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Abstract—Requirements engineers are faced with multiple 

sources of uncertainty. In particular, the extent to which the 
identified software requirements and environment assumptions 
are adequate and sufficiently complete is uncertain; the extent to 
which they will be satisfied in the system-to-be is uncertain; and 
the extent to which obstacles to their satisfaction will occur is 
uncertain. The resolution of such domain-level uncertainty 
requires estimations of the likelihood that those different types of 
situations may or may not occur. However, the extent to which 
the resulting estimates are accurate is uncertain as well. 

This meta-level uncertainty limits current risk-based methods 
for requirements engineering. The paper introduces a 
quantitative approach for managing it. An earlier formal 
framework for probabilistic goals and obstacles is extended to 
explicitly cope with uncertainties about estimates of likelihoods of 
fine-grained obstacles to goal satisfaction. Such estimates are 
elicited from multiple sources and combined in order to reduce 
their uncertainty margins. The combined estimates and their 
uncertainties are up-propagated through obstacle refinement 
trees and then through the system’s goal model. Two metrics are 
introduced for measuring problematic uncertainties. When 
applied to the probability distributions obtained by up-
propagation to the top-level goals, the metrics allow critical leaf 
obstacles with most problematic uncertainty margins to be 
highlighted. The proposed approach is evaluated on excerpts 
from a real ambulance dispatching system.   

Index Terms—obstacle analysis; risk assessment; 
probabilistic goals; requirements completeness; uncertainty 
management; quantitative reasoning; goal-oriented requirements 
engineering. 

I. INTRODUCTION 
Uncertainty is increasingly recognized as a key issue in the 
engineering of complex software systems such as mobile 
systems, human-intensive systems, applications embedded to 
complex environments, smart cyber-physical systems, or self-
adaptive systems [22, 37]. The software components in such 
systems highly depend on their seamless interaction with a 
wide variety of environment components, including devices 
and people, whose behavior is uncertain.  
 Requirements engineers are at the forefront of uncertainty 
problems. The adequacy and “sufficient” completeness of the 
identified software requirements, environment assumptions and 
relevant domain properties is generally uncertain [28]. The 
satisfaction rate of those requirements and assumptions when 
the system-to-be will be running is uncertain as well [6, 8, 20, 
29]; this is generally due to unexpected events and conditions 

that may occur in the environment [27]. Moreover, the 
likelihood of such events and conditions occurring is uncertain.  
 Uncertainty mitigation techniques are intended to reduce 
specific types of uncertainty [37]. For requirements 
engineering (RE), risk analysis cycles are often introduced in 
the RE process [4, 20, 27, 31]. A risk is an uncertain factor 
preventing the satisfaction of system objectives. Risk analysis 
can therefore be naturally integrated in goal-oriented RE 
methods [15, 17, 20, 27, 32].  
 Obstacle analysis is a goal-oriented form of risk analysis 
where an obstacle to a goal is a precondition for non-
satisfaction of this goal. While elaborating a goal model as an 
AND/OR goal refinement/abstraction graph, the analyst 
performs obstacle analysis cycles [28]. Each cycle consist of 
three steps: (a) the identification of as many obstacles to leaf 
goals as possible; (b) the assessment of their likelihood and of 
the severity of their consequences; (c) the resolution of likely 
and severe obstacles through appropriate countermeasures to 
be integrated as new goals in the goal model. Systematic 
techniques are available for identifying obstacles from 
requirements and domain properties [2, 27]. For the assessment 
step, likelihoods and criticalities can be determined 
quantitatively with expert assistance [20] and/or by 
calculations over probabilistic obstacle/goal models [8, 29]. 
For obstacle resolution, operators are available for exploring 
alternative countermeasures [27] and for integrating selected 
countermeasures into the goal model [9]. 
 In traditional risk analysis, uncertainty during risk 
assessment arises under two forms [23, 40]. 
• Physical uncertainty refers to system phenomena. For 

example, the chance of a sensor breaking down might be 
defined by a probability. This domain-level form of 
uncertainty can be reduced by changing the system under 
consideration –e.g., by introduction of appropriate 
countermeasures.  

• Knowledge uncertainty refers to the assessment of physical 
uncertainty by experts. In our example, our imperfect 
knowledge of what the exact probability value is might lead 
us to estimate it with some uncertainty margin. Such meta-
level form of uncertainty can be reduced through further 
studies, consultation of more experts, increased experience, 
run-time monitoring of relevant events or data, and so forth. 

Risk analysis techniques for RE so far addressed physical 
uncertainty only [4, 8, 20, 27, 31]. Obstacle analysis, in 
particular, is intended to anticipate the occurrence of adverse 
events or conditions by producing a more complete and robust 
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goal model; the runtime satisfaction rate of requirements and 
assumptions appearing as leaf goals in the goal model is 
thereby increased [27, 28].  
 Current risk analysis techniques for RE do not address 
knowledge uncertainty. They rely on expert judgement at some 
point or another to estimate the likelihood of fine-grained 
events or conditions emerging from their analysis. Such 
estimates are typically based on experience or historical data 
[4, 8, 20, 31], sometimes refined through runtime event 
monitoring [18, 19]. However, the extent to which those 
estimates are accurate remains uncertain. Expert’s judgements 
might be subjective or biased; relevant data might not be 
available; accurate data might be too expensive to obtain; 
collected data might no longer be relevant in view of 
technology changes; data might be too sparse; and so on [40]. 
 The objective of this paper is to address this current 
limitation of risk-based RE techniques through quantitative 
techniques for managing the knowledge uncertainty about the 
estimates being used.  
 An earlier formal framework for probabilistic goals and 
obstacles [8] is extended to explicitly capture and reason about 
uncertainties on estimates of likelihoods of fine-grained 
obstacles to goal satisfaction. The resulting framework 
supports specific analyses involving knowledge uncertainty, in 
particular, the prioritisation of obstacles with respect to the 
degree and spread of uncertainty they cause on the satisfaction 
of top-level goals in the goal model. This allows analysts to 
highlight critical obstacles (in terms of severity of their 
consequences) whose knowledge uncertainty must be reduced 
in order to determine whether they are sufficiently likely or 
not. 
The paper makes the following contribution. 
• Uncertainties about risk estimates and goal satisfaction 

rates are integrated in the specification of probabilistic 
goals and obstacles. In alignment with new-generation 
reliability databases providing ranges of estimates [1], the 
extended framework supports both single-point and multi-
point value estimates –unlike [4, 8].  

• Two metrics are provided for measuring problematic 
knowledge uncertainties about goal satisfaction. 

