inc) O
(O p: Patient) Injured (p, inc) -
(O r: Resource) CriticallyNeeds (p, 1) —
(Oru: ResourceUnit) Unit (ru, r) 0 UsedOn (ru, p)

Resolved (inc) O
(O p: Patient) Injured (p, inc) -
(Oh: Hospital) AdmittedAt (p, h)

IncidentNotResolvedByIntervention
~ CriticalCareNotGivenToPatient
~ InsufficientResourcelnAmbulance
WronglInfoAboutincident
— ResourceUnavailable
~ ResourceConfusion
~ AvailableResourceNotUsedOnPatient
~ WronglnfoAboutPatient
~ ResourceOutOfOrder
~ PatientNotAdmittedToHospital
~ PatientNotTransportedToHospital
~ PatientNotPutinAmbulance
~ InsufficientAmbulanceCapacity
~ PatientNotInAvailableAmbulance

Regressing the high-level obstacle above through these two -

domain properties yields the following two subobstacles:

Obstacle CriticalCareNotGivenToPatient
FormalDef ¢ Oa: Ambulance, inc: Incident
Intervention (a, inc)
00 (Op: Patient, r: Resource)
Injured (p, inc) O CriticallyNeeds (p, r)
0= (Oru: ResourceUnit) Unit (ru, r) DUsedOn (ru, p)

and

Obstacle PatientNotAdmittedToHospital
FormalDef ¢ Oa: Ambulance, inc: Incident
Intervention (a, inc)
00 Op: Patient
Injured (p, inc) O (-~ Oh: Hospital) AdmittedAt (p, h)

Regressing the first subobstadeticalCareNotGivenToPatient
through the domain property

Intervention (a, inc)
Olnjured (p, inc) OUsedOn (ru, p)
O InAmbulance (ru, a)
O- ( Op": Patient) p' pOUsedOn (ru, p’)

yields the new subobstacle:

Obstacle InsufficientResourcelnAmbulance
FormalDef ¢ Oa: Ambulance, inc: Incident
Intervention (a, inc)
00 Op: Patient, r: Resource
Injured (p, inc) O CriticallyNeeds (p, r)
OlIntervention (a, inc)
0O (O ru: ResourceUnit) Unit (ru, r) -
InAmbulance (ru, a) -
(Op’: Patient) p’ pOUsedOn (ru, p’)

By completing this refinement we obtain a new subobstacle

to produce a domain-complete set of subobstaclesitcal-
CareNotGivenToPatient:

Obstacle AvailableResourceNotUsedOnPatient
FormalDef ¢ Oa: Ambulance, inc: Incident

Intervention (a, inc)

00 Op: Patient, r: Resource
Injured (p, inc) O CriticallyNeeds (p, r)
O Intervention (a, inc)
0(Oru: ResourceUnit) Unit (ru, r) OInAmbulance (ru, a)
0= (Op’: Patient) p’ pOUsedOn (ru, p’)

Further refinement of the latter subobstacle by, e.g., use
the heuristics in Section 5.3, yields new subobstacles such
WrongInfoAboutPatient and ResourceOutOfOrder. In the former

case, one might find out that the incident form produced by

the CAD has inaccurate or missing information.

The complete obstacle refinement tree derived is as follows:

~ PatientinAmbulanceNotPortedToHospital
~ PatientAtHospitalNotAdmitted

~ NoBedAvailableAtHospital

~ AvailableBedNotAssigned

This tree amounts togoal-basedault tree.

Consider now the terminal gosfbobilizedAmbulancelntervention
appearing at level 3 of the goal tree in Figure 9:
Goal Achieve [MobilizedAmbulancelntervention]

UnderResponsibility AmbulanceCrew

Refines Ambulancelntervention

FormalDef [0 a: Ambulance, inc: Incident

Mobilized (a, inc) O TimeDist (a.Loc, inc.Loc) 11
O 9O<11m Intervention (a, inc)

This Achieve goal suggests instantiations
R: Mobilized (a, inc) OTimeDist (a.Loc, inc.Loc) 11
S: Intervention (a, inc)

Negating the goal yields a high-level obstacle:

Obstacle MobilizedAmbulanceNotInTimeAtDestination
FormalDef ¢ Oa: Ambulance, inc: Incident
Mobilized (a, inc) O TimeDist (a.Loc, inc.Loc) 11
O00<11m — Intervention (a, inc)

