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Abstract—Missing requirements are known to be among the 
major sources of software failure. Incompleteness often results 
from poor anticipation of what could go wrong with an over-ideal 
system. Obstacle analysis is a model-based, goal-anchored form 
of risk analysis aimed at identifying, assessing and resolving 
exceptional conditions that may obstruct the behavioral goals of 
the target system. The obstacle resolution step is obviously 
crucial as it should result in more adequate and more complete 
requirements. In contrast with obstacle identification and 
assessment, however, this step has little support beyond a palette 
of resolution operators encoding tactics for producing isolated 
countermeasures to single risks. In particular, there is no single 
clue to date as to where and how such countermeasures should be 
integrated within a more robust goal model.  
To address this problem, the paper describes a systematic 
technique for integrating obstacle resolutions as countermeasure 
goals into goal models. The technique is shown to guarantee 
progress towards a complete goal model; it preserves the 
correctness of refinements in the overall model;  and keeps the 
original, ideal model visible to avoid cluttering the latter with a 
combinatorial blow-up of exceptional cases. To allow for this, the 
goal specification language is slightly extended in order to 
capture exceptions to goals seperately and distinguish normal 
situations from exceptional ones. The proposed technique is 
evaluated on a non-trivial ambulance dispatching system. 

Index Terms—Obstacle analysis, goal modeling, probabilistic 
goals, risk control, requirements completeness, exception handling, 
goal-oriented requirements engineering, quantitative reasoning. 

I. INTRODUCTION 
Requirements-related errors are commonly recognized to be 
the most frequent, persistent, expensive and dangerous types of 
software errors [13]. Among these, missing requirements tend 
to be the worst. They often arise from a natural inclination to 
believe that the software and its environment will always 
behave as expected; no requirements are engineered for cases 
where this optimistic assumption does not hold.  Requirements 
completeness therefore calls for putting risk analysis at the 
heart of the RE process [2, 3, 5, 8, 13, 14, 20].  

A risk is an uncertain factor whose occurrence may result 
in the loss of satisfaction of some high-level objective [4, 8, 
13]. A risk has a probability of occurrence and one or multiple 
consequences. Each consequence has a severity in degree of 
loss of satisfaction of the corresponding objective [5, 8]. Risks 
may cover undesirable situations such as safety hazards [16, 
18], security threats [12, 26] or data inaccuracies [14] 
dependent on the type of objective they negatively impact on. 

At requirements engineering time, risks should be 
identified, assessed in terms of their likelihood and criticality, 

and controlled through effective countermeasures [13].  
Obstacle analysis has been introduced and used as a model-
based, goal-oriented form of risk analysis [2, 6, 14, 21]. An 
obstacle to a goal is a precondition for non-satisfaction of this 
goal. Obstacle analysis consists of (a) identifying obstacles 
from available goals, assumptions and domain properties; (b) 
assessing their likelihood and criticality in terms of severity of 
their consequences; and (c) resolving likely and critical 
obstacles through countermeasures to be incorporated into the 
goal model. 

To support obstacle analysis, techniques are available for 
identifying obstacles systematically from goals and domain 
properties [1, 14]. For obstacle assessment,  likelihoods and 
criticalities may be determined quantitatively by calculations 
over obstacle refinement trees and goal refinement trees, 
respectively; such calculations call for probabilistic extensions 
to cope with probabilistic goals and obstacles [5, 25]. For 
obstacle resolution, operators encoding risk control tactics 
were proposed to explore alternative resolutions –such as avoid 
obstacle, reduce obstacle likelihood, mitigate obstacle, weaken 
goal, substitute goal, restore goal, or substitute agent [14].  

The obstacle resolution step is obviously crucial; it directly 
impacts the adequacy, completeness and robustness of the goal 
model. However, little support is currently available for this 
step beyond the above resolution operators for countermeasure 
exploration. In particular, it is totally unclear where and how 
selected countermeasures produced by such operators should 
be integrated in the goal model to increase its completeness 
and robustness.  

To address this problem, the paper describes techniques for 
integrating obstacle resolutions systematically in the goal 
refinement graph while propagating the resulting changes 
wherever required in the model. These techniques guarantee 
that:  

• the model is increasingly robust and complete as 
resolutions are being integrated;  

• the normal system behaviors and those not affected by the 
obstacles are preserved;   

• the correctness of goal refinements in the model is 
preserved.  

A goal model integrating countermeasures to obstacles may 
need to be restructured so as to keep the goals refering to 
normal situations separate from the countermeasure goals 
refering to exceptional situations. There are multiple reasons 
for this. 

• For higher readability and better visibility, the ideal 
model containing all functional and non-functional goals 
in normal situations should be kept visible. The 
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specification of these goals should not be cluttered with 
items refering to exceptional situations.  

• The model structuring and specification should not 
exhibit any combinatorial blow-up of exceptional cases. 
Without any structuring mechanism, the integration of 
multiple countermeasures to multiple risks considered in 
combination might produce a large number of cases.  

• Exceptional situations should be identifiable and 
integrated incrementally. The handling of each single 
situation should be isolated from the others. 

• The traceability of exceptional cases should be supported 
from requirements to architecture. Keeping exceptions 
separate from each other and from the goals in normal 
situations enables traceability from the goal model and its 
operationalization on the one hand and exception handlers 
in the architecture on the other hand.  

• In case of obstacle tolerance with no countermeasure 
integrated in the model, a one-to-one mapping should be 
maintained between (a) the obstacle and countermeasure 
identified at modeling time, and (b) the corresponding 
runtime monitor/adaptator mechanisms for dynamic 
reconfiguration when the obstacle is too frequent [9]. 

To support such separation between normal and exceptional 
situations, the paper extends the goal language with semantics-
preserving constructs for specifying exceptions and their 
“handlers” –that is, the countermeasures associated with them. 
Model transformation operators are then provided for attaching 
and detaching exceptions to/from associated goals in the goal 
model.  