• A quantitative technique is provided for highlighting the 
obstacles with most severe consequences on the goal model 
and most problematic knowledge uncertainties. 

• Uncertainty margins on estimates are reduced for increased 
accuracy by methodical integration of estimates from 
multiple sources or multiple experts.  

 The paper is organized as follows. Section II provides 
necessary rudiments on goal-oriented modeling and 
probabilistic obstacle analysis. Section III introduces our 
framework for capturing knowledge uncertainty about goals 
and obstacles and for measuring problematic uncertainties. 
Section IV outlines the overall approach for managing 
knowledge uncertainties. Section V introduces means for 
reducing knowledge uncertainty about estimates of leaf 
obstacles by use of multiple sources and/or experts. Section VI 
details how goal satisfaction rates and uncertainties about them 
can be computed from those estimates of likelihoods of leaf 
obstacles and their uncertainty. Section VII briefly discusses 
how the techniques in the preceding sections may help 

determine critical obstacles and problematic knowledge 
uncertainties. Section VIII reports on a preliminary evaluation 
of our results on a real ambulance dispatching system. 
Section IX discusses related work. 

II. BACKGROUND 

Goal-Oriented System Modeling. A goal is a prescriptive 
statement of intent to be satisfied by the agents forming the 
considered system. The word system refers to both the 
software-to-be and its environment, including people, pre-
existing software, hardware devices such as sensors and 
actuators, and so forth. Domain properties are descriptive 
statements about the problem world (such as physical laws).  

The paper focuses on behavioral goals; unlike softgoals, 
they can be satisfied in a clear-cut sense [28]. A behavioral 
goal captures a maximal set of intended behaviors 
declaratively and implicitly; a behavior is a sequence of 
system state transitions. A behavior thus violates a goal if it is 
not among those covered by the (formal) goal specification.  

A behavioral goal is of type Achieve or Maintain/Avoid 
[28]. The specification pattern for an Achieve goal is "if C then 
sooner-or-later T", where C and T denote a current condition 
and a target condition, respectively, with obvious 
particularizations to Immediate Achieve, Bounded Achieve and 
Unbounded Achieve goals. The pattern for a Maintain (resp. 
Avoid) goal is "[if C then] always G" (resp. "[if C then] never B"), 
where G and B denote a good and bad condition, respectively. 
Linear temporal logic is used for formalizing behavioral goals 
to enable their analysis. Note that we are only interested in the 
non-vacuous satisfaction of goals, leaving aside the trivial 
cases where a goal is satisfied because its antecedent is false. 

A goal model is an AND/OR graph showing how goals 
contribute positively or negatively to each other [28]. Fig. 1 
gives a partial goal model showing how goals are AND-
refined for the simple fire alarm system used as a running 
example. Parent goals are obtained by abstraction, e.g. through 
why questions, whereas child goals are obtained by 
refinement, e.g. through how questions. In a goal model, leaf 
goals assigned to a software agent are called requirements 
whereas leaf goals assigned to an environment agent are called 
expectations. The latter are prescriptive assumptions on the 
environment. Descriptive assumptions may be needed as well; 
they are called domain hypotheses –e.g., NoDetectionWhen 
SmokeDetectorBroken is a domain hypothesis in our example. 

Refinement patterns are available for guiding the 

 
Fig. 1.  Partial goal model for a fire alarm system 
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construction of goal models –such as Milestone-Driven, 
DecompositionByCases, Guard-Introduction, Divide-And-
Conquer, Uncontrollability-Driven, etc. [28]. In Fig. 1, the 
Milestone-Driven refinement pattern is used to refine the top 
goal Achieve [BuildingEvacuatedWhenFire] into subgoals 
Achieve [FireDetectedInTime] and Achieve [BuildingEvacuatedWhen 
FireDetected]. 
Obstacle analysis. An obstacle O to a goal G is a satisfiable 
precondition for the non-satisfaction of this goal [27, 28]: 
  {O, Dom} ⊨ ¬ G  (obstruction) 
  {O, Dom} ⊭ false  (domain consistency) 
Like goals, obstacles are AND/OR-refined into sub-obstacles, 
resulting in a goal-anchored form of risk tree, as Fig. 2 shows. 
The root obstacle of an obstacle tree is the negation of the 
associated leaf goal in the goal model. An AND-refinement 
captures a combination of sub-obstacles entailing the parent 
obstacle; an OR-refinement captures alternative ways of 
entailing the parent obstacle. The leaf sub-obstacles are fine-
grained atomic obstacles whose likelihood can be more easily 
estimated. 

Formal and heuristic techniques are available for the 
identification of obstacles and for the generation of alternative 
countermeasures [27, 28]. In particular, domain properties of 
form "if T then N" or "if G then N", where N denotes a necessary 
condition for the target condition T or good condition G, result 
in obstacles of form "sooner-or-later [C and] never N" or 
"sooner-or-later [C and] sooner-or-later not N" for Achieve and 
Maintain/Avoid goals, respectively. For example, consider the 
goal Maintain [FireDetectedWhenNoticedInTime] in Fig. 2. 
Negating this goal yields the root obstacle FireNoticed 
InTimeAndNotDetected. Regressing through the necessary 
condition "if FireDetected then CorrectHeatNotification" found in 
the domain results in the obstacle WrongHeatNotification; the 
derivation is similar for the other sub-obstacles 
WrongSmokeNotification and FireDetectionDelayed. 
Probabilistic goals and obstacles. Behavioral goals might be 
satisfied only partially. A probabilistic goal prescribes some 
desired condition to be satisfied in at least X% of cases [8, 29] 
–for example, “when a fire is detected the building shall be evacuated 
within 5 minutes in at least 98% of cases”.  
 The probability of satisfaction of a goal of form “if C then 
sooner-or-later T” is defined as the ratio between (a) the number 
of possible behaviors satisfying both the goal antecedent C and 
consequent sooner-or-later T, and (b) the number of possible 
behaviors satisfying C.  

The estimated probability of satisfaction (EPS) of a goal is 
the probability of its satisfaction in view of its possible 
obstructions by obstacles.  

The required degree of satisfaction of goal G, denoted by 
RDS (G), is the minimal probability of satisfaction prescribed 
for this goal. It is imposed by elicited requirements, existing 
regulations, standards, etc.  
 The probability of satisfaction of an obstacle is defined as 
the ratio between the number of possible behaviors satisfying 
the obstacle and the number of possible behaviors. 