The non-persistence obstruction patterns in Table 1 suggest
looking for domain properties taking the form

ROOSO PW (POS)

which involves a persistent conditidh that must continu-
ously hold, from the time oR to the time ofS, for Rto lead

to S Given the instantiations fdR and S, two candidate®
are suggested fromR to satisfy the above persistence condi-
tion:

P1: Mobilized (a, inc)

P2: TimeDist (a.Loc, inc.Loc) < TimeDist (a.Loc, inc.Loc)

(The overline notation is used to denote the previous state.)
These candidates produce two persistence conditions that are
domain properties indeed: the former says that if a suffi-
ciently close ambulance is mobilized and intervenes at the
location within 11 minutes, then it remains mobilized for
that location unless it intervenes at the location; the latter
says that the time distance between the mobilized ambulance
and the destination keeps decreasing unless the ambulance
intervenes at the location. We may therefore apply the sec-
nd non-persistence pattern in Table 1 to generate the two

%Ilowing obstacles (one for each persistent condition):

Obstacle AmbulanceMobilizationRetracted
FormalDef ¢ Oa: Ambulance, inc: Incident
Mobilized (a, inc) O TimeDist (a.Loc, inc.Loc) 11
0 (- Intervention(a, inc) Ugq1,, = Mobilized (a, inc))



and resolve this obstacle, say,
Obstacle MobilizedAmbulanceStoppedOrinWrongDirection MobilizationByOtherAmbulanceKnown.

FormalDef ¢ Oa: Ambulance, inc: Incident ; : ;
Mobilized (a. inc) 0 TimeDist (a.Loc, inc.loc) 11 This new goal may be refined into two subgoals, namely,
0( - Intervention(a, inc) Ugyqm MobilizationByOtherAmbulanceSignalledToRadioOperator ,
TimeDist (a.Loc, inc.Loc) TimeDist @.Loc, inc.Loc)) assigned t@mbulanceCrew, and
(In the above assertiorgl_,Q stands for foPU Q 00,4P.) MobilizationStatusUpdated,

Further refinement of these formal obstacles based on regregssigned t®RadioOperator. (An alternative refinement/assign-
sion, patterns, and heuristics from Section 5 yield the follow-ment would consist in letting the change be signalled to the

ing obstacleOR-refinement tree: MDT instead).
MobilizedAmbulanceNotIinTimeAtDestination The obstacle preventiorstrategy would result here in the
« AmbulanceMobilization Retracted introduction of the new goal

~ MobilizedAmbulanceDestinationChanged

—  LocationConfusedByCrew Avoid [AmbulanceMobilizedWithoutOrder]

- MOt;)iIilzedAmbltJ)lflmceDestinatiﬁngorgotten A benefit of applying this strategy here is that the latter sub-
~ AmbulanceMobilizationCancelle | woul | ntri h her |
~ MobilizedAmbulanceStoppedOrinWrongDirection goal would also contribute 1o the other goa
~ AmbulanceStopped Avoid [DuplicateAmbulanceMobilization]
- ﬁmEﬂ:Zgggg;g;‘gggmq%ﬁgddem The new prevention goal might be under responsibility of a
—  AmbulancelnWrongDirection human agent at thg station or mlght be operationalized
—  Ambulancelost through an automatic system preventing ambulance depar-
~  CrewInUnfamiliarTerritorry ture from station if the MDT is not mobilized. Such alterna-
~ TrafficDeviation tives have of course to be evaluated by the stakeholders

For the terminal goakmbulanceMobilizedFromPrintedMobOrder ~ involved.

appearing as subgoal of the root gaaibulanceMobilized in  As suggested in Section 6.1.5, themain transformation
Figure 10, the obstacler-refinement tree generated using strategy to resolve the same obstacle would result here in

our techniques is transforming thevioborder object so that it does not mention
MobOrderNotTakenByAmbulance the incident location anymore; the latter information would
« MobOrderintendedForUnavailableAmbulance only be given by the/DT inside the ambulance. (Such reso-
« MobOrderignored lution would however be quite risky ifiDT's are likely to

~ MobOrderTakenByOtherAmbulance

Many reported failures were in fact caused by Inappropriatery,q goal substitutiorstrategy would result in an alternative

resolution of the latter subobstacle [LAS93]. operationalization in which mobilization orders sent to sta-
We have compared the set of obstacles generated systematbns do not prescribe which particular ambulance to mobi-
cally using our techniques, for the goal structure in Figuresize but instead leave that decision to ambulance crews. In
10-12, with the scenarios which actually occurred during thehis case, this goes together with an agent substitution and a
two major system failures in October-November 1992 asjomain transformation (a®oborder objects no longer have
reported in [LAS93]. While our obstacles cover the variousan attribute indicating the target ambulance).