The paper is organized as follows. Section II introduces 
some necessary background on modeling goals and their 
obstacles. Section III motivates our technique on a small 
example. Section IV more precisely specifies the problem to be 
solved by our integration approach. Section V describes the 
conditions and mechanisms for integrating countermeasures in 
a goal model. Section VI presents the constructs for specifying 
goals with exceptions together with their semantics. Section 
VII introduces model transformation operators for attaching 
and detaching exceptions to/from goals. Section VIII 
summarizes the evaluation of our proposals on an ambulance 
dispatching system. Section IX briefly discusses related work. 

II. BACKGROUND 
This section recalls some basics on behavioral goal modeling, 
obstacle analysis and probabilistic goals while introducing our 
running example. 
Goal-oriented system modeling. A goal is a prescriptive 
statement to be satisfied by cooperating agents forming the 
considered system. The latter may include devices such as 
sensors and actuators, people, preexisting software, and the 
software to be developed. Domain properties are descriptive 
statements about the problem space, e.g.,  physical laws.   

Behavioral goals prescribe maximal sets of desired system 
behaviors; unlike soft goals they are satisfiable in a clear-cut 
sense [13]. A behavior is a sequence of system state 
transitions. Linear Temporal Logic (LTL) may be used to 
specify behavioral goals formally and enable formal analyses 
[13, 22]. The goals then have the general form: 

 C ⇒ ΘT, 
where Θ represents an LTL operator such as: ¡ (in the next 
state), ◊ (sometimes in the future), ◊≤d (sometimes in the future 
before deadline d),  o (always in the future), o≤d (always in the 
future up to deadline d), W (always in the future unless), U (always 
in the future until), and where P ⇒ Q denotes o (P → Q). The 
following standard logical connectives are used: ∧ (and), ∨ 
(or), ¬ (not), → (implies), ↔ (equivalent). 

Among behavioral goals, Achieve goals follow the 
specification pattern “if C then sooner-or-later T”, that is, C ⇒ ◊T, 
where C and T denote a current and target condition, 
respectively. Maintain goals follow the specification pattern “if 
C then always G”, that is, C ⇒ oG where G denotes a good 
condition. Avoid goals follow a similar pattern “if C then never 
B”, that is, C ⇒ o¬B where B denotes a bad condition.  

A goal model is an AND/OR graph showing how goals 
contribute positively or negatively to each other. Parent goals 
are obtained by abstraction, e.g., through why questions. 
Subgoals are obtained by refinement, e.g., through how 
questions. In a goal refinement graph, leaf goals are 
requirements or assumptions dependent on whether they are 
assigned to single software-to-be or environment agents, 
respectively. 

Fig. 1 shows a partial goal model for a mine pump system 
[11, 13, 15]. Refinement patterns help building such a model 
through common goal decomposition tactics such as 
Milestone-Driven, Case-Driven, Guard-Introduction, Divide-
And-Conquer, Uncontrollability-Driven, etc. [7, 13]. For 
example, consider the following goal in Fig. 1: 

 Goal Maintain [PumpOnWhenHighWater] 
 FormalSpec ∀ p:Pump, s:Sump 

  s.WaterLevel = “High” ∧ PumpInSump(p, s) 
  ⇒ p.Motor = “On” 

Applying the Unmonitorability-driven refinement pattern to 
this goal yields, after instantiation, the following refinement 
where the antecedent of the second subgoal becomes 
monitorable by the software pump controller: 

 Goal Maintain [HighWaterDetected] 
 FormalSpec ∀ p:Pump, s:Sump, c:PumpController 

 s.WaterLevel = “High” ∧ PumpInSump(p, s) ∧ CtrlPump(c, p)  
 ⇒ c.HighWaterSignal = “On” 

Goal Maintain [PumpOnWhenHighWaterDetected] 
 FormalSpec ∀ p:Pump, c:PumpController 

 c.HighWaterSignal = “On”∧ CtrlPump(c, p) 
 ⇒ p.Motor = “On” 

 
Fig. 1. Partial goal model for a mine pump system 
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Refinement patterns produce goal refinements guaranteed to be 
complete, consistent and minimal. A refinement is complete 
when the subgoals SGi, possibly with domain properties in 
Dom, are sufficient for satisfying the parent goal PG: 

{SG1, …, SGn, Dom} ⊨ PG  (complete refinement) 
A refinement is consistent if: 

{SG1, …, SGn, Dom} ⊭ false  (consistent refinement) 
A refinement is minimal if all subgoals are needed for 
satisfaction of the parent goal: 

for all 1 < i < n: {SG1, …, SGi-1, SGi+1, … SGn, Dom } ⊭ PG 
The two lower AND-refinements in the upper part of Fig. 1 are 
complete, consistent and minimal. 
Obstacle analysis. An obstacle to a goal is a satisfiable 
precondition for not satisfying this goal [14]: 

{O, Dom} ⊨ ¬G  (obstruction) 
{O, Dom} ⊭ false  (domain consistency) 

The obstacles to a goal may similarly be organized as an 
AND/OR refinement tree. The root obstacle is the negation of 
the obstructed goal. An AND-refinement captures a 
combination of subobstacles to satisfy the parent obstacle. An 
OR-refinement captures alternative ways of satisfying the 
parent. Each OR-refinement SOi must entail the parent obstacle 
PO: 

for all i :   {SOi, Dom} ⊨ PO  (entailment) 
OR-refinements should be domain-complete and disjoint: 

{¬SO1, …, ¬SOn} ⊨ ¬PO (domain completeness) 
for all i ≠ j : {SOi, SOj, Dom} ⊨ false (disjointness) 

Leaf obstacles are fine-grained obstacles whose satisfiability 
and likelihood can be more easily estimated by experts.  
A variety of formal techniques, obstruction patterns and 
heuristic rules are available for systematic obstacle 
identification [1, 13, 14]. For example, consider the following 
right leaf goal in Fig. 1: 

 Goal Maintain [PumpOnWhenPumpSwitchOn] 
 FormalSpec  ∀p: Pump 
   p.Switch = “On” ⇒ p.Motor = “On”  