III. CAPTURING KNOWLEDGE UNCERTAINTIES IN 
GOAL/OBSTACLE MODELS 

Probability distributions are commonly used in risk analysis for 
representing the uncertainty about single-point values of 
random variables [40]. A probability distribution is a function 
assigning a specific probability to each possible single-point 
value in some domain. This section extends the probabilistic 
goal/obstacle specification language in [8] to capture the 
uncertainty about estimated satisfaction rates of behavioral 
goals, assumptions, and obstacles in the system-to-be. The 
domain considered here is the set of possible probability 
values, that is, the interval [0, 1]. 

A. Uncertainty about Estimated Satisfaction Rates 
Let A denote a probabilistic assertion specifying a goal, an 
assumption (prescriptive or descriptive), or an obstacle in the 
goal/obstacle models. 
Satisfaction uncertainty. The satisfaction uncertainty for 
assertion A, denoted by suA, is defined by a probability 
distribution over its single-point probabilities of satisfaction.   
 For example, Fig. 3 shows the probability distribution 
capturing the satisfaction uncertainty suG for G: Achieve  
[BuildingEvacuatedWhenFire]. (Section VI describes how such 
distribution can be computed.) As seen in Fig. 3, the 
probability of satisfaction of this goal lies between 80% and 
90%, with a more likely value around 85%. Note that this 
multi-value estimate does not meet the goal’s RDS, prescribed 
to be 98% as depicted by the black line on the right. 
 Satisfaction uncertainties may also refer to domain 
hypotheses such as NoDetectionWhenSmokeDetectorBroken. 
 Note that a goal satisfaction uncertainty arises from 
obstacle satisfaction uncertainties. For example, our certainty 
about the extent to which the goal Achieve [Fire-
NoticedInTimeWhenSmoke] is satisfied depends on our certainty 
about the extent to which the obstacles FireNoticedToo-
LateBySmoke or SmokeDetectorBroken are satisfied.  

B. Uncertainty Metrics for Goal Satisfaction 
The probability to observe a probability of satisfaction of at 
least p for goal G, denoted SUG (p), is obtained as follows:  

  SUG (p) =  ∫x<p suG(x). 
This probability corresponds to the area delimited by the suG 
curve and value p. In Fig. 3, the chance of the goal Achieve 

 
Fig. 3. Satisfaction uncertainty for Achieve [BuildingEvacuatedWhenFire] 

 
Fig. 2.  Partial obstacle model for leaf goals in Fig. 1 
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[BuildingEvacuatedWhenFire] being satisfied in at least 84% of 
cases is given by: 

  SUAchieve [BuildingEvacuatedWhenFire] (0.84) =  0.78. 
It corresponds to the grey area in Fig. 3. As shown in 
Section IV, suG can be computed by up-propagation from leaf 
obstacles to their root in obstacle refinement trees and then by 
up-propagation through the goal model. 
 Two metrics may be defined to capture (a) our degree of 
certainty that the goal’s RDS will be met; and (b) the spread of 
satisfaction uncertainty below this RDS. 
Goal violation uncertainty.  The violation uncertainty for a 
probabilistic goal G, denoted by VU (G), is the proportion of 
satisfaction uncertainty falling below the goal’s RDS –that is, 
the probability of being below this threshold.  It is obtained as 
follows:  

  VU (G) =  SUG (RDS(G)) =  ∫x<RDS(G) suG(x). 
Graphically, this violation uncertainty corresponds to the 
surface below the satisfaction uncertainty curve up to the 
goal’s RDS. In our example, the violation uncertainty of 
Achieve [BuildingEvacuatedWhenFire] is 1 (as seen in Fig. 3). This 
means that it is 100% certain that the goal will not meet its 
RDS of 98%. In Fig. 3, the curve is completely on the left of 
the goal’s RDS. 
Uncertainty spread. Violation uncertainties only capture how 
much uncertainty lies below the required thresholds. The same 
surface might take many shapes with more or less spread. Such 
spread may help making decisions. It might be less problematic 
to have the uncertainty closer to the RDS than equally spread 
down to zero. If the uncertainty is close to the goal’s RDS, a 
small change to this RDS might drastically change the 
violation uncertainty score. The semi-standard deviation of the 
distribution is used here for measuring spread. It differs from 
standard deviation as only values below the RDS are taken into 
account.  
 The uncertainty spread for a goal G, denoted by US (G), 
measures the spread of uncertainty below the goal’s RDS. It is 
defined by the semi-standard deviation of its probability 
distribution with respect to this RDS. For discrete values, this 
quantity can be computed as follows:  

𝑈𝑆 𝐺 =
!!!!"# ! !

!!

!
, 

where xi are the discrete values of G’s satisfaction uncertainty 
that fall below RDS(G), and k denotes the number of such 
values. (This formula can be generalized to continuous 
satisfaction uncertainties.) 
 Uncertainty spread values need to be interpreted according 
to the shape of the curve. Whatever the shape, however, 
Chebyshev’s inequality states that at least 75% of the data are 
at most at 2 spread values from RDS(G) [41]. If the goal’s 
satisfaction uncertainty fits a specific probability distribution, 
more precise bounds can be obtained. 
 Back to our example, the goal Achieve [BuildingEvacuated 
WhenFire] has an uncertainty spread of 0.1645. According to 
Chebyshev’s inequality, this means that we have at least 75% 
of the satisfaction uncertainty between 65% and 98%.  

C. Eliciting Distributions for Leaf Obstacle Satisfaction 
To facilitate the elicitation of distribution functions for leaf 
obstacles from domain experts, discrete points may be used 
that can be fitted to specific probability distributions –such as 
Beta, PERT, Triangular, etc. [40]. A quantile is a single 
probability value attached to a cumulative probability. It 
indicates the cumulative probability to observe a single value 
of probability of satisfaction [7]. The 50th quantile, called 
mode, is the most likely probability of satisfaction. 
 To further support such elicitation from domain experts, 
databases providing estimates for quantiles can be used; they 
are available in a wide range of domains –e.g., aerospace, 
health, bank, nuclear, chemical, gas, water pollution, and so 
forth [14]. Reliable techniques are also available for obtaining 
accurate single values or distribution estimates from trained 
experts [23].  
 For the leaf obstacle SmokeDetectorBroken in Fig. 2, an 
expert might estimate that there are at least 10% chances of 
observing at least 24 occurrences of a broken smoke detector 
out of 1000 fire; at least 50% chances of observing at least 27 
such occurrences; and at least 90% chances to observe at least 
30 of them. The 10th, 50th and 90th quantiles are 2.4%, 2.7%, 
and 3% for the probability of satisfaction of this leaf obstacle, 
respectively. Fig. 4 shows the satisfaction uncertainty for this 
obstacle. Our estimates were based on reliability databases and 
published historical data about fire occurrence in various 
industries [5, 26, 35, 36].  