ﬁ:gslegﬁet:‘agt% %%ge drgglg':rgstphc;igﬂ:gr&%ttgizynilts)ooggxfﬁinalIy, theobstacle reductiostrategy might consist here in
y P P . trying to change ambulance crew practice by a reward/dis-
Tables 8-9 in Appendix 2 summarize the obstacles generate .
. \ s SUasion system.
for the various terminal goals in Figure 10. The tables pro- ] . _
vide, for each requirement/assumption, the responsible agefihother interesting example of obstacle reduction concerns
assigned to it, the (sub)obstacles derived, and features of tfiee obstacleCrewinunfamiliarTerritorry refining AmbulanceLost
satisfying scenarios that occurred during the reported systefigee Section 7.1). The obstacle reduction consists in dividing
failures. Handling those obstacles during goal-orientedhe city into geographic divisions and allocating ambulances
requirements elaboration would have forced requirement incidents within the same division. This policy was found
engineers to raise issues whose resolution hopefully woulil the original system, abandoned in the “PanLondon” sys-
have resulted in making such scenariasd othery unfeasi-  tem that failed, and restored in the newly designed system.

break down.)

ble. This corresponds to goal substitution as well; the gmal

) sionalAmbulanceAllocated iS chosen as an alternative to the goal
7.2 Obstacle resolution (PanLondon)AmbulanceAllocated in Figure 9.
We now discuss various resolution strategies from Section §ve now illustrate thejoal restorationstrategy. Consider the
for some of the obstacles generated. obstacle
Let us first consider the obstacWebOrderTakenByOtherAmbu- MDTMobOrderignored
lance seen at the end of Section 7.1 to obstruct the goal-  that appears at the bottom of Table 8 in Appendix 2. A low-
lanceMobilizedFromPrintedMobOrder. level restoration goal would be to generate an audible signal

The obstacle mitigatiorstrategy would result in letting the to make crews aware of the mobilization order. An alterna-
system know that the mobilization order has been taken byive, higher-level resolution would consist in introducing a
the other ambulance. A mitigation goal is thus introduced tchigher-level restoration goal
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FailedMobilizationRecovered
to resolve the higher-level obstacle
AllocatedAmbulanceNotMobilized

This goal would restore the higher-level ga@abcatedAmbu-

lanceMobilized through the following goal refinement tree:
FailedMobilizationRecovered

AmbulanceMobilizationKnown

- UnrespéﬁdedAIIocationRestored .

UnrespondedAllocationSignalled

SignalledUnrespondedAllocReallocated

For thecrewPushwrongButton subobstacle in Table 9, a resto-

ration goal under responsibility DT might be to signal an

error if the pushed button is not the one expected.

Finally, we illustrate thegoal deidealizatiorstrategy on the
overideal goal

0 a: Ambulance, inc: Incident

Mobilized (a, inc) O ¢ Intervention (a, inc)

P

—

—

the obstacle to the goatcurateAmbulancelLocationinfo under
responsibility of theavLs agent was obtained just by nega-
tion; regressing this negation further would have required
detailed knowledge about properties of this agent which
were unavailable to us. In this case, further regression was
anyway not necessary for obstacle resolution since it is not
necessary to know why theviLs might fail to locate
ambulances accurately.

Finer agent granularity requires goals to be refined further
and thus allows more detailed obstacles to be derived.
There is a trade-off here between the level of abstraction
of the specification and the level of detail of obstacle anal-
ysis; the finer-grained the agents are, the more RE work is
required, but the more detailed obstacle analysis will be.

» Deciding when to stop obstacle refinement is not always

easy. The refinement process may be stopped when an
adequate resolution can be selected among those gener-
ated; the risk and impact of the obstacle should become

The following obstacle was generated by a non-persistence acceptable with respect to the cost for resolving it. More

pattern from Table 1:

¢ Oa: Ambulance, inc: Incident

Mobilized (a, inc)

0( - Intervention (a, inc) U Breakdown (a) ) .
Using the third deidealization pattern in Table 7 we obtain
the weakened version for that goal:

0O a: Ambulance, inc: Incident .

