
Handling Knowledge Uncertainty
in Risk-Based Requirements Engineering

Antoine Cailliau and Axel van Lamsweerde

ICTEAM – Institute for Information & Communication Technologies, Electronics and Applied Mathematics
Université catholique de Louvain

Louvain-la-Neuve, Belgium
{antoine.cailliau, axel.vanlamsweerde}@uclouvain.be

Abstract—Requirements engineers are faced with multiple

sources of uncertainty. In particular, the extent to which the
identified software requirements and environment assumptions
are adequate and sufficiently complete is uncertain; the extent to
which they will be satisfied in the system-to-be is uncertain; and
the extent to which obstacles to their satisfaction will occur is
uncertain. The resolution of such domain-level uncertainty
requires estimations of the likelihood that those different types of
situations may or may not occur. However, the extent to which
the resulting estimates are accurate is uncertain as well.

This meta-level uncertainty limits current risk-based methods
for requirements engineering. The paper introduces a
quantitative approach for managing it. An earlier formal
framework for probabilistic goals and obstacles is extended to
explicitly cope with uncertainties about estimates of likelihoods of
fine-grained obstacles to goal satisfaction. Such estimates are
elicited from multiple sources and combined in order to reduce
their uncertainty margins. The combined estimates and their
uncertainties are up-propagated through obstacle refinement
trees and then through the system’s goal model. Two metrics are
introduced for measuring problematic uncertainties. When
applied to the probability distributions obtained by up-
propagation to the top-level goals, the metrics allow critical leaf
obstacles with most problematic uncertainty margins to be
highlighted. The proposed approach is evaluated on excerpts
from a real ambulance dispatching system.

Index Terms—obstacle analysis; risk assessment;
probabilistic goals; requirements completeness; uncertainty
management; quantitative reasoning; goal-oriented requirements
engineering.

I. INTRODUCTION
Uncertainty is increasingly recognized as a key issue in the
engineering of complex software systems such as mobile
systems, human-intensive systems, applications embedded to
complex environments, smart cyber-physical systems, or self-
adaptive systems [22, 37]. The software components in such
systems highly depend on their seamless interaction with a
wide variety of environment components, including devices
and people, whose behavior is uncertain.
 Requirements engineers are at the forefront of uncertainty
problems. The adequacy and “sufficient” completeness of the
identified software requirements, environment assumptions and
relevant domain properties is generally uncertain [28]. The
satisfaction rate of those requirements and assumptions when
the system-to-be will be running is uncertain as well [6, 8, 20,
29]; this is generally due to unexpected events and conditions

that may occur in the environment [27]. Moreover, the
likelihood of such events and conditions occurring is uncertain.
 Uncertainty mitigation techniques are intended to reduce
specific types of uncertainty [37]. For requirements
engineering (RE), risk analysis cycles are often introduced in
the RE process [4, 20, 27, 31]. A risk is an uncertain factor
preventing the satisfaction of system objectives. Risk analysis
can therefore be naturally integrated in goal-oriented RE
methods [15, 17, 20, 27, 32].
 Obstacle analysis is a goal-oriented form of risk analysis
where an obstacle to a goal is a precondition for non-
satisfaction of this goal. While elaborating a goal model as an
AND/OR goal refinement/abstraction graph, the analyst
performs obstacle analysis cycles [28]. Each cycle consist of
three steps: (a) the identification of as many obstacles to leaf
goals as possible; (b) the assessment of their likelihood and of
the severity of their consequences; (c) the resolution of likely
and severe obstacles through appropriate countermeasures to
be integrated as new goals in the goal model. Systematic
techniques are available for identifying obstacles from
requirements and domain properties [2, 27]. For the assessment
step, likelihoods and criticalities can be determined
quantitatively with expert assistance [20] and/or by
calculations over probabilistic obstacle/goal models [8, 29].
For obstacle resolution, operators are available for exploring
alternative countermeasures [27] and for integrating selected
countermeasures into the goal model [9].
 In traditional risk analysis, uncertainty during risk
assessment arises under two forms [23, 40].
• Physical uncertainty refers to system phenomena. For

example, the chance of a sensor breaking down might be
defined by a probability. This domain-level form of
uncertainty can be reduced by changing the system under
consideration –e.g., by introduction of appropriate
countermeasures.

• Knowledge uncertainty refers to the assessment of physical
uncertainty by experts. In our example, our imperfect
knowledge of what the exact probability value is might lead
us to estimate it with some uncertainty margin. Such meta-
level form of uncertainty can be reduced through further
studies, consultation of more experts, increased experience,
run-time monitoring of relevant events or data, and so forth.

Risk analysis techniques for RE so far addressed physical
uncertainty only [4, 8, 20, 27, 31]. Obstacle analysis, in
particular, is intended to anticipate the occurrence of adverse
events or conditions by producing a more complete and robust

978-1-4673-6905-3/15 c© 2015 IEEE RE 2015, Ottawa, ON, Canada
Research Paper

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

52

106

goal model; the runtime satisfaction rate of requirements and
assumptions appearing as leaf goals in the goal model is
thereby increased [27, 28].
 Current risk analysis techniques for RE do not address
knowledge uncertainty. They rely on expert judgement at some
point or another to estimate the likelihood of fine-grained
events or conditions emerging from their analysis. Such
estimates are typically based on experience or historical data
[4, 8, 20, 31], sometimes refined through runtime event
monitoring [18, 19]. However, the extent to which those
estimates are accurate remains uncertain. Expert’s judgements
might be subjective or biased; relevant data might not be
available; accurate data might be too expensive to obtain;
collected data might no longer be relevant in view of
technology changes; data might be too sparse; and so on [40].
 The objective of this paper is to address this current
limitation of risk-based RE techniques through quantitative
techniques for managing the knowledge uncertainty about the
estimates being used.
 An earlier formal framework for probabilistic goals and
obstacles [8] is extended to explicitly capture and reason about
uncertainties on estimates of likelihoods of fine-grained
obstacles to goal satisfaction. The resulting framework
supports specific analyses involving knowledge uncertainty, in
particular, the prioritisation of obstacles with respect to the
degree and spread of uncertainty they cause on the satisfaction
of top-level goals in the goal model. This allows analysts to
highlight critical obstacles (in terms of severity of their
consequences) whose knowledge uncertainty must be reduced
in order to determine whether they are sufficiently likely or
not.
The paper makes the following contribution.
• Uncertainties about risk estimates and goal satisfaction

rates are integrated in the specification of probabilistic
goals and obstacles. In alignment with new-generation
reliability databases providing ranges of estimates [1], the
extended framework supports both single-point and multi-
point value estimates –unlike [4, 8].

• Two metrics are provided for measuring problematic
knowledge uncertainties about goal satisfaction.

• A quantitative technique is provided for highlighting the
obstacles with most severe consequences on the goal model
and most problematic knowledge uncertainties.

• Uncertainty margins on estimates are reduced for increased
accuracy by methodical integration of estimates from
multiple sources or multiple experts.