IV. OVERALL APPROACH TO UNCERTAINTY MANAGEMENT 
The satisfaction rate of high-level system goals can be 
increased by resolving “critical” leaf obstacles through 
appropriate counter-measures [27, 28] integrated in the goal 
model [9]. Leaf obstacles with most severe consequences on 
the goal model should therefore be highlighted while reducing 
their uncertainty margin.  
 Our approach for achieving this consists of the following 
steps: 
• The accuracy of estimates for the likelihood of leaf 

obstacles is increased by combining those elicited from 
multiple experts and/or data sources (Section V);  

• Goal satisfaction rates and their uncertainty margin are 
computed from those more accurate estimates (Section VI);  

• Leaf obstacles are prioritized according to their impact on 
the satisfaction of top-level goals using the metrics 
previously introduced (Section VII). 

V. ELICITING MORE ACCURATE ESTIMATES  
FOR UNCERTAINTY REDUCTION 

The first step of our approach consist of eliciting estimates of 
likelihoods of the leaf obstacles in the obstacle AND/OR 
refinement trees built during the obstacle identification phase. 
To reduce uncertainty margins, such estimates should be as 
adequate and accurate as possible.  
 The use of multiple sources or multiple experts is generally 
recognized to increase the accuracy of estimates [13]. 
Behavioral techniques on multiple experts are often used in 
practice to reach a consensus towards more accurate estimates 
[23, 40]. More mathematical approaches are however 
recognized to produce more accurate results than behavioral 
ones [12]. The latter are aimed at characterizing expert 

 
Fig. 4. Satisfaction uncertainty for SmokeDetectorBroken 
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judgements by comparative assessment between their estimates 
and known quantities. The derived characteristics are then used 
for combining estimates from multiple experts to reduce the 
uncertainty margin of the value to be estimated. In our context, 
we want to increase the chance that the satisfaction uncertainty 
for leaf obstacles is close to the known value.  
 Obstacles may be annotated with estimated quantiles from 
multiple experts, e.g., 

Obstacle SmokeDetectorBroken 
Def The smoke detector does not detect fire within 25 sec. 
Probability [Expert1] (2.4%, 2.7%, 3%) 
Probability [Expert2] (2.1%, 2.4%, 2.7%) 

 Experts are not all equal. Some might systematically over- 
or under-estimate probabilities of satisfaction; provide very 
large or very narrow estimates; provide estimate ranges that are 
accurate or not; and so forth. To get more accurate estimates, 
we may compare those provided by multiple experts with 
known values in order to characterize each expert. This is 
known as calibration [7].  
 A calibration variable is a quantity whose exact single-
point value is known. In our context, a calibration variable 
should be closely related to a leaf obstacle –typically, a leaf 
obstacle whose satisfaction rate is known, an agent/resource 
failure whose failure rate is known from reliability databases 
[1], etc. In our running example, three calibration variables 
might be identified: PushButtonBroken, TemperatureSensorBroken 
and FireSprinklerBroken. Table I summarizes estimates and 
known values for two of them. The X% columns show the 
quantiles estimated by the corresponding expert for the 
calibration variable.  
 Two techniques are available for characterizing multiple 
experts and combining their estimated quantiles. We instantiate 
them to our context in order to combine multiple quantiles on a 
leaf obstacle into a single satisfaction uncertainty.  
 Cooke’s technique characterizes each expert through a 
single weight [13]. This weight combines a calibration score 

and an information score. The calibration score measures how 
close the expert’s estimate is to the known value of the 
calibration variable; the higher the probability estimated for 
this value, the higher the score. The information score 
measures how precise the estimates are; the narrower the 
estimates, the greater the score.  The satisfaction uncertainty 
combining the quantiles from multiple experts is obtained as a 
weighted sum of these quantiles. In our example, Expert1 gets 
an information score of 0.4216, a calibration score of 0.9305, 
and a weight of 0.4528; Expert2 gets an information score of 
0.4740, a calibration score of 1, and a weight of 0.5471. 
Figs. 5(a) and 5(b) show the quantile function of both experts; 
Fig. 5(c) shows the resulting satisfaction uncertainty. 
 Mendel-Sheridan’s technique combines the quantiles of the 
experts by use of a Bayesian calibrator/estimator [34]. It first 
computes a minimally informative distribution for the expert’s 
characteristics. This a priori distribution considers each expert 
to be unbiased; it does not weight any probability more than 
others. This a priori distribution is then updated with respect to 
the expert’s quantiles and the known value of calibration 
variables. The resulting distribution is used to combine the 
quantiles of the experts into a satisfaction uncertainty for our 
leaf obstacle. Fig. 5(d) shows the resulting satisfaction 
uncertainty using this technique. 
 Table II illustrates possible estimates for leaf obstacles and 
two experts. These estimates are then combined using the two 
techniques. Which technique performs best remains an open 
question; it may depend on the application domain, the experts, 
and the number of calibration variables [13].  

VI. COMPUTING GOAL SATISFACTION RATES 
AND THEIR UNCERTAINTY 

The second step in the overall approach outlined in Section IV 
consists of determining the satisfaction rate of the goals in our 
goal model, with their uncertainty margins, from the likelihood 
estimates of leaf obstacles obtained in the previous step.  
 Computing uncertainty distributions for top-level goals 
analytically appears unfeasible in practice; it involves 
heavyweight computing machinery. Monte-Carlo simulation 
may be used instead. The simulation relies on repeated 
sampling of parameters to obtain numerical results [40].  
 The procedure for computing the satisfaction rate and 
uncertainty for a top-level goal G may be outlined as follows:  

1. Compute the set of AND-combinations of leaf obstacles 
obstructing G;  

2. For each leaf obstacle in this set, select a single-point 
probability value according to the obstacle’s satisfaction 
rate and uncertainty;  

3. Based on this sample, compute the probability of 
satisfaction for the top-level goal G;  

4. Repeat the process multiple times and aggregate the 
single-point probability values obtained for the top-level 
goal to produce its satisfaction rate and uncertainty. 