Mobilized (a, inc)

0( - Breakdown(a) W Intervention (a, inc) )

O ¢ Intervention (a, inc)

The propagation will result in strengthened companion goals

like
Oinc: Incident, p: Person
Reported (inc, p) O
¢ Oa: Ambulance, inc: Incident
Mobilized (a, inc)
0( ~ Breakdown(a) W Intervention (a, inc) )

to be refined and deidealized in turn.

7.3 Discussion

knowledge about the causes of the obstacle, that is, its sub-
obstacles, may result in the generation of better resolu-
tions.

Domain-completeOR-refinement of obstacles as dis-
cussed in this paper allows one to stop looking for alterna-
tive obstacles.

It is often the case that a new goal is introduced to resolve
several obstacles simultaneously; the new goal actually

resolves an obstacle to some higher-level goal which
might be obstructed by the many obstacles to its subgoals.
For example, the new goaloid[lnaccurateAmbAvailability-

Info] may resolve both obstaclegccurateAmbAvailabilityOn-

MDT andEncodedMDTAvailabilityNotTransmitted.

This suggests an heuristics for resolution selection: favor
resolutionR1 over R2 if at similar costR1 resolves more
obstacles thaR2

It is often the case that an obstacle is resolved by the intro-
duction of severalnew goals --e.g., a combination of
reduction, mitigation, and restoration goals.

Many of the technical problems with the LAS were caused* ldentifying all the goals obstructed by the same obstacle is
by incomplete identification and resolution of obstacles. necessary for assessing the impact of this obstacle and
These problems have to be identified and resolved at require- thereby for deciding on an appropriate resolution. To sup-
ments engineering time, not at programming time when it is port this, a cause-effect graph could be built from the goal
too late. The techniques presented in this paper provide for- refinement graph, the obstaclesfinement graph, and the
mal and heuristic support for generating high-level excep- obstruction relation.

tions and their resolutions in a systematic way. Requirements A specific combination of multiple obstacles may some-
engineers can then concentrate their efforts on assessing withtimes increase their individual effects. This was clearly the
stal_<eho|de_rs which resolution is the most appropriate for cage during the two LAS failures. In such cases one should
their domain. clearly favor resolutions that address such combinations.

Regression and formal patterns were seen to help identifying |gengitying the implications of an obstacle resolution is a
not only obstacles, but also the companion domain proper- gerioys issue. A new goal introduced for resolution may
ties that are necessary to derive them. resolve critical obstacle combinations; but it may also
Our experience in using these techniques for the LAS and interfere with other goals in the goal graph. A new cycle of
other systems revealed a number of issues that are worthconflict analysis [Myl92, Lam98b] may therefore be

pointing out. required.

* For a number of goals, obstacle identification only R W
involved a small number of regression steps --sometimes 8- RELATED WORK
did not go further than just negating the goal. For example|n order to get high-quality software, it is of upmost impor-
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tance to reason about exceptions and faults during softwamom on adequate ways of handling abnormal behaviors --
development. There has been a lot of software engineeriniike, e.g., producing more realistic and more complete
research to address this for the later stages of architecturegéquirements, and/or considering alternative requirements or
design or implementation. alternative agent assignments that achieve the same goals but

Rigorous definitions of various concepts underlying excepl€sult in different system proposals.