 The paper is organized as follows. Section II provides
necessary rudiments on goal-oriented modeling and
probabilistic obstacle analysis. Section III introduces our
framework for capturing knowledge uncertainty about goals
and obstacles and for measuring problematic uncertainties.
Section IV outlines the overall approach for managing
knowledge uncertainties. Section V introduces means for
reducing knowledge uncertainty about estimates of leaf
obstacles by use of multiple sources and/or experts. Section VI
details how goal satisfaction rates and uncertainties about them
can be computed from those estimates of likelihoods of leaf
obstacles and their uncertainty. Section VII briefly discusses
how the techniques in the preceding sections may help

determine critical obstacles and problematic knowledge
uncertainties. Section VIII reports on a preliminary evaluation
of our results on a real ambulance dispatching system.
Section IX discusses related work.

II. BACKGROUND

Goal-Oriented System Modeling. A goal is a prescriptive
statement of intent to be satisfied by the agents forming the
considered system. The word system refers to both the
software-to-be and its environment, including people, pre-
existing software, hardware devices such as sensors and
actuators, and so forth. Domain properties are descriptive
statements about the problem world (such as physical laws).

The paper focuses on behavioral goals; unlike softgoals,
they can be satisfied in a clear-cut sense [28]. A behavioral
goal captures a maximal set of intended behaviors
declaratively and implicitly; a behavior is a sequence of
system state transitions. A behavior thus violates a goal if it is
not among those covered by the (formal) goal specification.

A behavioral goal is of type Achieve or Maintain/Avoid
[28]. The specification pattern for an Achieve goal is "if C then
sooner-or-later T", where C and T denote a current condition
and a target condition, respectively, with obvious
particularizations to Immediate Achieve, Bounded Achieve and
Unbounded Achieve goals. The pattern for a Maintain (resp.
Avoid) goal is "[if C then] always G" (resp. "[if C then] never B"),
where G and B denote a good and bad condition, respectively.
Linear temporal logic is used for formalizing behavioral goals
to enable their analysis. Note that we are only interested in the
non-vacuous satisfaction of goals, leaving aside the trivial
cases where a goal is satisfied because its antecedent is false.

A goal model is an AND/OR graph showing how goals
contribute positively or negatively to each other [28]. Fig. 1
gives a partial goal model showing how goals are AND-
refined for the simple fire alarm system used as a running
example. Parent goals are obtained by abstraction, e.g. through
why questions, whereas child goals are obtained by
refinement, e.g. through how questions. In a goal model, leaf
goals assigned to a software agent are called requirements
whereas leaf goals assigned to an environment agent are called
expectations. The latter are prescriptive assumptions on the
environment. Descriptive assumptions may be needed as well;
they are called domain hypotheses –e.g., NoDetectionWhen
SmokeDetectorBroken is a domain hypothesis in our example.

Refinement patterns are available for guiding the

Fig. 1. Partial goal model for a fire alarm system

107

construction of goal models –such as Milestone-Driven,
DecompositionByCases, Guard-Introduction, Divide-And-
Conquer, Uncontrollability-Driven, etc. [28]. In Fig. 1, the
Milestone-Driven refinement pattern is used to refine the top
goal Achieve [BuildingEvacuatedWhenFire] into subgoals
Achieve [FireDetectedInTime] and Achieve [BuildingEvacuatedWhen
FireDetected].
Obstacle analysis. An obstacle O to a goal G is a satisfiable
precondition for the non-satisfaction of this goal [27, 28]:
 {O, Dom} ⊨ ¬ G (obstruction)
 {O, Dom} ⊭ false (domain consistency)
Like goals, obstacles are AND/OR-refined into sub-obstacles,
resulting in a goal-anchored form of risk tree, as Fig. 2 shows.
The root obstacle of an obstacle tree is the negation of the
associated leaf goal in the goal model. An AND-refinement
captures a combination of sub-obstacles entailing the parent
obstacle; an OR-refinement captures alternative ways of
entailing the parent obstacle. The leaf sub-obstacles are fine-
grained atomic obstacles whose likelihood can be more easily
estimated.

Formal and heuristic techniques are available for the
identification of obstacles and for the generation of alternative
countermeasures [27, 28]. In particular, domain properties of
form "if T then N" or "if G then N", where N denotes a necessary
condition for the target condition T or good condition G, result
in obstacles of form "sooner-or-later [C and] never N" or
"sooner-or-later [C and] sooner-or-later not N" for Achieve and
Maintain/Avoid goals, respectively. For example, consider the
goal Maintain [FireDetectedWhenNoticedInTime] in Fig. 2.
Negating this goal yields the root obstacle FireNoticed
InTimeAndNotDetected. Regressing through the necessary
condition "if FireDetected then CorrectHeatNotification" found in
the domain results in the obstacle WrongHeatNotification; the
derivation is similar for the other sub-obstacles
WrongSmokeNotification and FireDetectionDelayed.
Probabilistic goals and obstacles. Behavioral goals might be
satisfied only partially. A probabilistic goal prescribes some
desired condition to be satisfied in at least X% of cases [8, 29]
–for example, “when a fire is detected the building shall be evacuated
within 5 minutes in at least 98% of cases”.
 The probability of satisfaction of a goal of form “if C then
sooner-or-later T” is defined as the ratio between (a) the number
of possible behaviors satisfying both the goal antecedent C and
consequent sooner-or-later T, and (b) the number of possible
behaviors satisfying C.

The estimated probability of satisfaction (EPS) of a goal is
the probability of its satisfaction in view of its possible
obstructions by obstacles.

The required degree of satisfaction of goal G, denoted by
RDS (G), is the minimal probability of satisfaction prescribed
for this goal. It is imposed by elicited requirements, existing
regulations, standards, etc.
 The probability of satisfaction of an obstacle is defined as
the ratio between the number of possible behaviors satisfying
the obstacle and the number of possible behaviors.

III. CAPTURING KNOWLEDGE UNCERTAINTIES IN
GOAL/OBSTACLE MODELS

Probability distributions are commonly used in risk analysis for
representing the uncertainty about single-point values of
random variables [40]. A probability distribution is a function
assigning a specific probability to each possible single-point
value in some domain. This section extends the probabilistic
goal/obstacle specification language in [8] to capture the
uncertainty about estimated satisfaction rates of behavioral
goals, assumptions, and obstacles in the system-to-be. The
domain considered here is the set of possible probability
values, that is, the interval [0, 1].

A. Uncertainty about Estimated Satisfaction Rates
Let A denote a probabilistic assertion specifying a goal, an
assumption (prescriptive or descriptive), or an obstacle in the
goal/obstacle models.
Satisfaction uncertainty. The satisfaction uncertainty for
assertion A, denoted by suA, is defined by a probability
distribution over its single-point probabilities of satisfaction.
 For example, Fig. 3 shows the probability distribution
capturing the satisfaction uncertainty suG for G: Achieve
[BuildingEvacuatedWhenFire]. (Section VI describes how such
distribution can be computed.) As seen in Fig. 3, the
probability of satisfaction of this goal lies between 80% and
90%, with a more likely value around 85%. Note that this
multi-value estimate does not meet the goal’s RDS, prescribed
to be 98% as depicted by the black line on the right.
 Satisfaction uncertainties may also refer to domain
hypotheses such as NoDetectionWhenSmokeDetectorBroken.
 Note that a goal satisfaction uncertainty arises from
obstacle satisfaction uncertainties. For example, our certainty
about the extent to which the goal Achieve [Fire-
NoticedInTimeWhenSmoke] is satisfied depends on our certainty
about the extent to which the obstacles FireNoticedToo-
LateBySmoke or SmokeDetectorBroken are satisfied.