 

 

 

 
Fig. 5. Satisfaction of BatteryOutOfService:  (a) Expert1’s estimate,  
(b) Expert2’s estimate, (c) combined estimates using Cooke’s technique, 
(d) combined estimates using Mendel-Sheridan’s technique  

TABLE I. EXPERT ESTIMATES FOR CALIBRATION VARIABLES 

Variable Expert 10% 50% 90% Known 
value 

Temperature 
SensorBroken 

Expert1 2.3% 2.5% 2.8% 4.4% Expert2 4.1% 4.7% 5.2% 
FireSprinkler 
Broken 

Expert1 0% 0.1% 0.3% 0.02% Expert2 0% 0.1% 0.2% 
 

TABLE II. EXPERT ESTIMATES FOR LEAF OBSTACLES 
Expert Obstacle 10% 50% 90% 

Expert1 BatteryOutofService 2.3% 2.5% 2.8% 
BellBroken 1.4% 1.6% 1.8% 
SmokeDetectorBroken 2.4% 2.7% 3% 

Expert2 BatteryOutofService 0% 0.1% 0.2% 
BellBroken 1.7% 1.9% 2.1% 
SmokeDetectorBroken 2.1% 2.4% 2.7% 
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A. Computing Obstruction Sets 
For a given goal G, we first compute all AND-combinations of 
leaf obstacles and domain hypotheses that may obstruct G. An 
obstruction set for a goal G is a set of obstacles Oi and domain 
hypotheses DHj such that: 

{O1, O2, … DH1, DH2,…} ⊨ ¬ G (obstruction) 

{O1, O2, … DH1, DH2,…} ⊭ false (consistency) 
An obstruction set OS should be minimal, that is, all its 
elements are required for falsifying the goal:  

for all Oi in OS :  OS \ Oi ⊭ ¬ G  
for all DHj in OS:  OS \ DHj ⊭ ¬ G (minimality)   

For example, the goal Achieve [FireNoticedInTimeWhenHeat] can 
be obstructed by the following three obstruction sets:  

{FireTooDistantFromDetector}, 
{HeatDetectorBroken, NoDetectionWhenHeatDetectorBroken}, 
{FireNoticedTooLateByHeat}. 

A goal can have multiple alternative obstruction sets. The OR-
combination of all alternative obstruction sets for a goal G is 
called obstruction superset for G, denoted by OS (G). The 
alternatives there should ideally be independent: 

for all OS, OS’ in OS(G):   
          OS ∩ OS’ = ∅ (independence) 

Dependences thus arise when obstruction sets share common 
obstacles or domain hypotheses. 
 The obstruction superset for a goal is computed by up-
propagation from leaf obstacles and domain hypotheses in 
obstacle trees to the root obstacle; then from the root obstacle 
to the obstructed leaf goal; and finally from leaf goals in goal 
trees to the considered top-level goal. 
Step 1: From leaf obstacles to root obstacles. Consider the 
obstacle AND/OR refinement tree anchored on leaf goal LG in 
the goal model. To obtain the obstruction superset OS (LG), we 
proceed by structural induction. Let OS (LG | O) denote the 
obstruction superset for LG obtained by considering all 
obstacles and domain hypotheses in the obstacle sub-tree 
rooted on O. 
• For a leaf obstacle or domain hypothesis LO: 
  OS (LG | LO) =  {LO}. 
• For an AND-refinement of O in sub-obstacles O1 and O2:  

  OS(LG | O) =  OS(LG | O1) × OS(LG | O2), 
where × denotes the cartesian product over sets (the 
generalization to more sub-obstacles is straightforward). 
For example, the obstruction set for the refinement of the 
obstacle NoHeatDetection in Fig. 2 is {HeatDetectorBroken, 
NoDetectionWhenHeatDetectorBroken}. 

• For an OR-refinement of O in sub-obstacles O1 and O2: 
OS (LG | O) = OS (LG | O1) ∪ OS (LG | O2). 

Back to our example, the three obstruction sets for the 
obstacle FireNoticedInTimeAndNotDetected in Fig. 2 are 
{WrongHeatNotification}, {WrongSmokeNotification}, and {Fire-
DetectionDelayed}. 

Step 2: From root obstacles to leaf goals. The obstruction 
superset for a leaf goal LG obstructed by a root obstacle RO is: 

OS (LG) = OS (LG | RO). 
Step 3: From leaf goals to top goals. The obstruction superset 
obtained for leaf goal LG is propagated bottom-up along the 

AND-refinement trees in which LG is involved. For a parent 
goal PG AND-refined into sub-goals G1 and G2 we have:  

OS (PG) = OS (G1) ∪ OS (G2). 
The obstruction sets in the superset thereby obtained are not 
necessarily independent. This arises from obstacle refinement 
trees sharing common obstacles, resulting in a non-empty 
intersection of obstruction sets. Such dependencies must be 
taken into account when computing the probability of 
satisfaction of obstruction sets; this can be achieved 
automatically, see Section VI.B. By construction, independent 
obstruction sets are minimal. 
 In our example, the obstruction superset for the goal Achieve 
[FireDetectedInTime] may be computed from the obstruction 
supersets obtained for the sub-goals Achieve [FireNoticedInTime 
WhenSmoke], Achieve [FireNoticedInTimeWhenHeat], and Maintain 
[FireDetectedWhenNoticedInTime]. Recursively, the obstruction 
sets for the root goal Achieve [BuildingEvacuatedWhenFire] may 
then be computed. 
 The procedure in this section notably differs from the 
propagation algorithm in [8] as it propagates uncertainties 
about estimates. Step 3 here is the counterpart of the algorithm 
in [8]. However, it does not rely on goal refinement patterns 
and is therefore more general. Moreover, there is only a single 
propagation here through the obstacle and goal models which 
makes Step 3 much more efficient. 
 An obstruction superset somewhat corresponds to the cut 
set of a fault tree [7, 28]. A first difference is that a cut set 
yields all combinations of leaf events causing the root event to 
occur whereas an obstruction superset yields all combinations 
of leaf obstacles causing the corresponding goal in the goal 
model to be obstructed. The propagation must therefore 
continue bottom-up through the goal model with specific 
propagation rules to assess the severity of obstruction 
consequences –see Step 2 and Step 3, not found in Fault Tree 
Analysis. Another difference is that the tree nodes here are 
formalizable goal/obstacle specifications, linked by entailment 
relationships among levels, rather than event labels.  