tion handling can be found in [Cri95, Gar99] --such as speciThere are however clear analogies between exception han-
fication, program correctness, exception, robustness, failurgying at program level and obstacle analysis at requirements
error, fault, fault tolerance, and redundancy. Exception hantevel. The objective of fault-tolerance is to satisfy the pro-
dling for modular programs structured as hierarchies of datgram specification despite the presence of faults whereas the
abstractions is also discussed in [Cri95], including the issuegpjective of obstacle analysis is to satisfy goals despite agent
of exception detection and propagation, consistent statgjlures. Some of the obstacle resolution strategies are con-
recovery, and masking. A failure is defined as a deviatiorceptually close to fault-tolerant techniques lifted and adapted
between the actual behavior of the system and that require@ the earlier phase of requirements engineering. The obsta-
by its specification [And81, Gar99]. An error is a part of the cle prevention strategy introduces a form of redundancy
system state which leads to failure. The cause of an error iS@here a new goal is introduced to prevent an obstacle from
fault. The objective of fault-tolerance is to avoid system fail- occurring. The obstacle anticipation substrategy is reminis-
ures, even in the presence of faults [Jal94], or to preciselyent of the fault detection and resolution phases for fault-tol-
define the acceptable level of system behavior degradatiogrance. (Note, however, that one should not confuse obstacle
when faults occur, if the former objective is not realizablejgentification, which is performed at specification time and
[Cri91]. takes an “external” view on the system, with obstacle detec-
The notion of ideal fault-tolerant component provides a basigion which is performed at run-time by agents “inside” the
for structuring software systems [And81, Ran95]. A systensystem [Fea98].) The goal restoration and obstacle mitiga-
is viewed as a set of interacting components that receivdion strategies also introduce new redundant goals to ensure
requests for services and produce responses. An idealizddgher-level goals in spite of the occurrence of obstacles. On
fault-tolerant component should in general provide both northe other hand, there are important obstacle resolution strate-
mal and exceptional responses. Three classes of exceptiorgies, such as goal substitution and agent substitution, that are
situations are identified: interface exception, local exceptiorspecific to requirements engineering because of the freedom
and failure exception. Different parts of the system arestill left.

responsible for handling each class of exception. In their work, de Lemos et al have alsorecognized the need
The concepts involved in fault tolerance are put on more forfor moving towards the requirement analysis phase many of
mal grounds in [Aro93, Gar99]. What is meant for a programthe concerns that may arise during later phases of software
to tolerate a certain class of fault is formally defined indevelopment --particularly, the possibility of system faults
[Aro93]. This paper also illustrates how fault-tolerant pro-and human errors [Lem95, And95]. They propose an
grams can be systematically verified and designed. A comapproach based on an incremental and iterative analysis of
positional method for designing programs that toleraterequirements for safety-critical systems in the context of sys-
multiple fault classes is described in [Aro98]. The method istem faults and human errors. Their scheme is similar to ours
based on the principle of adding detector and corrector comin that it consists of incrementally and iteratively identifying
ponents to intolerant programs in a stepwise and non-intethe defects of a requirement specification being elaborated;
fering manner. Various forms of fault-tolerance are discussethey use the identified defects to guide the modification of
in [Gar99]; they are based on whether a program still satisthe specification. However, no systematic techniques are
fies its safety properties, liveness properties, or both. Deterovided there for generating the possible faults from the
tion and correction are also discussed there as the two maglaborated requirement specification, and for transforming
phases in achieving fault-tolerance. the requirement specification so as to resolve the identified

In the database area, [Bor85] describes language mechfaults. Ar!other differenp_e is that theirsche_r_ne is b_ased on the
nisms for handling violations of assumptions in a database?rogressive decomposition of system entities while we favor
Using such mechanisms, programs can be designed to detét@al refinement. (See also [Ber98] for a comparison of this
and handle exeptional facts, or the database can adjust iork with ours.)

constraints to tolerate the violation. Some work has also been done at specification level. The
All the work reviewed above addresses the later phases afSD method [Jack83] already recognized the need to antici-
architectural design or programming. At those stages, theate and handle errors at that level. JSD provides techniques
boundary between the software and its environment has bedar handling inputs which are not valid for a given specifica-

decided and cannot be reconsidered; the requirements spetibn (such as meaningless inputs or inputs arriving in an

fications are postulated realistic, correct and complete -unexpected order). Jackson also recognized that mistaken
which is rarely the case in practice. Empirical studies havevalid inputs cannot be handled by the proposed techniques,
suggested that the problem should be tackled much earlier ias they may require transformation of the whole specifica-

the software lifecycle [Lut93]. Our work follows that recom- tion, and that such errors should be taken into account in the
mendation by addressing the problem of handling abnormagarlier steps of the specification elaboration process. How-
behaviors at requirements engineering time. Reasoning aver, no techniques are provided there to anticipate and
this stage, in a goal-oriented way, provides much more freeresolve such errors. Our techniques for generating and
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resolving obstacles at the goal level are intended to fill thabe generated from partial declarative specifications that may
void. be gradually elicited during the obstacle identification pro-

Many specification languages provide constructs for specify¢eSs- (Note that the generation of fault trees from a state
ing software functionalities separately for normal and abnorMmachine model is similar to a recursive application of bur
mal cases, and then in combination. The Z logical schem&t@te-back obstacle refinement pattern.) Furthermore, goals

combination constructs are typical examples of this [Pot96]Provide a precise entry point for starting hazard analysis.