B. Uncertainty Metrics for Goal Satisfaction
The probability to observe a probability of satisfaction of at
least p for goal G, denoted SUG (p), is obtained as follows:

 SUG (p) = ∫x<p suG(x).
This probability corresponds to the area delimited by the suG
curve and value p. In Fig. 3, the chance of the goal Achieve

Fig. 3. Satisfaction uncertainty for Achieve [BuildingEvacuatedWhenFire]

Fig. 2. Partial obstacle model for leaf goals in Fig. 1

108

[BuildingEvacuatedWhenFire] being satisfied in at least 84% of
cases is given by:

 SUAchieve [BuildingEvacuatedWhenFire] (0.84) = 0.78.
It corresponds to the grey area in Fig. 3. As shown in
Section IV, suG can be computed by up-propagation from leaf
obstacles to their root in obstacle refinement trees and then by
up-propagation through the goal model.
 Two metrics may be defined to capture (a) our degree of
certainty that the goal’s RDS will be met; and (b) the spread of
satisfaction uncertainty below this RDS.
Goal violation uncertainty. The violation uncertainty for a
probabilistic goal G, denoted by VU (G), is the proportion of
satisfaction uncertainty falling below the goal’s RDS –that is,
the probability of being below this threshold. It is obtained as
follows:

 VU (G) = SUG (RDS(G)) = ∫x<RDS(G) suG(x).
Graphically, this violation uncertainty corresponds to the
surface below the satisfaction uncertainty curve up to the
goal’s RDS. In our example, the violation uncertainty of
Achieve [BuildingEvacuatedWhenFire] is 1 (as seen in Fig. 3). This
means that it is 100% certain that the goal will not meet its
RDS of 98%. In Fig. 3, the curve is completely on the left of
the goal’s RDS.
Uncertainty spread. Violation uncertainties only capture how
much uncertainty lies below the required thresholds. The same
surface might take many shapes with more or less spread. Such
spread may help making decisions. It might be less problematic
to have the uncertainty closer to the RDS than equally spread
down to zero. If the uncertainty is close to the goal’s RDS, a
small change to this RDS might drastically change the
violation uncertainty score. The semi-standard deviation of the
distribution is used here for measuring spread. It differs from
standard deviation as only values below the RDS are taken into
account.
 The uncertainty spread for a goal G, denoted by US (G),
measures the spread of uncertainty below the goal’s RDS. It is
defined by the semi-standard deviation of its probability
distribution with respect to this RDS. For discrete values, this
quantity can be computed as follows:

𝑈𝑆 𝐺 =
!!!!"# ! !

!!

!
,

where xi are the discrete values of G’s satisfaction uncertainty
that fall below RDS(G), and k denotes the number of such
values. (This formula can be generalized to continuous
satisfaction uncertainties.)
 Uncertainty spread values need to be interpreted according
to the shape of the curve. Whatever the shape, however,
Chebyshev’s inequality states that at least 75% of the data are
at most at 2 spread values from RDS(G) [41]. If the goal’s
satisfaction uncertainty fits a specific probability distribution,
more precise bounds can be obtained.
 Back to our example, the goal Achieve [BuildingEvacuated
WhenFire] has an uncertainty spread of 0.1645. According to
Chebyshev’s inequality, this means that we have at least 75%
of the satisfaction uncertainty between 65% and 98%.

C. Eliciting Distributions for Leaf Obstacle Satisfaction
To facilitate the elicitation of distribution functions for leaf
obstacles from domain experts, discrete points may be used
that can be fitted to specific probability distributions –such as
Beta, PERT, Triangular, etc. [40]. A quantile is a single
probability value attached to a cumulative probability. It
indicates the cumulative probability to observe a single value
of probability of satisfaction [7]. The 50th quantile, called
mode, is the most likely probability of satisfaction.
 To further support such elicitation from domain experts,
databases providing estimates for quantiles can be used; they
are available in a wide range of domains –e.g., aerospace,
health, bank, nuclear, chemical, gas, water pollution, and so
forth [14]. Reliable techniques are also available for obtaining
accurate single values or distribution estimates from trained
experts [23].
 For the leaf obstacle SmokeDetectorBroken in Fig. 2, an
expert might estimate that there are at least 10% chances of
observing at least 24 occurrences of a broken smoke detector
out of 1000 fire; at least 50% chances of observing at least 27
such occurrences; and at least 90% chances to observe at least
30 of them. The 10th, 50th and 90th quantiles are 2.4%, 2.7%,
and 3% for the probability of satisfaction of this leaf obstacle,
respectively. Fig. 4 shows the satisfaction uncertainty for this
obstacle. Our estimates were based on reliability databases and
published historical data about fire occurrence in various
industries [5, 26, 35, 36].

IV. OVERALL APPROACH TO UNCERTAINTY MANAGEMENT
The satisfaction rate of high-level system goals can be
increased by resolving “critical” leaf obstacles through
appropriate counter-measures [27, 28] integrated in the goal
model [9]. Leaf obstacles with most severe consequences on
the goal model should therefore be highlighted while reducing
their uncertainty margin.
 Our approach for achieving this consists of the following
steps:
• The accuracy of estimates for the likelihood of leaf

obstacles is increased by combining those elicited from
multiple experts and/or data sources (Section V);

• Goal satisfaction rates and their uncertainty margin are
computed from those more accurate estimates (Section VI);

• Leaf obstacles are prioritized according to their impact on
the satisfaction of top-level goals using the metrics
previously introduced (Section VII).

V. ELICITING MORE ACCURATE ESTIMATES
FOR UNCERTAINTY REDUCTION

The first step of our approach consist of eliciting estimates of
likelihoods of the leaf obstacles in the obstacle AND/OR
refinement trees built during the obstacle identification phase.
To reduce uncertainty margins, such estimates should be as
adequate and accurate as possible.
 The use of multiple sources or multiple experts is generally
recognized to increase the accuracy of estimates [13].
Behavioral techniques on multiple experts are often used in
practice to reach a consensus towards more accurate estimates
[23, 40]. More mathematical approaches are however
recognized to produce more accurate results than behavioral
ones [12]. The latter are aimed at characterizing expert

Fig. 4. Satisfaction uncertainty for SmokeDetectorBroken

109

judgements by comparative assessment between their estimates
and known quantities. The derived characteristics are then used
for combining estimates from multiple experts to reduce the
uncertainty margin of the value to be estimated. In our context,
we want to increase the chance that the satisfaction uncertainty
for leaf obstacles is close to the known value.
 Obstacles may be annotated with estimated quantiles from
multiple experts, e.g.,

Obstacle SmokeDetectorBroken
Def The smoke detector does not detect fire within 25 sec.
Probability [Expert1] (2.4%, 2.7%, 3%)
Probability [Expert2] (2.1%, 2.4%, 2.7%)