B. Computing Single-Value Satisfaction Rates 
From the computed obstruction superset for a top-level goal in 
the goal model and initial single-point values for satisfaction of 
the leaf obstacles, a single-point probability value is computed 
for the satisfaction of this goal.  
 An obstruction set is satisfied if all its obstacles and domain 
hypotheses are satisfied. An obstruction superset is satisfied if 
at least one of its obstruction sets is satisfied. 
 The probability of satisfaction of a goal G is given by the 
probability that its obstruction superset is not satisfied:  

P (G) =  1 – Pr  [OS (G)], 
where Pr  [OS(G)] denotes the probability that the obstruction 
superset OS (G) is satisfied. 
 To compute the probability of satisfaction of an obstruction 
superset, a binary decision diagram (BDD) is built that 
represents the corresponding Boolean formula where each leaf 
obstacle and domain hypothesis appears as a variable. This 
Boolean formula encodes the AND/OR-combination of leaf 
obstacles and domain hypotheses through the disjunction of the 
conjunction of elements in each obstruction set. As the ordered 
BDD is canonical, equivalent formulas result in the same 
BDD; this makes specific treatments of dependent obstruction 
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sets unnecessary. In our example, for the goal Achieve 
[FireNoticedInTimeWhenHeat] and its three obstruction sets given 
before, the corresponding Boolean formula is:  

FireTooDistantFromDetector 
∨ (HeatDetectorBroken ∧ NoDetectionWhenHeatDetectorBroken)  
∨ FireNoticedTooLateByHeat. 

Efficient algorithms are available for building compact BDDs 
[16, 33]. Such BDDs enable fast computation of single-point 
probability values from single-point probability values for the 
variables [7]. Fig. 6 shows a BDD corresponding to the 
preceding formula. Each node represents a leaf obstacle. By 
following the solid edges if the leaf obstacle is satisfied or the 
dotted edges otherwise, we can determine whether the 
corresponding Boolean formula is true or false. The terminal 
nodes indicate whether the formula is satisfied (1) or not (0). 
For example, if HeatDetectorBroken and NoDetectionWhenDetector 
Broken are both satisfied, the obstruction set is satisfied since 
the BDD path ends at node (1). 
 Every edge in the BDD has a probability label. The latter is, 
for a solid edge, the probability of satisfaction of the obstacle at 
its source and, for a dotted edge, 1 minus this probability. For a 
terminal node, the probability is given by its value (0 or 1).  
 The probability of a non-terminal node represents the 
probability that the formula corresponding to the sub-tree is 
satisfied. It is given by the product of the probability on the 
edge and the probability of the target node.  
 For example, let us assume the following satisfaction 
probabilities:  0.009 for obstacle FireNoticedTooLateByHeat; 
0.004 for obstacle FireTooDistantFromDetector; 0.005 for obstacle 
HeatDetectorBroken; and 0.98 for the domain hypothesis 
NoDetectionWhenHeatDetectorBroken. (The next section shows 
how such single-point values are obtained from their respective 
probability distributions.) Based on these single-point values, 
the probability of the node FireNoticedTooLateByHeat is given by: 

0.991 × 0 + 0.009 × 1 =  0.009. 
The probability of the node FireTooDistantFromDetector is: 

0.996 × 0.009 + 0.004 × 1 =  0.013. 
We can then compute the probability for the node 
NoDetectionWhenHeatDetectorBroken:: 

0.02 × 0.013 + 0.98 × 1 = 0.9802. 

We finally obtain the probability for the node 
HeatDetectorBroken: 

0.995 × 0.013 + 0.005 × 0.9802 = 0.0178. 

From there we derive the probability of satisfaction for the goal 
Achieve [FireNoticedInTimeWhenHeat]: 

 P (Achieve [FireNoticedInTimeWhenHeat]) = 1 – 0.0178 =  98.21%. 

C. From Single-Value Satisfaction Rates to Satisfaction 
Uncertainties 

Our procedure so far computes single-point probability values 
for goal satisfaction from single-point probability values for 
satisfaction of the obstructing leaf obstacles. To build a 
complete probability distribution for a top goal in the goal 
model, we need to sample the satisfaction uncertainty, as 
defined in Section III.A, for these leaf obstacles. To sample a 
satisfaction uncertainty, a random number between 0 and 1 is 
uniformly picked. The inverse of the cumulative distribution 
function associated with the satisfaction uncertainty is then 
used to get a corresponding probability of satisfaction. More 

likely probabilities of satisfaction are thereby picked more 
often than less likely ones. 
 The probability of satisfaction of a top goal is then 
computed for a given sample (as detailed in Section IV.A and 
IV.B). The sampling is repeated a large number of times to 
obtain a set of probabilities of satisfaction for this top goal. The 
obtained set of probabilities can then be aggregated into a 
distribution by using their frequency. For example, by 
repetitive sampling for the leaf obstacles, the following 
probabilities of satisfaction for the top goal Achieve 
[BuildingEvacuatedWhenFire] might be obtained:  

0.82, 0.84, 0.848, 0.846, 0.821, 0.839, 0.841, … 
By counting the number of times each probability occurs, we 
can build the distribution shown in Fig. 1. 
 The number of sampling required depends on the 
satisfaction uncertainties for the leaf obstacles, the numerical 
precision to achieve, the time available to solve the problem, 
and so forth. 

VII. FINDING CRITICAL OBSTACLES AND UNCERTAINTIES  
The third step in the overall approach outlined in Section IV 
consists of prioritizing obstacles according to the metrics 
introduced in Section III.B, that is, the resulting violation 
uncertainty and uncertainty spread for top-level goals.  
 The impact of each single leaf obstacle on the goal model 
must be assessed individually. For a given top goal, the 
procedure in the previous section is applied for each leaf 
obstacle with the satisfaction probability of all other leaf goals 
being set to 0. The violation uncertainty and the uncertainty 
spread for the considered top goal are then computed according 
to their definition in Section III.B. The result may be 
represented on a scatter plot, called violation diagram, to 
highlight the most critical obstacles to this top goal. When all 
likely and critical individual obstacles are resolved, the 
violation uncertainty and uncertainty spread may be computed 
again with pairs of leaf obstacles in order to build a new 
violation diagram; then with triples, and so forth.  
 Our running example contains 13 leaf obstacles. The 
violation uncertainty and uncertainty spread for the top goal 
Achieve [BuildingEvacuatedWhenFire] were seen before to be 1 and 
0.1529, respectively. Fig. 7 shows the corresponding violation 
diagram. The following observations can be made from it. 
• The obstacle WrongSmokeNotification is clearly a critical one. 

The violation of the top goal it causes is certain. 
• The top goal violation caused by SmokeDetectorBroken and 

BatteryOutofService is certain; however the uncertainty 
spread is very low. This indicates that the uncertainty is 
probably close to the goal’s RDS. This obstacle might thus 
not be that critical as a slight change in the goal’s RDS 
might drastically change the violation uncertainty. 