Throughout this paper we have tried to convince the readefhe heuristics proposed in this paper for identifying obsta-
about the importance of exception handling at the requirec!es are somewhat related in spirit to safety requirements
ments engineering level and, more specifically, at the goa¢hecklists [Lev95], in that they embed experience about
level. Although there are no other formal techniques at th&nown forms of obstruction. General criteria correponding
goal level that we are aware of, there has been a lot of workd such checklists have been identified in [Jaf91]. These cri-
addressing the later stages of RE where a detailed Opergrla cover exceptlonal circumstances such as Unexpected

tional model of the software is already available (typically inPuts, computer error, environmental disturbances, etc.
under the form of state machine specifications). Good RE practices also consider checklists that cover unex-

= le th let techni in [Hei 9fﬁected inputs, operators errors, and other faults or excep-
or example, the completeness techniques in [Heim ional circunstances [Som97]. Our heuristics are in fact

Heit9§] are ai”??d at _checking Wheth?r the set of Conditiqn%loser to HAZOP-like guidewords that can be used to elicit

guarding transitions in a state machine covers all poss'blﬁazards [Levos]: such guidewords are made more specific
Cases. here thanks to our requirements meta-model and specific
Model checking techniques generate counterexamples showoal classifications. More formal HAZOP-based techniques
ing that a temporal logic specification is violated by a finite have been proposed for forward propagation of perturbations
state machine specification [Hol97, McM93]. In the samefrom input variables to output variables in operational speci-

vein, planning techniques can be used to exhibit scenariofcations [Ree97].

showing the inconsistency between an abstract property arB . , . ' .
; ; : ur work builds on Potts’ paper which was the first to intro-
an operational model [And89, Fic92, Hal9g]. One might %ce the notion of obstacle as a dual notion to goals [Pot95].

expect such techniques 1o be able to generate the scenar@\ stacles are identified there by exploration of scenarios of

satisfying our obstacles as traces that refute a goal asserti . .
conjoined with the domain theory. However, we currently'n eraction between software and human agents. This explo

envision two problems in applying these techniques directl z;t\lloenbgelr?ft?;r:sl oir;% ?c? fﬁg 02 qusrsgcssegi%rr?% Z; t(h)?)ss?a-
for our purpose. On one hand, we want to conduct the anal P baper, e

sis at the goal level for reasons explained throughout th(gIe resolution is not studied there.

paper; model checking requires the availability of an operafSut98] also builds on Potts’ work by proposing additional
tional description of the target system, or of relational speciheuristics for identifying possible exceptions and errors in
fications [Jac96] that do not fit our higher-level formulation such interaction scenarios --e.g., scenarios in which events
of goals in terms of temporal patterns of behaviour. On theéhappens in the wrong order, or in which incorrect informa-
other hand, for the purpose of resolution we need to obtain #on is transmitted. Influencing factors such as agent motiva-
formal specification of the obstacle rather than an instancetion and workload are also used to help anticipate when
level scenario satisfying it. A derivation calculus on moreexceptions may occur and assign probabilities to abnormal
abstract specifications seems therefore more appropriateyents. Generic requirements are attached to exceptions to
even though instance scenarios generated by a tool like Nisuggest possible ways of dealing with the problem encoun-
pick [Jac96] could provide concrete insights for identifying tered. The heuristics proposed in [Sut98] are close in spirit to
obstacles to relational specifications. ours; their generic exception handling requirements share the

Another important stream of work at the operational specifi-S2Me general objective as our obstacle resolution strategies.
Their work is largely informal and centered around the con-

cation level concerns the generation of fault trees from a X . : . . .
detailed operational model of the system. The technique igept of scenario. This provides little systematic guidance

[Lev87] generates fault trees from a Petri-net model. ThicomPared with the range of obstacle generation/resolution
technique has been adapted to generate fault trees from!@ciniques that can be precisely defined through rigorous
state machine model expressed in RSML [Rat96, Modgg]'éasening on declarative specifications of goals.