 Experts are not all equal. Some might systematically over-
or under-estimate probabilities of satisfaction; provide very
large or very narrow estimates; provide estimate ranges that are
accurate or not; and so forth. To get more accurate estimates,
we may compare those provided by multiple experts with
known values in order to characterize each expert. This is
known as calibration [7].
 A calibration variable is a quantity whose exact single-
point value is known. In our context, a calibration variable
should be closely related to a leaf obstacle –typically, a leaf
obstacle whose satisfaction rate is known, an agent/resource
failure whose failure rate is known from reliability databases
[1], etc. In our running example, three calibration variables
might be identified: PushButtonBroken, TemperatureSensorBroken
and FireSprinklerBroken. Table I summarizes estimates and
known values for two of them. The X% columns show the
quantiles estimated by the corresponding expert for the
calibration variable.
 Two techniques are available for characterizing multiple
experts and combining their estimated quantiles. We instantiate
them to our context in order to combine multiple quantiles on a
leaf obstacle into a single satisfaction uncertainty.
 Cooke’s technique characterizes each expert through a
single weight [13]. This weight combines a calibration score

and an information score. The calibration score measures how
close the expert’s estimate is to the known value of the
calibration variable; the higher the probability estimated for
this value, the higher the score. The information score
measures how precise the estimates are; the narrower the
estimates, the greater the score. The satisfaction uncertainty
combining the quantiles from multiple experts is obtained as a
weighted sum of these quantiles. In our example, Expert1 gets
an information score of 0.4216, a calibration score of 0.9305,
and a weight of 0.4528; Expert2 gets an information score of
0.4740, a calibration score of 1, and a weight of 0.5471.
Figs. 5(a) and 5(b) show the quantile function of both experts;
Fig. 5(c) shows the resulting satisfaction uncertainty.
 Mendel-Sheridan’s technique combines the quantiles of the
experts by use of a Bayesian calibrator/estimator [34]. It first
computes a minimally informative distribution for the expert’s
characteristics. This a priori distribution considers each expert
to be unbiased; it does not weight any probability more than
others. This a priori distribution is then updated with respect to
the expert’s quantiles and the known value of calibration
variables. The resulting distribution is used to combine the
quantiles of the experts into a satisfaction uncertainty for our
leaf obstacle. Fig. 5(d) shows the resulting satisfaction
uncertainty using this technique.
 Table II illustrates possible estimates for leaf obstacles and
two experts. These estimates are then combined using the two
techniques. Which technique performs best remains an open
question; it may depend on the application domain, the experts,
and the number of calibration variables [13].

VI. COMPUTING GOAL SATISFACTION RATES
AND THEIR UNCERTAINTY

The second step in the overall approach outlined in Section IV
consists of determining the satisfaction rate of the goals in our
goal model, with their uncertainty margins, from the likelihood
estimates of leaf obstacles obtained in the previous step.
 Computing uncertainty distributions for top-level goals
analytically appears unfeasible in practice; it involves
heavyweight computing machinery. Monte-Carlo simulation
may be used instead. The simulation relies on repeated
sampling of parameters to obtain numerical results [40].
 The procedure for computing the satisfaction rate and
uncertainty for a top-level goal G may be outlined as follows:

1. Compute the set of AND-combinations of leaf obstacles
obstructing G;

2. For each leaf obstacle in this set, select a single-point
probability value according to the obstacle’s satisfaction
rate and uncertainty;

3. Based on this sample, compute the probability of
satisfaction for the top-level goal G;

4. Repeat the process multiple times and aggregate the
single-point probability values obtained for the top-level
goal to produce its satisfaction rate and uncertainty.

Fig. 5. Satisfaction of BatteryOutOfService: (a) Expert1’s estimate,
(b) Expert2’s estimate, (c) combined estimates using Cooke’s technique,
(d) combined estimates using Mendel-Sheridan’s technique

TABLE I. EXPERT ESTIMATES FOR CALIBRATION VARIABLES

Variable Expert 10% 50% 90% Known
value

Temperature
SensorBroken

Expert1 2.3% 2.5% 2.8% 4.4% Expert2 4.1% 4.7% 5.2%
FireSprinkler
Broken

Expert1 0% 0.1% 0.3% 0.02% Expert2 0% 0.1% 0.2%

TABLE II. EXPERT ESTIMATES FOR LEAF OBSTACLES
Expert Obstacle 10% 50% 90%

Expert1 BatteryOutofService 2.3% 2.5% 2.8%
BellBroken 1.4% 1.6% 1.8%
SmokeDetectorBroken 2.4% 2.7% 3%

Expert2 BatteryOutofService 0% 0.1% 0.2%
BellBroken 1.7% 1.9% 2.1%
SmokeDetectorBroken 2.1% 2.4% 2.7%

110

A. Computing Obstruction Sets
For a given goal G, we first compute all AND-combinations of
leaf obstacles and domain hypotheses that may obstruct G. An
obstruction set for a goal G is a set of obstacles Oi and domain
hypotheses DHj such that:

{O1, O2, … DH1, DH2,…} ⊨ ¬ G (obstruction)

{O1, O2, … DH1, DH2,…} ⊭ false (consistency)
An obstruction set OS should be minimal, that is, all its
elements are required for falsifying the goal:

for all Oi in OS : OS \ Oi ⊭ ¬ G
for all DHj in OS: OS \ DHj ⊭ ¬ G (minimality)

For example, the goal Achieve [FireNoticedInTimeWhenHeat] can
be obstructed by the following three obstruction sets:

{FireTooDistantFromDetector},
{HeatDetectorBroken, NoDetectionWhenHeatDetectorBroken},
{FireNoticedTooLateByHeat}.

A goal can have multiple alternative obstruction sets. The OR-
combination of all alternative obstruction sets for a goal G is
called obstruction superset for G, denoted by OS (G). The
alternatives there should ideally be independent:

for all OS, OS’ in OS(G):
 OS ∩ OS’ = ∅ (independence)

Dependences thus arise when obstruction sets share common
obstacles or domain hypotheses.
 The obstruction superset for a goal is computed by up-
propagation from leaf obstacles and domain hypotheses in
obstacle trees to the root obstacle; then from the root obstacle
to the obstructed leaf goal; and finally from leaf goals in goal
trees to the considered top-level goal.
Step 1: From leaf obstacles to root obstacles. Consider the
obstacle AND/OR refinement tree anchored on leaf goal LG in
the goal model. To obtain the obstruction superset OS (LG), we
proceed by structural induction. Let OS (LG | O) denote the
obstruction superset for LG obtained by considering all
obstacles and domain hypotheses in the obstacle sub-tree
rooted on O.
• For a leaf obstacle or domain hypothesis LO:
 OS (LG | LO) = {LO}.
• For an AND-refinement of O in sub-obstacles O1 and O2:

 OS(LG | O) = OS(LG | O1) × OS(LG | O2),
where × denotes the cartesian product over sets (the
generalization to more sub-obstacles is straightforward).
For example, the obstruction set for the refinement of the
obstacle NoHeatDetection in Fig. 2 is {HeatDetectorBroken,
NoDetectionWhenHeatDetectorBroken}.

• For an OR-refinement of O in sub-obstacles O1 and O2:
OS (LG | O) = OS (LG | O1) ∪ OS (LG | O2).

Back to our example, the three obstruction sets for the
obstacle FireNoticedInTimeAndNotDetected in Fig. 2 are
{WrongHeatNotification}, {WrongSmokeNotification}, and {Fire-
DetectionDelayed}.