Its negation yields the following root obstacle: 
 Obstacle PumpNotOnAndPumpSwitchOn 

 FormalSpec  ◊ ∃p: Pump  
   p.Switch = “On” ∧ p.Motor ≠ “On” 

Consider the following domain property capturing a necessary 
condition for the target p.Motor ≠ “On”: 

p.Failure = true ⇒ p.Motor ≠ “On” 
Regressing the root obstacle backwards through this domain 
property generates the following subobstacle: 

 Obstacle PumpFailure 
 FormalSpec  ◊ ∃p: Pump  
   p.Switch = “On” ∧ p.Failure = true  

A variety of tactics are available for exploring alternative ways 
of resolving obstacles to a goal –such as avoid obstacle, reduce 
obstacle likelihood, mitigate obstacle, weaken goal, substitute 
goal, restore goal, or substitute agent [14]. For example, the 
obstacle mitigation tactic applied to the preceding obstacle 
PumpFailure may produce the following countermeasure goal : 

Goal Achieve[MineEvacuatedWhenPumpFailureAndPumpSwitchOn] 
FormalSpec ∀m: Miner, p: Pump  

    p.Switch = “On” ∧ p.Failure = true ⇒  ◊≤10m m.Position = "Out" 

The lower part of Fig. 1 shows two OR-refinements for the 
obstacle PumpNotOnAndPumpSwitchOn. 
Probabilistic goals and obstacles. Behavioral goals may be 
satisfied only partially [5]. The probability of satisfaction for a 
goal G: C ⇒ ΘT is defined as the ratio between (a) the number 
of possible behaviors satisfying both the goal antecedent C and 
consequent ΘT, and (b) the number of possible behaviors 
satisfying C. The estimated probability of satisfaction (EPS) of 
a goal is the probability of its satisfaction in view of its 
possible obstructions by obstacles. For goal G, it is denoted by 
P(G). The conditional probability P(G|H) denotes the 
probability of satisfaction of G over all behaviors satisfying H. 
The required degree of satisfaction (RDS) of a goal is the 
minimal probability of satisfaction admissible for this goal; it is  
prescribed by elicited requirements, existing regulations, 
standards, etc. For goal G, it is denoted by RDS(G). 
 The probability of an obstacle is defined as the ratio 
between (a) the number of possible behaviors satisfying the 
obstacle, and (b) the number of possible behaviors. The 
probability of a root obstacle is computed by up-propagation 
though the obstacle refinement tree from estimates for leaf 
obstacles. The result is then up-propagated in turn through the 
AND/OR  goal graph to determine the EPS of root goals. The 
severity of the consequences of obstacles to G is then assessed 
from the difference P(G) - RDS(G) [5]. 

III. INTEGRATING COUNTERMEASURE GOALS:  MOTIVATION 
In addition to the PumpFailure obstacle in the previous section, 
the following other obstacle also results in severe loss of 
satisfaction of high-level goals: 

 Obstacle PowerSystemOutage 
 FormalSpec  ◊ ∃p: Pump 
     p.Switch = “On” ∧ p.PowerLine = “Off” 

Resolution tactics might produce, among others, the following 
countermeasure goals to resolve these obstacles (see Fig. 1): 

Achieve [PumpRepairedAndOnWhenPumpFailure 
AndPumpSwitchOn], 

Maintain [EmergencyPumpOnWhenPumpFailure 
AndPumpSwitchOn], 

Maintain [ThirdPartyPumpOnWhenHighWaterDetected], 
Achieve [PowerGeneratorOnWhenPowerSystemOutage 

AndPumpSwitchOn]. 
The paper aims at providing precise and systematic answers to 
the following questions. 

• Where should these countermeasure goals be integrated 
into the goal refinement graph?  How?  

• What parent goals should the countermeasure goals 
refine? With what other sibling subgoals? Should 
exceptional conditions such as p.Failure = true and 
p.PowerLine = “Off” pollute goal specifications throughout 
the entire goal model? 

The answers to those questions should support the following 
objectives. 

• Separation of concerns. The goals refering to normal 
situations should be distinguished from those handling 
obstacle occurrences. Such separation may significantly 
reduce model complexity and keep the ideal, normal 
model explicit. 

• Compositionality. It should be possible to specify, 
structure, and analyze normal goals and countermeasures 
to their obstacles in a compositional way. A robust model 
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should not exhibit goal specifications or refinements 
intermixing normal cases and countermeasures. For 
example, consider a goal G obstructed by obstacles O1 
and O2 with corresponding countermeasure CG1 and CG2, 
respectively. A brute-force integration might produce a 
cluttered specification for the robust version of this goal 
such as: 

(¬O1 ∧ ¬O2 ⇒ G) ∧ (O1 ⇒ CG1) ∧ (O2 ⇒ CG2) 
The refinement of such a goal specification and, 
recursively, of its subgoals would thus intermix normal 
cases and combinations of exceptional cases which may 
lead, for a large number of obstacles, to a combinatorial 
blow-up of cases along refinements. 

• No premature decision and freedom of choice. The 
modeler should be free to decide, when felt necessary, 
what are the goals refering to normal situations and what 
are those corresponding to exceptional situations. In our 
example, mine evacuation might or might not be part of 
the normal situation depending on its frequency, 
criticality, stakeholder wishes, and so forth.  

IV. THE COUNTERMEASURE INTEGRATION PROBLEM 
Integrating a countermeasure goal to an obstacle in a goal 
model means: (a) connecting this goal to a parent node in the 
model; (b) adding other sibling subgoals in the refinement if 
necessary; (c) propagating the corresponding changes along 
refinement trees in which the countermeasure goal is involved; 
and (d) refining this goal if necessary.  
 More precisely, an integration IntCG,0 (M) of countermeasure 
CG to obstacle O in goal model M maps M to a new model M’ 
so as to satisfy the following desired properties.  
1. Progress. The application of the integration operator IntCG,O 
should increase the probability of satisfaction of some root goal 
G at least, that is, there must be at least one root goal G’ in M’ 
corresponding to G in M such that PM’ (G’) > PM (G). 
2. Minimal change. The application of IntCG,O should preserve 
prescribed behaviors in M that are not affected by O, that is, for 
any goal G in M such that {O, Dom} ⊭ ¬G and corresponding 
goal G’ in M’, we should have: G’ ⊨ G.    
3. Correctness preservation. The correctness of goal 
refinements in M should be preserved in M’, that is, if all 
refinements in M are complete, consistent, and minimal then 
those in M’ are complete, consistent, and minimal as well. 