Several other techniques have also been proposed to gener&teontic logics are formalisms that allow one to specify and
other standard hazard analysis models from RSML specifireason about normal and abnormal situations by means of
cations [Rat96, Mod98]. Those techniques can however beodal operators such as permission and obligation [Mey93].
applied only once a complete operational specification of th&uch logics have been proposed for system specification,
system has been obtained. Furthermore, a very detailed opealowing one to specify what should happen if an abnormal
ational specification of the environment of the system wouldsituation occurs [Mai93, Ken93]. However such approaches
be needed to identify faults caused in the environment (e.gdo not provide any guidance for elaborating the require-
a detailed model of the behavior of human operators). Irments, in particular the requirements dealing with the abnor-
contrast, our techniques are intended to be used earlier in theal situations. In contrast, our approach for resolving
requirements engineering process when a complete specifibstacles is based on goals which serve as a rationale for
cation of the system is not yet available and alternative sysintroducing new requirements to deal with the abnormal situ-
tem boundaries are still being explored. It allows obstacles tations.
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The principle of pattern-directed specification and reasoningcareful attention.

as we applied it in [Dar96] for formal goal refinement and in\when to apply such or such identification/resolution tech-

this paper for obstacle refinement, has gained recent interegfgye may depend on the domain, on the application in this
in the research community. For example, Dwyer et al discusgomain, on the kind of obstacle, on the severity of its conse-
their experience in building and reusing a rich library of tem-qyences, on the likelihood of its occurrence, and on the cost

poral patterns that codify in high-level terms property speci-of jts resolution. Much exciting work remains to be done
fications to be input to analysis tools such as model checkergith those respects.

[Dwy99]. We hope to have convinced the reader through the variety of
Our initial ideas were presented in [Lam98a] which thisexamples given that the techniques proposed are general,
paper significantly expands on --notably, by a full treatmentsystematic, and effective in generating and resolving subtle
of obstacle completeness and AND/OR refinement, a mucBbstacles. Our plan is to integrate these techniques in the
more extensive set of patterns, many more heuristics, monRGAOS/GRAIL environment [Dar98] in the near future so
resolution strategies, and the application to a real safet-critithat large-scale experimentation on industrial projects from
cal system. We are also investigating an alternative, dynamigur tech transfer institute can take place.

approach in which system deviations from requirements/

assumptions are monitored and reconciled at runtimé\CKNOWLEDGEMENT
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B. Littlewood and H. Kopetz (ds.), Springer-Verlag, 1995.

Various formal and heuristic techniques were presented for
obstacle generation and refinement from goal specifications
and domain properties; the generation of obstacle resolutions
is achieved through various strategies to eliminate, reduce, dfr093JA. Arora and M.G. Gouda, “Closure and Convergence: A
tolerate the obstacle. Domain knowledge was seen to play an Foundation of Fault-Tolerant ComputinglEEE Trans. Soft-
important role in some of these techniques; however, as we Ware Eng, vol. 19, no. 11, pp. 1015- 1027, 1993.
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APPENDIX 1: GOAL STRUCTURE FOR THE LAS SYSTEM

IncidentResolved

IncidentRe- [ Ambulancelntervention | [ncidentResolvedByIntervention |
|AmbulanceMobiIized | [ MezAmbulanceInterventlon]]
[IncidentFiled | [AmbulanceAllocated | [(AllocatedAmbulanceMobilized
see fig. 10

NearestAvailable [ NearAmbulanceAvailability |
AmbulanceAllocated

AccurateAmbulanceAvailability

AndLocationInfo

KnownNearestAvailable
AmbulanceAllocated

|AccurateAmbuIanceLocationlnfo | |AccurateAmbulanceAvaiIabiIityInfo

. seefig. 11

Figure 10: Refinement of the LAS root goal

AllocatedAmbulanceMobilized

MobilizationOrder
IssuedAtStation

FromPrintedMobOrder

AllocatedAmbulance AmbulanceMobilized
MobilizedOnMDT FromOrderOnMDT

AccurateAmbuIance| AllocatedAmbulance | AmbAllocation | [AmbAllocation ReceivedAllocation
AtStationInfo MobilizedAtKnownStation SentToMDT TransmittedToMDT | |DisplayedOnMDT