Step 2: From root obstacles to leaf goals. The obstruction
superset for a leaf goal LG obstructed by a root obstacle RO is:

OS (LG) = OS (LG | RO).
Step 3: From leaf goals to top goals. The obstruction superset
obtained for leaf goal LG is propagated bottom-up along the

AND-refinement trees in which LG is involved. For a parent
goal PG AND-refined into sub-goals G1 and G2 we have:

OS (PG) = OS (G1) ∪ OS (G2).
The obstruction sets in the superset thereby obtained are not
necessarily independent. This arises from obstacle refinement
trees sharing common obstacles, resulting in a non-empty
intersection of obstruction sets. Such dependencies must be
taken into account when computing the probability of
satisfaction of obstruction sets; this can be achieved
automatically, see Section VI.B. By construction, independent
obstruction sets are minimal.
 In our example, the obstruction superset for the goal Achieve
[FireDetectedInTime] may be computed from the obstruction
supersets obtained for the sub-goals Achieve [FireNoticedInTime
WhenSmoke], Achieve [FireNoticedInTimeWhenHeat], and Maintain
[FireDetectedWhenNoticedInTime]. Recursively, the obstruction
sets for the root goal Achieve [BuildingEvacuatedWhenFire] may
then be computed.
 The procedure in this section notably differs from the
propagation algorithm in [8] as it propagates uncertainties
about estimates. Step 3 here is the counterpart of the algorithm
in [8]. However, it does not rely on goal refinement patterns
and is therefore more general. Moreover, there is only a single
propagation here through the obstacle and goal models which
makes Step 3 much more efficient.
 An obstruction superset somewhat corresponds to the cut
set of a fault tree [7, 28]. A first difference is that a cut set
yields all combinations of leaf events causing the root event to
occur whereas an obstruction superset yields all combinations
of leaf obstacles causing the corresponding goal in the goal
model to be obstructed. The propagation must therefore
continue bottom-up through the goal model with specific
propagation rules to assess the severity of obstruction
consequences –see Step 2 and Step 3, not found in Fault Tree
Analysis. Another difference is that the tree nodes here are
formalizable goal/obstacle specifications, linked by entailment
relationships among levels, rather than event labels.

B. Computing Single-Value Satisfaction Rates
From the computed obstruction superset for a top-level goal in
the goal model and initial single-point values for satisfaction of
the leaf obstacles, a single-point probability value is computed
for the satisfaction of this goal.
 An obstruction set is satisfied if all its obstacles and domain
hypotheses are satisfied. An obstruction superset is satisfied if
at least one of its obstruction sets is satisfied.
 The probability of satisfaction of a goal G is given by the
probability that its obstruction superset is not satisfied:

P (G) = 1 – Pr [OS (G)],
where Pr [OS(G)] denotes the probability that the obstruction
superset OS (G) is satisfied.
 To compute the probability of satisfaction of an obstruction
superset, a binary decision diagram (BDD) is built that
represents the corresponding Boolean formula where each leaf
obstacle and domain hypothesis appears as a variable. This
Boolean formula encodes the AND/OR-combination of leaf
obstacles and domain hypotheses through the disjunction of the
conjunction of elements in each obstruction set. As the ordered
BDD is canonical, equivalent formulas result in the same
BDD; this makes specific treatments of dependent obstruction

111

sets unnecessary. In our example, for the goal Achieve
[FireNoticedInTimeWhenHeat] and its three obstruction sets given
before, the corresponding Boolean formula is:

FireTooDistantFromDetector
∨ (HeatDetectorBroken ∧ NoDetectionWhenHeatDetectorBroken)
∨ FireNoticedTooLateByHeat.

Efficient algorithms are available for building compact BDDs
[16, 33]. Such BDDs enable fast computation of single-point
probability values from single-point probability values for the
variables [7]. Fig. 6 shows a BDD corresponding to the
preceding formula. Each node represents a leaf obstacle. By
following the solid edges if the leaf obstacle is satisfied or the
dotted edges otherwise, we can determine whether the
corresponding Boolean formula is true or false. The terminal
nodes indicate whether the formula is satisfied (1) or not (0).
For example, if HeatDetectorBroken and NoDetectionWhenDetector
Broken are both satisfied, the obstruction set is satisfied since
the BDD path ends at node (1).
 Every edge in the BDD has a probability label. The latter is,
for a solid edge, the probability of satisfaction of the obstacle at
its source and, for a dotted edge, 1 minus this probability. For a
terminal node, the probability is given by its value (0 or 1).
 The probability of a non-terminal node represents the
probability that the formula corresponding to the sub-tree is
satisfied. It is given by the product of the probability on the
edge and the probability of the target node.
 For example, let us assume the following satisfaction
probabilities: 0.009 for obstacle FireNoticedTooLateByHeat;
0.004 for obstacle FireTooDistantFromDetector; 0.005 for obstacle
HeatDetectorBroken; and 0.98 for the domain hypothesis
NoDetectionWhenHeatDetectorBroken. (The next section shows
how such single-point values are obtained from their respective
probability distributions.) Based on these single-point values,
the probability of the node FireNoticedTooLateByHeat is given by:

0.991 × 0 + 0.009 × 1 = 0.009.
The probability of the node FireTooDistantFromDetector is:

0.996 × 0.009 + 0.004 × 1 = 0.013.
We can then compute the probability for the node
NoDetectionWhenHeatDetectorBroken::

0.02 × 0.013 + 0.98 × 1 = 0.9802.

We finally obtain the probability for the node
HeatDetectorBroken:

0.995 × 0.013 + 0.005 × 0.9802 = 0.0178.

From there we derive the probability of satisfaction for the goal
Achieve [FireNoticedInTimeWhenHeat]:

 P (Achieve [FireNoticedInTimeWhenHeat]) = 1 – 0.0178 = 98.21%.

C. From Single-Value Satisfaction Rates to Satisfaction
Uncertainties

Our procedure so far computes single-point probability values
for goal satisfaction from single-point probability values for
satisfaction of the obstructing leaf obstacles. To build a
complete probability distribution for a top goal in the goal
model, we need to sample the satisfaction uncertainty, as
defined in Section III.A, for these leaf obstacles. To sample a
satisfaction uncertainty, a random number between 0 and 1 is
uniformly picked. The inverse of the cumulative distribution
function associated with the satisfaction uncertainty is then
used to get a corresponding probability of satisfaction. More

likely probabilities of satisfaction are thereby picked more
often than less likely ones.
 The probability of satisfaction of a top goal is then
computed for a given sample (as detailed in Section IV.A and
IV.B). The sampling is repeated a large number of times to
obtain a set of probabilities of satisfaction for this top goal. The
obtained set of probabilities can then be aggregated into a
distribution by using their frequency. For example, by
repetitive sampling for the leaf obstacles, the following
probabilities of satisfaction for the top goal Achieve
[BuildingEvacuatedWhenFire] might be obtained:

0.82, 0.84, 0.848, 0.846, 0.821, 0.839, 0.841, …
By counting the number of times each probability occurs, we
can build the distribution shown in Fig. 1.
 The number of sampling required depends on the
satisfaction uncertainties for the leaf obstacles, the numerical
precision to achieve, the time available to solve the problem,
and so forth.