V. INTEGRATING COUNTERMEASURE GOALS 
This section explains how our integration operator ensures the 
three preceding properties. 

A. Ensuring progress: valid countermeasures 
For the progress constraint to be met, two conditions must hold 
on the countermeasure goal to be integrated. 
1. Non-obstruction. The countermeasure goal CG may no 
longer be obstructed by the obstacle O it resolves: 

{O, Dom} ⊭ ¬CG      (non-obstruction) 

2. Ancestor entailment. The countermeasure goal CG must 
guarantee a deidealized version of an ancestor of the leaf goal 
obstructed by O. To make this further precise we need the 
following definitions. 

A goal G’ is a deidealized version of goal G if G ⊨ G’. 
A deidealized version G’ of G is acceptable if, for every goal 
refinement with G as a child, there exists an acceptable 
deidealized version of its siblings and parents such that the 
corresponding refinement still meets the completeness, 
consistency and minimality conditions recalled in Section II. 
 The ancestor entailment condition can now be formulated 
as follows: 

{CG, G1’, … , Gn’, Dom’} ⊨ PG’        (ancestor-entailment)  
 for some acceptable deidealized version PG’ of ancestor PG, 

where PG is an ancestor of the obstructed goal G and G1’, …, 
Gn’ are acceptable deidealized versions of descendants of PG. 
 A countermeasure goal CG against obstacle O is said to be 
valid if it satisfies the non-obstruction and ancestor-entailment 
conditions. 
 For example, the countermeasure goal Achieve 
[MineEvacuatedWhenPumpFailureAndPumpSwitchOn] is valid; the 
obstacle PumpFailure does not obstruct it, and this goal together 
with the deidealized goal Avoid [OverflowedMineWhen 
NoPumpFailure] guarantee the satisfaction of the parent goal 
Avoid [MinersDrowning]. In this example, the parent goal is not 
deidealized. 
 Obstacle resolution tactics such as avoid obstacle, reduce 
obstacle likelihood, mitigate obstacle, weaken goal, or 
substitute goal [14] can be shown to produce valid 
countermeasures modulo propagations of their effect through 
the refinement trees in which they are involved (see Section 
V.C). 

Multiple candidate ancestors might be considered for the 
ancestor-entailment condition. In our example, Avoid 
[OverflowedMine] and Avoid [MinersDrowning] are potential 
candidates with respect to the goal Achieve [MineEvacuatedWhen 
PumpFailureAndPumpSwitchOn]. The nearest candidate to this 
goal appears preferable for more local model change –that is, 
the goal Avoid [OverflowedMine]. 
 The anchor for a countermeasure goal CG is the lowest 
ancestor goal PG meeting the ancestor-entailment condition. It 
is the goal through which the countermeasure goal is 
integrated, as discussed in the next section. 
Theorem (Progress). For any valid countermeasure goal CG, 
the probability of satisfaction of its anchor PG increases: 

P (PG’) > P (PG), 
where PG’ in M’ corresponds to PG in M. 
This can be proved ab absurdo. Assume there is no such 
increase: P(PG’) ≤ P(PG). Introducing conditional 
probabilities, we have: 

P(PG’) = P(O) × P(PG’|O) + P(¬O) × P(PG’|¬O), 
P(PG) = P(O) × P(PG|O) + P(¬O) × P(PG|¬O). 

Given the obstruction of PG, we have: P(PG|O) = 0. Therefore,  
P(O) × P(PG’|O) + P(¬O) × P(PG’|¬O)  
                                                       ≤ P(¬O) × P(PG|¬O)  

Since PG’ is a deidealized version of PG, we have:  
P(PG’|¬O) ≥ P(PG|¬O). 

Therefore, 
P(¬O) × P(PG’|¬O) ≥ P(¬O) × P(PG|¬O). 

As P(O) × P(PG’|O) ≥ 0, our initial assumption gets contradicted. 
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B. Ensuring minimal changes: integration schemas 
A single valid countermeasure goal ensures progress towards a 
complete model; its integration in the model should also ensure 
that the minimal change property is met (see Section IV). 

Two alternative integration schemas may be used for this, 
dependent on the obstacle resolution tactic being selected [14]. 
The first schema removes the obstructed goal; it should be 
applied when the substitute goal or weaken goal tactic is used 
for resolving the obstacle. The second integration schema 
keeps the obstructed goal in the model; it should be applied 
when the avoid obstacle, reduce obstacle likelihood, or 
mitigate obstacle tactic is used. 
Removing the obstructed goal. Fig. 2 shows a first integration 
schema expressed as a model rewriting rule. In this first 
schema, the refinement of anchor goal AG, containing at least 
one obstructed goal, is replaced with a new refinement. The 
latter contains the countermeasure goal CG to leaf obstacle LO 
together with all non-obstructed children. (An anchor’s 
obstructed children are those being directly or indirectly 
obstructed by LO.) The anchor AG may need to be deidealized; 
in this case, AG’ replaces AG in the new goal model. 