MobOrderSentTo | |M0b0rderTransmitted | |ReceivedMobOrder |

KnownStation ToStation PrintedAtStation
Figure 11: Refinement of the goal AllocatedAmbulanceMobilized
[AccurateAmbulanceAvailabilitylnfo |
[AccurateAmbulanceAllocationinfo | [AccurateAmbulanceMobilizationInfo |
[AmbulanceMobilizationKnown | [AmbulanceDeMobilizationKnown

[Avoid[UnallocatedAmbulanceMobilized] AllocatedAmbulance
MobilizationAcknowledged
AN

AllocatedAmbMobilzation | [MDTMobAck | [MDTMobAck | [ReceivedMobAck
AcknowledgedOnMDT Sent Delivered Recorded

Figure 12: Refinement of the goal AccurateAmbulanceAvailabilitylnfo
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APPENDIX 2: DERIVED OBSTACLES AND ACTUAL FAILURE SCENARIOS

Table 8: Obstacles to subgoals of the goal Achieve [AllocatedAmbulanceMobilized]

agent

goal

obstacle

Oct/Nov’'92 scenario

CAD

MobOrderSentTo
KnownStation

MobOrderNotSent

no PSTN line free

MobOrderSentToWrongStation

MobOrderSentToWrongAmbulance

MobOrderSentWith
WrongDestination

InvalidMobOrderSent

AmbAllocationSentTo
MDT

AmbAllocationNotSentToMDT

AmbAllocationSentToWrongMDT

AmbAllocatioSentWith
WrongDestination

InvalidAmbAllocationSentToMDT

Communic.
Infrastructure

MobOrderTransmitted
ToStation

MobOrderNotTransmitted

radio congestion,
radio blackspot

MobOrderDeliveredAtWrongStation

MobOrderCorruptedDuring
Transmission

— WrongDestination

— WrongAmbulance

— InvalidMobOrder

AmbAllocation
TransmittedToMDT

AmbAllocationNotTransittedTOMDT

AmbAllocationTransmittedAt
WrongMDT

AmbAllocationCorruptedDuring
Transmission

— WrongDestination

— OtherValidMsgDelivered

— InvalidMsgDelivered

Station
Printer

ReceivedMobOrder
PrintedAtStation

ReceivedMobOrderNotPrinted

PrintedMobOrderUnreadable

MDT

ReceivedAllocation
DisplayedOnMDT

ReceivedAllocationNotDisplayed
OnMDT

IncorrectDestinationDisplayed

Ambulance
Crew

AmbulaceMobilized
FromPrintedMobOrder

AmbNotMobilizedFromMobOrder
AtStation

« MobOrderlgnored

«— AmbNotAt Station

« AmbNotAvailable

MobOrderTakenByOtherAmbulance
« MobOrderConfuision

« AllocatedAmbNotAvailable

« AllocatedAmbNotAtStation

« established work practice

crews take different
vehicle from those
allocated by CAD

LocationConfusedByCrew
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agent

goal

obstacle

Oct/Nov’'92 scenario

AmbulanceMobilized
FromMobOrderOnMDT

AmbulanceNotMobilizedFrom
MobOrderonMDT

«~ MDTMobOrderlgnored

« CrewNotInAmbulance

«— AmbulanceNotAvailable

AmbulanceMobilizedWithDifferent

DestinationThanMDTDestination

« LocationConfusedByCrew

« OtherMobilizationDestination
Pending

« MDTDestDifferentFrom
DestOnMobOrderAtStation

Table 9: Obstacles to subgoals of the goal Achieve [AmbulanceMobilizationKnown]

agent goal obstacle Oct/Nov’'92 scenario
Ambulance Avoid MobOrderTakenBy crews use different
Crew Unallocated Ambulance OtherAmbulance vehicle
Mobilized
Allocated AmbMobilization AmbulanceCrewForgetTo crews don't press
AcknowledgedOnMDT AcknowledgeMobilization status buttons
AmbCrewPushWrongButton crews press buttons
ToAcknowledgeMobilization in wrong order
MDT MDTMobAckSent MDTMobAckNotSent
MDTSendsOtherMsg
SentMobAckErroneous
Communic. MDTMobAckDelivered MDTMobAckNotDelivered communication
Infrastructure bottelneck,
radio blackspot
MDTMobAckCorrupted
CAD ReceivedMobAckRecorded ReceivedMobAcklgnored failure of system to

catch all data

OtherMsg

ReceivedMobAckConfusedWith

ReceivedMobAckRecordedFor
WrongAmbulance
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