VII. FINDING CRITICAL OBSTACLES AND UNCERTAINTIES
The third step in the overall approach outlined in Section IV
consists of prioritizing obstacles according to the metrics
introduced in Section III.B, that is, the resulting violation
uncertainty and uncertainty spread for top-level goals.
 The impact of each single leaf obstacle on the goal model
must be assessed individually. For a given top goal, the
procedure in the previous section is applied for each leaf
obstacle with the satisfaction probability of all other leaf goals
being set to 0. The violation uncertainty and the uncertainty
spread for the considered top goal are then computed according
to their definition in Section III.B. The result may be
represented on a scatter plot, called violation diagram, to
highlight the most critical obstacles to this top goal. When all
likely and critical individual obstacles are resolved, the
violation uncertainty and uncertainty spread may be computed
again with pairs of leaf obstacles in order to build a new
violation diagram; then with triples, and so forth.
 Our running example contains 13 leaf obstacles. The
violation uncertainty and uncertainty spread for the top goal
Achieve [BuildingEvacuatedWhenFire] were seen before to be 1 and
0.1529, respectively. Fig. 7 shows the corresponding violation
diagram. The following observations can be made from it.
• The obstacle WrongSmokeNotification is clearly a critical one.

The violation of the top goal it causes is certain.
• The top goal violation caused by SmokeDetectorBroken and

BatteryOutofService is certain; however the uncertainty
spread is very low. This indicates that the uncertainty is
probably close to the goal’s RDS. This obstacle might thus
not be that critical as a slight change in the goal’s RDS
might drastically change the violation uncertainty.

• The leaf obstacles FireCentralNotificationDelayed, FireDetection
Delayed, and NetworkDown are not causing the highest

Fig. 6. BDD for obstruction superset of Achieve [FireNoticedInTimeWhenHeat]

112

Fig. 8. Satisfaction uncertainty for Achieve [IncidentResolved]

violation uncertainty or uncertainty spread.
• For FireLatelyNoticedBySmoke, there is some good confidence

that the obstacle will not prevent the root goal from
reaching its RDS as the violation uncertainty is quite low.

• For the remaining 6 obstacles, it is certain that they do not
individually prevent the root goal from reaching its RDS.

Table III shows the violation uncertainty and the uncertainty
spread for the relevant leaf obstacles.
 The obstacle prioritization technique in [8] does not support
uncertainties about estimates. Moreover, the technique here
proceeds iteratively on the size of obstacle combinations.

VIII. EVALUATION
Our approach was applied on a model of a real ambulance
dispatching system deployed in the Brussels area. This model
is partly based on the one used for evaluating obstacle analysis
techniques [2, 27] while building upon the first author’s
experience as a voluntary paramedic in this type of system. The
model contains 71 goals, 19 goal refinements and 8 agents. The
obstacle model contains 76 obstacles; among these 47 are leaf
obstacles whose likelihood has to be estimated. The
quantitative aspects used in our evaluation were based on real
data provided by stakeholders. For confidentiality reasons, the
presentation here is based on fictitious but realistic data.
 The top goal in this model is Achieve [IncidentResolved] with
a RDS of 95%. The milestone-driven refinement pattern
produces three sub goals: Achieve [IncidentReported], Achieve
[AmbulanceIntervention], and Achieve [IncidentResolvedByAmbulance
Intervention]. The goal Achieve [AmbulanceIntervention] states that
“an ambulance shall be on the incident scene within 10 minutes” [39].
At a lower level, the goal Achieve [AllocatedAmbulanceMobilization]
is further refined using a case-driven refinement pattern into
Achieve [AllocatedAmbulanceMobilizationAtStation] and Achieve
[AllocatedAmbulanceMobilizationOnRoad]. This refinement yields
two domain hypotheses annotated with their estimated
probability of satisfaction:

If AmbulanceAllocated then AmbOnRoad P = 0.4
If AmbulanceAllocated then AmbAtStation P = 0.6

Here are a few obstacle refinements anchored on leaf goals (in
textual format for lack of space):

NoAmbulanceInterventionWhenMobilized
 ← MobilizationRetracted
 ← MobilizationCancelled
 ← DestinationForgotten
 ← DestinationChanged
 ← ServiceEndsBeforeIntervention
 ← AmbulanceStoppedOrInWrongDirection
 ← AmbulanceInWrongDirection
 ← AmbulanceStopped

 The satisfaction probabilities for those leaf obstacles in the
Brussels area are not publically available although they are
partially recorded. We therefore asked 5 experienced
paramedics involved in the system to estimate missing or
unavailable data. Table IV outlines some of the collected data.
The experts provided estimates based on a custom number of
interventions; all estimates were then converted into
percentages (which explains decimal values in Table IV).
 For calibration, statistical data were obtained about the
following obstacles: AllocatedAmbulanceNotAtStation (50%),
MobilizationCancelled (13%), and MDTturnedOff (33.3%). These
leaf obstacles were used as calibration variables.
 The results produced by our techniques proved helpful in
the following respects.
Managing knowledge uncertainty. Based on the calibration
and collected data, the violation uncertainty obtained for the
top goal Achieve [IncidentResolved] was 100%, with an
uncertainty spread of 0.9189. Fig. 8 shows the satisfaction
uncertainty for this goal. This might seem low; the reason is
that the model only captures the ideal case without taking any
countermeasure to obstacles into account. The rate of ideal
ambulance intervention is actually experienced to be roughly
similar to the curve obtained with our technique.
 Violation diagrams helped identifying most likely and
critical obstacles together with obstacles requiring further
elicitation. The black triangles in Fig. 9 show the violation
uncertainty and uncertainty spread for the top goal, taking all
experts into account. Four obstacles were estimated to cause
the top goal not to meet its RDS with more than 90% of
certainty, namely, Mobilization Cancelled, MDTTurnedOff, Blackspot,
and AvailableBedNotAssigned. Adequate countermeasures to
these obstacles should therefore be elaborated and integrated.
Among all obstacles, 18 have an uncertainty spread higher than
0.10; they should therefore be further refined or more experts
should be asked. The uncertainty spread for the 25 other
critical obstacles was low. This indicates that experts roughly

TABLE III. VIOLATION UNCERTAINTY AND UNCERTAINTY SPREAD

Obstacle Violation
Uncertainty

Uncertainty
Spread

WrongSmokeNotification 1 0.0196
SmokeDetectorBroken 1 0.0076
BatteryOutofService 1 0.0058
FireDetectionDelayed 0.686 0.0091
FireCentralNotificationDelayed 0.6661 0.0090
NetworkDown 0.6231 0.0119
FireNoticedTooLateBySmoke 0.1621 0.0003

Fig. 7. Violation Diagram for Achieve [BuildingEvacuatedWhenFire]

Fig. 9. Violation diagram for Achieve [IncidentResolved]

113

agreed on their probability of satisfaction. Over the 47 leaf
obstacles, 14 are with certainty not causing the probability of
satisfaction of the top goal to fall below its RDS.
Capturing uncertainty about risk estimates through multi-
point values. Paramedics were asked to estimate a lower
bound, the most probable value, and an upper bound for all leaf
obstacles. To mitigate the common difficulty of estimating
strict and accurate lower and upper bounds [40], the ones we
collected were used as 10th and 90th quantiles, with a 10%
overshoot being integrated. Eliciting probability distributions
would have been impossible in practice as the required
statistical background is far too important.
Integrating estimates from multiple experts. The uncertainty
spread for the goal Achieve [IncidentResolved], obtained by using
the estimates of the first expert only, is 0.9471 which is very
high. Had we used the first expert only, 30 leaf obstacles would
have been determined to be potentially critical and likely. The
uncertainty spread caused by each individual obstacle would
have been high on average, as the grey squares in Fig. 9 shows.
Using more than one expert helped us reduce the general
uncertainty spread and the number of obstacles to be
considered as critical and likely.