• The leaf obstacles FireCentralNotificationDelayed, FireDetection 
Delayed, and NetworkDown are not causing the highest 

 
Fig. 6. BDD for obstruction superset of Achieve [FireNoticedInTimeWhenHeat] 
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Fig. 8. Satisfaction uncertainty for Achieve [IncidentResolved] 

violation uncertainty or uncertainty spread.  
• For FireLatelyNoticedBySmoke, there is some good confidence 

that the obstacle will not prevent the root goal from 
reaching its RDS as the violation uncertainty is quite low. 

• For the remaining 6 obstacles, it is certain that they do not 
individually prevent the root goal from reaching its RDS. 

Table III shows the violation uncertainty and the uncertainty 
spread for the relevant leaf obstacles.  
 The obstacle prioritization technique in [8] does not support 
uncertainties about estimates. Moreover, the technique here 
proceeds iteratively on the size of obstacle combinations. 

VIII. EVALUATION 
Our approach was applied on a model of a real ambulance 
dispatching system deployed in the Brussels area. This model 
is partly based on the one used for evaluating obstacle analysis 
techniques [2, 27] while building upon the first author’s 
experience as a voluntary paramedic in this type of system. The 
model contains 71 goals, 19 goal refinements and 8 agents. The 
obstacle model contains 76 obstacles; among these 47 are leaf 
obstacles whose likelihood has to be estimated. The 
quantitative aspects used in our evaluation were based on real 
data provided by stakeholders. For confidentiality reasons, the 
presentation here is based on fictitious but realistic data. 
 The top goal in this model is Achieve [IncidentResolved] with 
a RDS of 95%. The milestone-driven refinement pattern 
produces three sub goals: Achieve [IncidentReported], Achieve 
[AmbulanceIntervention], and Achieve [IncidentResolvedByAmbulance 
Intervention]. The goal Achieve [AmbulanceIntervention] states that 
“an ambulance shall be on the incident scene within 10 minutes” [39]. 
At a lower level, the goal Achieve [AllocatedAmbulanceMobilization] 
is further refined using a case-driven refinement pattern into 
Achieve [AllocatedAmbulanceMobilizationAtStation] and Achieve 
[AllocatedAmbulanceMobilizationOnRoad]. This refinement yields 
two domain hypotheses annotated with their estimated 
probability of satisfaction: 

If AmbulanceAllocated then AmbOnRoad P = 0.4 
If AmbulanceAllocated then AmbAtStation P = 0.6 

Here are a few obstacle refinements anchored on leaf goals (in 
textual format for lack of space): 

NoAmbulanceInterventionWhenMobilized 
 ← MobilizationRetracted 
  ← MobilizationCancelled 
  ← DestinationForgotten 
  ← DestinationChanged 
 ← ServiceEndsBeforeIntervention 
 ← AmbulanceStoppedOrInWrongDirection 
  ← AmbulanceInWrongDirection 
  ← AmbulanceStopped  

 The satisfaction probabilities for those leaf obstacles in the 
Brussels area are not publically available although they are 
partially recorded. We therefore asked 5 experienced 
paramedics involved in the system to estimate missing or 
unavailable data. Table IV outlines some of the collected data. 
The experts provided estimates based on a custom number of 
interventions; all estimates were then converted into 
percentages (which explains decimal values in Table IV).   
 For calibration, statistical data were obtained about the 
following obstacles: AllocatedAmbulanceNotAtStation (50%), 
MobilizationCancelled (13%), and MDTturnedOff (33.3%). These 
leaf obstacles were used as calibration variables. 
 The results produced by our techniques proved helpful in 
the following respects. 
Managing knowledge uncertainty. Based on the calibration 
and collected data, the violation uncertainty obtained for the 
top goal Achieve [IncidentResolved] was 100%, with an 
uncertainty spread of 0.9189. Fig. 8 shows the satisfaction 
uncertainty for this goal. This might seem low; the reason is 
that the model only captures the ideal case without taking any 
countermeasure to obstacles into account. The rate of ideal 
ambulance intervention is actually experienced to be roughly 
similar to the curve obtained with our technique.  
 Violation diagrams helped identifying most likely and 
critical obstacles together with obstacles requiring further 
elicitation. The black triangles in Fig. 9 show the violation 
uncertainty and uncertainty spread for the top goal, taking all 
experts into account. Four obstacles were estimated to cause 
the top goal not to meet its RDS with more than 90% of 
certainty, namely, Mobilization Cancelled, MDTTurnedOff, Blackspot, 
and AvailableBedNotAssigned. Adequate countermeasures to 
these obstacles should therefore be elaborated and integrated. 
Among all obstacles, 18 have an uncertainty spread higher than 
0.10; they should therefore be further refined or more experts 
should be asked. The uncertainty spread for the 25 other 
critical obstacles was low. This indicates that experts roughly 

TABLE III. VIOLATION UNCERTAINTY AND UNCERTAINTY SPREAD 

Obstacle Violation 
Uncertainty 

Uncertainty 
Spread 

WrongSmokeNotification 1 0.0196 
SmokeDetectorBroken 1 0.0076 
BatteryOutofService 1 0.0058 
FireDetectionDelayed 0.686 0.0091 
FireCentralNotificationDelayed 0.6661 0.0090 
NetworkDown 0.6231 0.0119 
FireNoticedTooLateBySmoke 0.1621 0.0003 

 

 
Fig. 7. Violation Diagram for Achieve [BuildingEvacuatedWhenFire] 

 
Fig. 9. Violation diagram for Achieve [IncidentResolved] 
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agreed on their probability of satisfaction. Over the 47 leaf 
obstacles, 14 are with certainty not causing the probability of 
satisfaction of the top goal to fall below its RDS. 
Capturing uncertainty about risk estimates through multi-
point values. Paramedics were asked to estimate a lower 
bound, the most probable value, and an upper bound for all leaf 
obstacles. To mitigate the common difficulty of estimating 
strict and accurate lower and upper bounds [40], the ones we 
collected were used as 10th and 90th quantiles, with a 10% 
overshoot being integrated. Eliciting probability distributions 
would have been impossible in practice as the required 
statistical background is far too important. 
Integrating estimates from multiple experts. The uncertainty 
spread for the goal Achieve [IncidentResolved], obtained by using 
the estimates of the first expert only, is 0.9471 which is very 
high. Had we used the first expert only, 30 leaf obstacles would 
have been determined to be potentially critical and likely. The 
uncertainty spread caused by each individual obstacle would 
have been high on average, as the grey squares in Fig. 9 shows. 
Using more than one expert helped us reduce the general 
uncertainty spread and the number of obstacles to be 
considered as critical and likely. 