This first integration schema has a precondition for use, 
namely, the countermeasure goal CG and the non-obstructed 
children are sufficient for satisfying the anchor goal:  

{CG, Children(AG) \ ObstructedChildren} ⊨ AG’. 
Otherwise, the new refinement would not be complete.  
 For example, the goal Maintain [ThirdPartyPumpOnWhen 
HighWaterDetected] is a countermeasure produced through the 
goal substitution tactic [14]. Its anchor goal is Maintain 
[PumpOnWhenHighWater]. The following refinement is complete, 
consistent, and minimal for this anchor goal:  

Maintain [PumpOnWhenHighWater] 
← Maintain [HighWaterDetectedWhenHighWater] 
← Maintain [ThirdPartyPumpOnWhenHighWaterDetected] 

We may therefore replace the old refinement with this one. 
It is easy to see that this first integration schema meets our 

minimal change property. Non-obstructed goals are composed 
from non-obstructed goals in the refinements of AG and its 
descendants, and in the siblings of AG and its ancestors.  The 
former are kept as is whereas the latter might need to be 
deidealized through change propagation (see Section V.C). All 
these goals thus satisfy G’ ⊨ G. 
Keeping the obstructed goal. Fig. 3 shows a second integration 
schema. In this schema, a new refinement is introduced; it 
includes a modified version of the obstructed anchor and the 
countermeasure goal. The obstructed anchor is deidealized for 
removing the obstruction. The negation of the leaf obstacle is 
added to form a decomposition by cases.  

This second integration schema has a precondition for use 
as well; the countermeasure goal must be sufficient for 
satisfying the anchor goal when the obstacle occurs: 

{LO, CG, Dom} ⊨ AG’ 
For example, the countermeasure goal Achieve [Mine 

EvacuatedWhenPumpFailureAndPumpSwitchOn] entails its anchor 
Avoid [MinersDrowning] when the obstacle occurs. This second 
rule then produces the following refinement: 

Avoid [OverflowedMine] 
← Avoid [OverflowedMineWhenNoPumpFailure] 
← Achieve [MineEvacuatedWhenPumpFailureAndPumpSwitchOn] 

Note that the anchor goal is not deidealized in this example. 
The new goal Avoid [OverflowedMineWhenNoPumpFailure] is a de-
idealization of the anchor goal. The negation of the obstacle is 
added to the goal antecedent: 

Goal Avoid [OverflowedMine] 
FormalSpec ∀p: Pump  

  p.Failure = false ⇒ ¬OverflowedMine 
This second integration schema can be seen to meet our 

minimal change property as well; the reasoning is similar to the 
first schema.  Only siblings of the anchor goal and its ancestor 
may need to be deidealized. The other goals were obstructed by 
the resolved obstacle and are therefore not concerned with the 
minimal change property. 

C. Preserving refinement correctness: change propagation 
As introduced before, goal deidealizations and countermeasure 
integrations may require corresponding changes to be 
propagated along refinement trees in which the countermeasure 
goal is involved. Such propagations are intended to ensure our 
third property on integrations, that is, the resulting model must 
remain complete, consistent, and minimal. This section 
discusses how deidealizations and change propagations are 
performed. 
Deidealization by strengthening the goal’s antecedent. A first 
way of deidealizing a goal of form C ⇒ Θ T is to add an 
adequate conjunct to its antecedent: 

AddConjunct (C ⇒ Θ T, Θ EC) =   [C ∧ Θ EC] ⇒ Θ T. 
For example, the goal Maintain [PumpOnWhenPumpSwitchOn] 
may be deidealized so as to exclude pump failure from pump 
actuation: 

 Goal Maintain [PumpOnWhenNoPumpFailureAndPumpSwitchOn] 
FormalSpec ∀p: Pump  

                  [p.Switch = “On” ∧ p.Failure = false] ⇒ p.Motor = “On” 

Deidealization by weakening the goal’s consequent. A second 
way of deidealizing the goal C ⇒ Θ T is to add an adequate 
disjunct to its consequent: 

AddDisjunct (C ⇒ Θ T, Θ ED) =  C ⇒ [Θ T ∨ Θ ED]. 

 
Fig. 2. Integration schema with obstructed goal being removed 

 
Fig. 3. Integration schema with obstructed goal being kept 
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For example, the goal Maintain[PumpOnWhenPumpSwitchOn] 
might be deidealized so as to require the pump to be actuated 
or the emergency pump to be activated: 

Goal Maintain [PumpOnOrEmergencyPumpOnWhenPumpSwitchOn] 
FormalSpec ∀p: Pump 
 p.Switch = “On” ⇒ [ p.Motor = “On”  

                               ∨ ∃ ep: EmergencyPump · ep.Switch = “On”] 

Change propagation. When a goal is deidealized, the change 
must be propagated along the refinement trees in which this 
goal is involved –both up and down such trees. The 
AddConjunct or AddDisjunct operators therefore have to be 
applied recursively to the other goals up and down refinement 
links. 

For example, the integration of the countermeasure goal 
Achieve[MineEvacuatedWhenPumpFailureAndPumpSwitchOn] . 
requires change propagation to the descendants of the goal 
Avoid [OverflowedMine]. First, this goal is modified as previously 
shown. Next, the change is down-propagated, leading to an 
application of AddConjunct to the goal Maintain [PumpOnWhen 
HighWater]: 

Goal Maintain [PumpOnWhenNoPumpFailureAndHighWater] 
FormalSpec ∀p: Pump, s: Sump 

s.WaterLevel = “High” ∧ PumpInSump(p, s) ∧ p.Failure = false 
  ⇒ p.Motor = “On” 

The next refinement instantiates the unmonitorability-driven 
refinement pattern. The AddConjunct operator is therefore 
applied to the goal Maintain[PumpOnWhenHighWaterDetected]. We 
obtain: 

Goal Maintain [PumpOnWhenNoPumpFailureAndHighWater 
Detected] 

FormalSpec ∀p: Pump, c: PumpController  
c.HighWaterSignal = “On” ∧ CtrlPump(c, p) ∧ p.Failure = false  

  ⇒ p.Motor = “On” 
The next refinement instantiates the milestone-driven 
refinement pattern. The AddConjunct operator is therefore 
applied to both children. We thereby obtain: 

Goal Maintain [PumpSwitchOnWhenNoPumpFailure 
AndHighWaterDetected] 

FormalSpec ∀p: Pump, c: PumpController 
c.HighWaterSignal = "On" ∧ CtrlPump(c, p) ∧ p.Failure = false 