IX. RELATED WORK
Work on handling uncertainty in RE has generally been
devoted to physical uncertainty rather than knowledge
uncertainty (as defined in Section I). One exception is Fault
Tree Analysis (FTA) [7]. Knowledge uncertainty is supported
there through probabilistic distributions on leaf events and
Monte-Carlo simulation for propagation to root causes. As seen
in Section VI.A, our approach exploits a goal refinement graph
to assess the severity of risk consequences. It is integrated in an
overall method for risk identification, assessment and
resolution. Unlike FTA, the goal/obstacle refinement structure
is grounded on a formal framework providing a precise
semantics for nodes and enabling the verification of
correctness of refinements. FTA does not seem to combine
estimates from multiple experts.
 Related work on handling physical uncertainty through
obstacle analysis was discussed at the beginning of this paper
[2, 8, 9, 20, 27, 29]. In particular, the DDP lightweight tool for
risk analysis [20] allows goals to be annotated with their
degree of importance, obstacles with their likelihood of
occurrence, and countermeasures with their effectiveness. DDP
does not seem to support uncertainty about estimated quantities
and integration of estimates from multiple experts.
 In [29], leaf goals are annotated with probability
distributions that are analytically combined for obtaining
probability distributions for top goals. The approach is
extended in [24] for selecting best system design alternatives.
The top probability distribution is obtained through a single-
value procedure and Monte-Carlo simulation. This technique
appears more finer-grained as it supports domain-specific
propagation rules and variables. Such rules and variables need
however be defined in an ad-hoc manner. No support is
provided for multiple expert assessments. Based on a framework
for statistical decision making, the technique in [30] evaluates the
gain of perfect information and helps identify alternatives
maximizing benefits while reducing project risks. This work
might be adapted for selecting most critical obstacles.

 In [38], KAOS goal/obstacle models are extended with a
probabilistic layer for technology qualification. The probability
of satisfaction for leaf obstacles is estimated by a triangular
distribution. The distribution for the root goal is then computed
by Monte-Carlo simulation and a single-value propagation
algorithm. The probabilistic layer introduced there has no
precise semantics in terms of behaviour which limits precise
reasoning and questions the correctness of propagations. Here
we are not limited to one triangular distribution per obstacle
and we support multiple experts. Our propagation procedure
appears more efficient as it only requires a single propagation
through the obstacle/goal model in Step 1 (see Section VI.A).
The notion of required degree of satisfaction (RDS) does not
appear relevant to the objectives of [38]; obstacle prioritization
is therefore different. TROPOS is another goal-oriented
framework, more focussed on soft goals, that supports
quantitative reasoning for assessing risks and physical
uncertainties [4]. External events are identified and assessed
with respect to their positive or negative contributions to goals.
The point that different stakeholders may have different
perceptions of a risk is also made in [3]. In [25], the focus is on
“design-time” uncertainty which enables reasoning about the
presence or absence of model elements.
 Fuzzy goals may be introduced for coping with satisfaction
uncertainty [6, 11, 42]. These are more oriented towards self-
adaption at system run-time. The concern there is to reason in
terms of proximity of goals being fully satisfied –rather than in
terms of probabilities of satisfaction. Our approach might be
applied there to elicit membership functions, regulate the
fuzziness of goal satisfaction, and involve multiple experts.
 CORAS is an UML-based risk analysis methodology
supported through various types of diagram [31]. In the assess
step, risks are annotated with single-value probabilities to
support quantitative reasoning. No support is provided for
reasoning about uncertainty over estimated probabilities and
for integrating multi-expert estimates.

X. CONCLUSION
The quantitative technique presented in the paper allows
analysts to cope with knowledge uncertainty about satisfaction
rates of system goals and their obstructing obstacles. An earlier
formal probabilistic framework for goals and obstacles [8, 9] is
extended to explicitly reason about uncertain estimates. The
impact of estimation uncertainty is measured on top-level goals

TABLE IV. EXPERT ESTIMATES FOR LEAF OBSTACLES

Obstacle Expert Estimate
Min Mode Max

AllocatedAmbulance
NotAtStation

Expert1 13.3% 30% 53.3%
Expert2 15% 40% 50%
Expert3 10% 15% 25%
Expert4 30% 40% 50%
Expert5 2% 4% 10%

ServiceEnd
BeforeIntervention

Expert1 10% 12% 15%
Expert2 0% 5% 15%
Expert3 4% 8% 12%
Expert4 10% 15% 20%
Expert5 10% 10% 20%

PatientCannot
ReachAmbulance

Expert1 0% 13.3% 20%
Expert2 0% 10% 25%
Expert3 0% 3% 5%
Expert4 5% 10% 25%
Expert5 2% 4% 6%

114

through two metrics: goal violation uncertainty and uncertainty
spread. Satisfaction rates and their uncertainties for top goals
are computed by up-propagation through obstacle and goal
refinement trees, from leaf obstacles whose satisfaction rate
and uncertainty need be estimated. As a result, more critical
leaf obstacles may be highlighted for resolution. To reduce
their uncertainty margin, our approach allows estimates from
multiple sources to be combined.
 All techniques in the paper are supported by a tool [10].
The satisfaction probabilities can be specified as distributions
or quantiles. All pictures and tables shown in the paper were
generated by this tool. The techniques and tool were applied to
two non-trivial case studies: a fire detection system and a real
ambulance dispatching system deployed in the Brussels area.
 Future work should consider a cost/benefit analysis of
uncertainty reduction. The calibration and adaptation of
satisfaction uncertainties at runtime, à la [18], appears another
promising direction. Connections between our approach and
others based on fuzzy logics might be worth investigating too.
 Beyond frameworks for goal-oriented RE, other RE and
risk analysis frameworks might benefit from our techniques. In
particular, FTA might integrate similar metrics for problematic
uncertainties together with means for reasoning about risk
consequences and combinations of multiple expert estimates.
Other software engineering areas are faced with the problem of
handling uncertainties about estimated quantities [21]. The
application of similar techniques appears worth considering in
other contexts beyond RE as well.

ACKNOWLEDGMENTS
This work was supported by the RICOSORE project (FRS/FNRS,
T.0134.14). Thanks are due to Simon Busard for inspiring discussions
and to the reviewers for their comments.

REFERENCES
[1] F. Akhmedjanov, “Reliability databases: State-of-the-art and

perspectives”, Denmark. Forskningscenter Risoe. Risoe-R, 2001.
[2] D. Alrajeh, J. Kramer, A. van Lamsweerde, A. Russo and S. Uchitel,

“Generating Obstacle Conditions for Requirements Completeness”, Proc.
ICSE'2012: 34th Intl. Conf. Softw. Eng., Zürich, May 2012.