IX.  RELATED WORK 
Work on handling uncertainty in RE has generally been 
devoted to physical uncertainty rather than knowledge 
uncertainty (as defined in Section I). One exception is Fault 
Tree Analysis (FTA) [7]. Knowledge uncertainty is supported 
there through probabilistic distributions on leaf events and 
Monte-Carlo simulation for propagation to root causes. As seen 
in Section VI.A, our approach exploits a goal refinement graph 
to assess the severity of risk consequences. It is integrated in an 
overall method for risk identification, assessment and 
resolution. Unlike FTA, the goal/obstacle refinement structure 
is grounded on a formal framework providing a precise 
semantics for nodes and enabling the verification of 
correctness of refinements. FTA does not seem to combine 
estimates from multiple experts. 
 Related work on handling physical uncertainty through 
obstacle analysis was discussed at the beginning of this paper 
[2, 8, 9, 20, 27, 29].  In particular, the DDP lightweight tool for 
risk analysis [20] allows goals to be annotated with their 
degree of importance, obstacles with their likelihood of 
occurrence, and countermeasures with their effectiveness. DDP 
does not seem to support uncertainty about estimated quantities 
and integration of estimates from multiple experts. 
 In [29], leaf goals are annotated with probability 
distributions that are analytically combined for obtaining 
probability distributions for top goals. The approach is 
extended in [24] for selecting best system design alternatives. 
The top probability distribution is obtained through a single-
value procedure and Monte-Carlo simulation. This technique 
appears more finer-grained as it supports domain-specific 
propagation rules and variables. Such rules and variables need 
however be defined in an ad-hoc manner. No support is 
provided for multiple expert assessments. Based on a framework 
for statistical decision making, the technique in [30] evaluates the 
gain of perfect information and helps identify alternatives 
maximizing benefits while reducing project risks. This work 
might be adapted for selecting most critical obstacles.  

 In [38], KAOS goal/obstacle models are extended with a 
probabilistic layer for technology qualification. The probability 
of satisfaction for leaf obstacles is estimated by a triangular 
distribution. The distribution for the root goal is then computed 
by Monte-Carlo simulation and a single-value propagation 
algorithm. The probabilistic layer introduced there has no 
precise semantics in terms of behaviour which limits precise 
reasoning and questions the correctness of propagations. Here 
we are not limited to one triangular distribution per obstacle 
and we support multiple experts. Our propagation procedure 
appears more efficient as it only requires a single propagation 
through the obstacle/goal model in Step 1 (see Section VI.A). 
The notion of required degree of satisfaction (RDS) does not 
appear relevant to the objectives of [38]; obstacle prioritization 
is therefore different. TROPOS is another goal-oriented 
framework, more focussed on soft goals, that supports 
quantitative reasoning for assessing risks and physical 
uncertainties [4]. External events are identified and assessed 
with respect to their positive or negative contributions to goals. 
The point that different stakeholders may have different 
perceptions of a risk is also made in [3]. In [25], the focus is on 
“design-time” uncertainty which enables reasoning about the 
presence or absence of model elements.  
 Fuzzy goals may be introduced for coping with satisfaction 
uncertainty [6, 11, 42]. These are more oriented towards self-
adaption at system run-time. The concern there is to reason in 
terms of proximity of goals being fully satisfied –rather than in 
terms of probabilities of satisfaction. Our approach might be 
applied there to elicit membership functions, regulate the 
fuzziness of goal satisfaction, and involve multiple experts. 
 CORAS is an UML-based risk analysis methodology 
supported through various types of diagram [31]. In the assess 
step, risks are annotated with single-value probabilities to 
support quantitative reasoning. No support is provided for 
reasoning about uncertainty over estimated probabilities and 
for integrating multi-expert estimates. 

X. CONCLUSION 
The quantitative technique presented in the paper allows 
analysts to cope with knowledge uncertainty about satisfaction 
rates of system goals and their obstructing obstacles. An earlier 
formal probabilistic framework for goals and obstacles [8, 9] is 
extended to explicitly reason about uncertain estimates. The 
impact of estimation uncertainty is measured on top-level goals 

TABLE IV. EXPERT ESTIMATES FOR LEAF OBSTACLES 

Obstacle Expert Estimate 
Min Mode Max 

AllocatedAmbulance 
NotAtStation 

Expert1 13.3% 30% 53.3% 
Expert2 15% 40% 50% 
Expert3 10% 15% 25% 
Expert4 30% 40% 50% 
Expert5 2% 4% 10% 

ServiceEnd 
BeforeIntervention 

Expert1 10% 12% 15% 
Expert2 0% 5% 15% 
Expert3 4% 8% 12% 
Expert4 10% 15% 20% 
Expert5 10% 10% 20% 

PatientCannot 
ReachAmbulance 

Expert1 0% 13.3% 20% 
Expert2 0% 10% 25% 
Expert3 0% 3% 5% 
Expert4 5% 10% 25% 
Expert5 2% 4% 6% 

 

114



through two metrics: goal violation uncertainty and uncertainty 
spread. Satisfaction rates and their uncertainties for top goals 
are computed by up-propagation through obstacle and goal 
refinement trees, from leaf obstacles whose satisfaction rate 
and uncertainty need be estimated. As a result, more critical 
leaf obstacles may be highlighted for resolution. To reduce 
their uncertainty margin, our approach allows estimates from 
multiple sources to be combined. 
 All techniques in the paper are supported by a tool [10]. 
The satisfaction probabilities can be specified as distributions 
or quantiles. All pictures and tables shown in the paper were 
generated by this tool. The techniques and tool were applied to 
two non-trivial case studies: a fire detection system and a real 
ambulance dispatching system deployed in the Brussels area. 
 Future work should consider a cost/benefit analysis of 
uncertainty reduction. The calibration and adaptation of 
satisfaction uncertainties at runtime, à la [18], appears another 
promising direction. Connections between our approach and 
others based on fuzzy logics might be worth investigating too.  
 Beyond frameworks for goal-oriented RE, other RE and 
risk analysis frameworks might benefit from our techniques. In 
particular, FTA might integrate similar metrics for problematic 
uncertainties together with means for reasoning about risk 
consequences and combinations of multiple expert estimates. 
Other software engineering areas are faced with the problem of 
handling uncertainties about estimated quantities [21]. The 
application of similar techniques appears worth considering in 
other contexts beyond RE as well. 
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