 ⇒ p.Switch = "On" 
Goal Maintain [PumpOnWhenNoPumpFailureAndPumpSwitchOn] 

FormalSpec ∀p: Pump, c: PumpController 
p.Switch = “On” ∧ p.Failure = false  ⇒ p.Motor = "On" 

Since these goals are leaf goals, the propagation ends. 
 Change propagation in the general case proceeds as 
follows. When AddConjunct or AddDisjunct is applied to a goal 
for deidealization, the pattern used for refining (resp. 
abstracting) it is identified. A propagation pattern associated 
with the refinement/abstraction pattern tells us what goals in 
the refinement (resp. abstraction) must be modified and how. 
The process is applied recursively to the subgoals (resp. 
parents) until leaf goals (resp. root goals) are reached. 
 For example, if the case-driven pattern is used for refining 
a goal through multiple disjoint cases [13], the application of 
AddConjunct or AddDisjunct to a child goal requires the 
application of the same operator to the parent goal (and vice-
versa). If the milestone-driven pattern is used for refining a 
goal through milestone subgoals [13], an application of 
AddConjunct to the first milestone subgoal requires the 
application of the same operator to the parent goal –but not 
necessarily to the other subgoals; the corresponding extra 

condition is not necessarily relevant to the latter. 
 For a given refinement pattern and application of 
AddConjunct or AddDisjunct to a goal, there might be 
alternative modifications of the refinement/abstraction 
structure. Moreover, other mechanisms are required for change 
propagation to goals not obtained through refinement patterns. 
Even though pattern-based propagation can be performed semi-
automatically, the general problem of automatic change 
propagation through arbitrary refinement structures remains 
open. 

VI. OBSTACLE RESOLUTION AS EXCEPTION HANDLING 
The integration of countermeasure goals through new, explicit 
refinements in the original model raises several issues. 
• The goal graph might undergo significant changes each 

time a new obstacle is identified.  
• Normal situations would be mixed with exceptional ones; it 

might be hard to distinguish the former from the latter 
without domain expertise.  

• Goal specifications become increasingly more complex.  
• As new countermeasures are introduced, the ordered 

nesting of exceptional cases along refinements may lead to 
a combinatorial blow-up of special cases.  

This section introduces a slight extension of the goal 
specification language that solves those issues. Dedicated 
constructs are provided for encapsulating the required 
modifications while documenting each exceptional case 
separately.  
A. Extending the goal specification language  
Except. A first construct links a countermeasure goal to its 
anchor goal:  

  Goal AG  
 FormalSpec C ⇒ ΘT 
 Except O then CG, 

where AG denotes the anchor goal C ⇒ ΘT of countermeasure 
goal CG to obstacle O. Semantically, this implicit specification 
is fully equivalent to the refinement in Fig. 4. 
This construct may be used under the following precondition: 

{O, CG, Dom} ⊨ AG 
For example, the goal Avoid [MinersDrowning] is satisfied in the 
ideal situation by avoiding mine overflow. Under the 
exceptional condition of a pump failure, the goal is guaranteed 
through miners evacuation. We may therefore write:  

 Goal Avoid [MinersDrowning] 
Except PumpFailure  

then Achieve [MineEvacuatedWhenPumpFailure 
                                                   AndPumpSwitchOn] 

This specification is logically equivalent to the refinement 
illustrating the second integration schema in Section V.B. 
 Multiple Except annotations may be attached to a single 
goal to cope with different obstacles; the latter may therefore 
be introduced incrementally. Compared with the complexity of 
an equivalent explicit specification, the complexity of an 
implicit goal specification with multiple Except annotations 

    
Fig. 4. Semantic equivalent of  Except 
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remains linear in the number of exceptions. The specification 
of the ideal goal remains unchanged. Moreover, multiple 
annotations sharing the same countermeasure goal may be 
factored out to simplify the model. 
Provided. A second construct specifies an extra conjunct on the 
antecedent of an ideal goal G to produce a countermeasure: 

 Goal G 
 FormalSpec C ⇒ ΘT 
 Provided EC, 

where EC denotes an extra conjunct to be added to G’s 
antecedent for resolving the considered obstacle. Semantically, 
this implicit specification is equivalent to: 

 Goal G 
 FormalSpec  [C ∧ EC] ⇒ ΘT. 

The Provided construct is typically used for deidealizing goals. 
For example, the deidealization of the goal Maintain [PumpOn 
WhenPumpSwitchOn] may be specified by highlighting the 
normal situation as follows: 

 Goal Maintain [PumpOnWhenPumpSwitchOn] 
 FormalSpec ∀p: Pump  

                      p.Switch = “On” ⇒ p.Motor = “On” 
 Provided p.Failure ≠ false. 

It often proves convenient to write ProvidedNot EC instead of 
Provided ¬EC. 
RelaxedTo. Symmetrically to Provided, this construct specifies 
an extra disjunct on the consequent of an ideal goal G to 
produce a countermeasure:  

 Goal G 
 FormalSpec C ⇒ ΘT 
 RelaxedTo ED, 

where ED denotes an extra disjunct to be added to G’s 
consequent for resolving the considered obstacle. Semantically, 
this goal is equivalent to:  

 Goal G 
 FormalSpec C ⇒ [ΘT ∨ ED]. 

This construct is useful for deidealizing goals as well. For 
example, another deidealization of the same goal Maintain 
[PumpOnWhenPumpSwitchOn] might be specified by highlighting 
the normal situation as follows: 

 Goal Maintain [PumpOnWhenPumpSwitchOn] 
 FormalSpec ∀p: Pump  

                      p.Switch = “On” ⇒ p.Motor = “On” 
RelaxedTo ∃ep: EmergencyPump · ep.Switch = “On”. 