[3] Y. Asnar, N. Zanone, “Perceived Risk Assessment”, Proc. QoP’08: 4th
ACM workshop on Quality of Protection, 2008, 59-64.

[4] Y. Asnar, P. Giorgini, J. Mylopoulos, "Goal-driven Risk Assessment in
Requirements Engineering", Req. Eng. Journal 16(2), 2011, 101-116.

[5] B. Ayyub, Risk analysis in engineering and economics. Chapmann &
Hall, 2003.

[6] L. Baresi, L. Pasquale, P. Spoletini. "Fuzzy goals for requirements-driven
adaptation." 18th IEEE International Requirements Engineering
Conference (RE), IEEE, 2010, 125-134.

[7] T. Bedford, R. Cooke, Probabilistic Risk Analysis: Foundations and
methods. Cambridge, 2001.

[8] A. Cailliau and A. van Lamsweerde, “Assessing requirements-related
risks through probabilistic goals and obstacles”, Req. Eng. Journal, 18(2),
2013, 129-146.

[9] A. Cailliau and A. van Lamsweerde, “Integrating Exception Handling in
Goal Models”, Proc. RE 2014: 22th IEEE Intl. Req. Eng. Conf., 2014.

[10] A. Cailliau, KAOS Tools, https://github.com/ancailliau/KAOSTools.
[11] B. Cheng, P. Sawyer, N. Bencomo, J. Whittle, "A goal-based modeling

approach to develop requirements of an adaptive system with
environmental uncertainty", Model Driven Engineering Languages &
Systems, Springer, 2009, 468-483.

[12] R. T. Clemen, R. L. Winkler, “Combining probability distributions from
experts in risk analysis”. Risk Analysis, 19, 1999, 187-203.

[13] R. M. Cooke, Experts in Uncertainty. Oxford, 1991.
[14] R. M. Cooke, L. Goossens, “TU Delft expert judgment data base”,

Reliability Eng. & System Safety 93 (5), 2008, 657-674.
[15] R. Darimont and M. Lemoine, “Security Requirements for Civil Aviation

with UML and Goal Orientation”, Proc. REFSQ’07 – Intl. Conf.
Foundations for Software Quality, LNCS 4542, Springer-Verlag, 2007.

[16] R. Ebendt, G. Fey, R. Drechsler, Advanced BDD Optimization, Springer,
2005.

[17] S.J. Ellis, E.R. Henderson, T.H. Klinge, J.I. Lathrop, J.H. Lutz, R. Lutz,
D. Mathur, and A.S. Miner, “Automated Requirements Analysis for a
Molecular Watchdog Timer”, Proc. ASE’2014: Automated Software
Engineering Conference, Vasteras (Sweden), ACM, September 2014.

[18] I. Epifani, C. Ghezzi, R. Mirandola, G. Tamburrelli. "Model evolution by
run-time parameter adaptation." IEEE 31st International Conference on
Software Engineering, IEEE, 2009, 111-121.

[19] M. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard, “Reconciling
System Requirements and Runtime Behaviour”, Proc. IWSSD’98: 9th
Intl. Workshop on Software Specification and Design, IEEE, April 1998.

[20] M.S. Feather and S.L. Cornford, “Quantitative Risk-Based Requirements
Reasoning”, Req. Eng. Journal, 8(4), 2003, 248-265.

[21] N. Fenton, M. Neil. "Software metrics: roadmap." Proceedings of the
Conference on the Future of Software Engineering, ACM, 2000.

[22] D. Garlan, “Software Engineering in an Uncertain World”, Proc.
FSE/SDP Workshop on Future of SE research, ACM, 2010, 125-128.

[23] A. O'Hagan et al, Uncertain judgements: eliciting experts' probabilities,
Wiley, 2006.

[24] W. Heaven, E. Letier, “Simulating and Optimising Design Decisions in
Quantitative Goal Models”, Proc. RE’2011: 19th IEEE Intl.
Requirements Engineering Conference, Trento, Italy, September 2011.

[25] J. Horkoff et al. "Supporting early decision-making in the presence of
uncertainty." Proc. RE’2014: 22nd IEEE Intl. Requirements Engineering
Conference, Karlskrona, Sweden, 2014.

[26] L. M. Krasner et al., Evaluation of Available Data for Probabilistic Risk
Assessments (PRA) of Fire Events at Nuclear Power Plants, Office of
Nuclear Reactor Regulation, 1985.

[27] A. van Lamsweerde and Emmanuel Letier, "Handling Obstacles in Goal-
Oriented Requirements Engineering", IEEE Trans. Softw. Eng., 26(10),
October 2000, 978-1005.

[28] A. van Lamsweerde, Requirements Engineering: From System Goals to
UML Models to Software Specifications, Wiley, January 2009.

[29] E. Letier and A. van Lamsweerde, "Reasoning about Partial Goal
Satisfaction for Requirements and Design Engineering", Proc. FSE 2004:
12th ACM Symp. on Foundation of Software Engineering, 2004, 53-62.

[30] E. Letier, D. Stefan, E. T. Barr, “Uncertainty, Risk, and Information
Value in Software Requirements and Architecture”, Proc. 36th
International Conference on Software Engineering 2014, 883-894.

[31] M.S. Lund, B. Solhaug and K. Stølen, Model-Driven Risk Analysis: the
CORAS approach. Springer-Verlag, 2011.

[32] R. Lutz, A. Patterson-Hine, S. Nelson, C.R. Frost, D. Tal and R. Harris,
“Using Obstacle Analysis to Identify Contingency Requirements on an
Unpiloted Aerial Vehicle”, Req. Eng. Journal, 12(1), 2007, 41-54.

[33] C. Meindel, T. Theobald, Algorithms and Data Structures in VLSI
Design, Springer-Verlag, 1998.

[34] M. Mendel, T. Sheridan, “Filtering Information from Human Experts”,
IEEE Trans. On Syst., Man, and Cyber., Vol 26, No 1, 1989.

[35] Military Handbook, Reliability Prediction of Electronic Equipment, MIL-
HDBK-217F, 1991.

[36] Naval Surface Warfare Center, Handbook of Reliability Prediction
Procedures for Mechanical Equipment, 2010.

[37] A. Ramirez, A. Jensen, B. Cheng, “A Taxonomy of Uncertainty for
Dynamically Adaptive Systems”, Proc SEAMS’2012, 99-108.

[38] M. Sabetzadeh, et. al, “Combining Goal Models, Expert Elicitation, and
Probabilistic Simulation for Qualification of New Technology, Proc.
IEEE 13th Intl. Symp. on High-Assurance Syst. Eng., Nov. 2011, 10-12.

[39] Service Public Fédéral, “Vade-mecum de l’aide médicale urgente”,
Brussels (Belgium), 2007.

[40] D. Vose, Risk Analysis: A quantitative guide. Wiley, 2008.
[41] D. D. Wackerly, W. Mendnhall, Richard L. Scheaffer, Mathematical

Statistics with Applications. 6th edition, Duxbury, 2002.
[42] J. Whittle, P. Sawyer, N., B. HC Cheng, J.-M. Bruel, "Relax:

Incorporating uncertainty into the specification of self-adaptive systems.",
Proc. RE’09: 17th IEEE Intl. Req. Eng. Conf., 2009.

115