Multiple Provided and RelaxedTo annotations may be attached 
to a single goal to introduce multiple countermeasures.  
Replaces. This construct appears useful for tracing previous 
versions of a goal: 

 Goal G’ 
 Replaces G 

Such traceability helps readers understand the rationale behind 
the final goal, e.g.,  

 Goal Maintain [ThirdPartyPumpOnWhenPumpSwitchOn] 
 Replaces Maintain [PumpOnWhenPumpSwitchOn]. 

B. Exception diagrams 
Textual goal specifications with Except and Replaces 
annotations may be graphically represented in an exception 
diagram. Fig. 5 shows a portion of such a diagram for the goal 
Maintain [ThirdPartyPumpOnWhenPumpSwitchOn]. This diagram 
captures that (a) when the obstacle PumpFailure occurs the 

countermeasure goal Achieve [PumpRepairedAndOnWhen 
PumpFailureAndPumpSwitchOn] will guarantee this goal, and (b) 
this goal replaces Maintain [PumpOnWhenPumpSwitchOn]. Note 
that the Except annotation has been propagated to the replacing 

goal.  
VII. MODEL REFACTORING FOR ATTACHING OR DETACHING 

GOAL EXCEPTIONS 
In practice, the analyst should decide at some point whether a 
countermeasure goal refers to an exceptional situation or to a 
normal one to be considered in the ideal model. Such a 
decision might depend on various factors such as the frequency 
of the resolved obstacle, the criticality of the obstructed goal, 
domain-specific culture, stakeholders wishes, and so forth. To 
make the decision flexible and easily reversible, this section 
presents model refactoring operators for attaching or detaching 
the annotations introduced in Section VI to/from a goal model. 
 Three operators are available for transforming an annotated 
model portion into a standard one. 
Detach-Except, applied to an annotated goal, produces a new 
model where the goal is no longer annotated with a specific 
Except clause. The operator introduces a new refinement with 
two children: the countermeasure goal and a deidealization of 
the original goal (see Fig. 4 from left to right). The children of 
the original goal are then children of the deidealized goal. Back 
to an earlier example, the operator takes the model fragment in 
Fig. 6a to produce the model fragment in Fig. 6b. 
Detach-Provided, applied to an annotated goal, produces a new 
model where a specific Provided annotation is “compiled” into 
its equivalent formal specification. For example, after 
application of this operator the goal Maintain [PumpOnWhen 
PumpSwitchOn] is specified without its Provided annotation as 
follows: 

 Goal Maintain [PumpOnWhenPumpSwitchOn] 
 FormalSpec ∀p: Pump  

       [p.Switch = “On” ∧ p.Failure = false] ⇒ p.Motor = “On”  

Detach-RelaxedTo, applied to an annotated goal, produces a 
new model where a specific RelaxedTo annotation is removed. 
Back to an earlier example, the application of this operator to 
the goal Maintain [PumpOnWhenPumpSwitchOn] yields the 
following goal specification: 

 Goal Maintain [PumpOnWhenPumpSwitchOn] 
 FormalSpec ∀p:Pump 

p.Switch = “On” ⇒ [ p.Motor = “On”  
                               ∨ (∃ep: EmergencyPump) ep.Switch = “On” ]              

    
   (a)                                                    (b)                     . 

Fig. 6. Implicit and explicit countermeasure integration 

. 
Fig. 5. Exception diagram 
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Similarily, three operators are available for transforming a 
standard model portion into an annotated one –namely, Attach-
Except, Attach-Provided and Attach-RelaxedTo. These 
operators are the reverse of the Detach ones. 

VIII. EVALUATION  
The techniques presented in this paper were applied1 to a 

benchmark commonly used for evaluating obstacle analysis 
techniques [1, 14, 15]. The goal and obstacle models used for 
the London Ambulance System (LAS) are based on [14].  

The goal model contains 42 goals, 19 refinements 
instantiating a variety of refinement patterns, and 8 agents. The 
obstacle model contains 71 obstacles and 30 countermeasure 
goals. The full models can be found in [14, 15]. Only portions 
of the goal model are considered here.  

The top goal in this model is Achieve [IncidentResolved]. The 
milestone-driven refinement pattern produces three subgoals: 
Achieve [IncidentReported], Achieve [AmbulanceOnSceneWhen 
IncidentReported] and Achieve [IncidentResolvedWhenAmbulance 
OnScene]. At a lower level of refinement, the goal Achieve 
[AmbulanceMobilizedWhenAllocated] states that allocated 
ambulances shall be mobilized within 3 minutes. This goal is 
refined using a case-driven pattern into Achieve [Ambulance 
MobilizedAtStationWhenAllocated] and Achieve [AmbulanceMobilized 
OnRoadWhenAllocated]. These goals are in turn refined until they 
are assignable to single agents.  

Obstacles to leaf goals were then generated and refined. 
Here is a sample of obstacle refinements in textual format: 

MobilizationOrderPrintedAndAmbulanceNotMobilized 
 ← AmbulanceNoLongerAtStation 
 ← AmbulanceNoLongerAvailable 
 ← MobilizationOrderIgnored 
 ← MobilizedToWrongDestination 
 ← MobilizationOrderTakenByOtherAmbulance 

Countermeasures goals were explored using available 
resolution tactics [14]. For example, here are countermeasure  
goals for two leaf obstacles: 

MobilizationOrderTakenByOtherAmbulance 
 ← Achieve [MobilizationByOtherAmbulanceKnown] 
 ← Avoid [MobilizationWithoutOrder] 
MDT-MobilizationOrderIgnored 
 ← Achieve [SoundAlarmRaisedWhenMDTMobOrderReceived] 
 ← Achieve [FailedMobilizationRecovered] 

The large number of obstacles and countermeasure goals 
called for our countermeasure integration and encapsulation 
techniques. As a result, the countermeasure goals appear to 
focus on a small number of important goals; e.g., the goal 
Achieve [IncidentResolvedByAmbulanceIntervention] has 15 
exceptions. The overall integration produced 34 exceptions 
distributed over 7 goals only.  

The techniques presented in this paper helped significantly 
for the following reasons. 
 Model simplification by separation of concerns. The goals 
refering to normal situations were systematically distinguished 
from those handling obstacle occurrences. Emerging 
assumptions were incrementally down-propagated to 
obstructed descendants of corresponding anchor goals; this 
required 7 propagations and produced 28 Provided annotations 

                                                             
1See http://www.info.ucl.ac.be/~acaillia/publications/las-system.html 

for full report. 

distributed over 6 goals. Without these annotations the formal 
specification of those 6 goals would have been cluttered with 
details related to exceptional cases. Table II quantifies our use 
of Provided annotations.  

For example, the goal Achieve [AllocatedAmbulance 
MobilizationWhenMobilizationOrderPrinted] is defined as follows 
after integration in the model: 

 Goal Achieve [AllocatedAmbulanceMobilizedWhenMobilization    
                        OrderPrinted] 
 Provided AllocatedAmbulanceNotLeavingBeforeMobilization 
 Provided AllocatedAmbulanceNotUnavailableBeforeMob 
 Provided PrintedMobilizationOrderNotIgnored 
 Provided MobilizationNotTakenByOtherAmbulance. 

The full equivalent specification of this goal without 
Provided annotations would completely hide the ideal case; it 
would then appear fairly hard to distinguish the part of the goal 
antecedent related to the ideal case from those related to 
exceptional cases.  

The Detach-Except operator was applied to the case-driven 
refinement of the goal Achieve [AmbulanceMobilized 
WhenAllocated]. Allocating an ambulance when not at station 
was estimated fairly rare – 5% of cases according to typical 
figures in the domain. The parent goal of these two goals was 
therefore modified accordingly: 

 Goal Achieve [AmbulanceMobilizedWhenAllocated] 
 Except AllocatedAmbulanceNotAtStation  

    then Achieve [AllocatedAmbulanceMobilizedOnRoad]  
Such refactoring reduces model complexity by hiding the 

part of the model handling the mobilization of an ambulance 
when on road. The resulting ideal goal model therefore 
contains fewer refinements and fewer goals, making it easier to 
understand and clearly separate ideal behaviors from 
exceptional ones. 

Compositionality. Without our techniques, the integration 
of so many exceptions for only 7 goals would have resulted in 
large, complex refinements with a combinatorial blow-up of 
special cases. To illustrate this important point, consider the 
goal Achieve [AmbulanceMobilizedWhenAllocated]. Its original, 
ideal specification is: 

∀amb: Ambulance, inc: Incident  
Allocated (amb, inc)   
⇒ ◊≤3min ∃amb: Ambulance · Mobilized (amb, inc)  

After obstacle analysis, this goal is guaranteed through 5 
countermeasure goals (see Fig 7). The brute-force integration 
of only the three countermeasure goals depicted at the bottom 
of Fig. 6 would have resulted in the following formal 
specification for the final version of the goal Achieve 
[AmbulanceMobilizedWhenAllocated]: 

∀c: UrgentCall, inc: Incident 
 Allocated (amb, inc)  
⇒ ◊≤3min ∃ amb: Ambulance · Mobilized (amb, inc) 
     ∨ [ o>3min ¬AmbAvailable (amb, inc)  
           → ◊≤6min ∃amb’: Ambulance 
                                    amb≠amb’∧ Mobilized (amb’, inc) ]  
     ∨ [ o>3min DisplayedMobilizationIgnored (amb, inc)  
           → ◊<6min Mobilized (amb’, inc) ]  
     ∨ [ o>3min PrintedMobilizationIgnored (amb, inc)  
           → ◊<6min Mobilized (amb’, inc) ] 

In addition to this complex specification, the goal 
refinement structure would have been heavily modified: 

Achieve [AmbulanceMobilizedWhenAllocated]  
← Achieve [OtherAmbMobWhenAllocatedAmbUnavailable] 
← Achieve [AllocAmbMobilizedWhenAmbAvailableUntilMob] 
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 ← Achieve [LateMobWhenDisplayedMobOrderIgnored] 
 ← Achieve[AllocAmbMobilizedWhenAmbAvailableUntilMob 

                     AndDisplayedMobOrderNotIgnored] 
 ← Achieve [LateMobWhenPrintedMobOrderIgnored]  
 ← Achieve [AllocAmbMobilizedWhenAmbAvailUntilMob 

                 AndDisplayedMobOrderNotIgnored 
                 AndPrintedMobOrderNotIgnored] 

← … 

With such a brute-force integration, each countermeasure 
goal must be refined by taking other countermeasures into 
account. This would lead to a combinatorial blow-up of cases. 
Thanks to our technique, the original specification of this goal 
and its refinement structure are preserved. The Except and 
Provided constructs encapsulate the modifications for a more 
robust system. Table I provides some figures on goal 
exceptions for other goals. 

No premature decision and freedom of choice. The 
specification and documentation of exceptional behaviors was 
separated from the normal ones; this allowed us delaying the 
decision of how and when the handling of exceptional cases 
should occur.  
 Other benefits. The Replaces annotation was felt useful for 
documenting the replacing countermeasure goals –e.g., Achieve 
[MobilizedAmbInterventionOrMobilizationCancelled] replacing Achieve 
[MobilizedAmbulanceIntervention] to resolve the obstacle 
MobilizationCancelled. Without this annotation we would have 
lost the previous version of the goal. 
 Exception diagrams significantly helped understand the 
model where all countermeasures are integrated; they 
document exceptions one single goal at a time (see Fig. 7). A 
total of 7 exception diagrams was produced for documenting 
exceptional cases and countermeasure goals. 
 Tool support. Our evaluation on the LAS case study was 
supported by a preliminary tool prototype. Given an obstacle 
resolution tactic and the corresponding anchor goal, the tool 
automatically generates the corresponding Except or Replaces 
anotations with corresponding countermeasure goal. The 
Provided and RelaxedTo constructs are supported as well. The 
tool also generates exception diagrams.  

IX. RELATED WORK 
In the identify-assess-control cycles of risk analysis at 
requirements engineering time [8, 13, 14, 17, 20], most of the 
work so far has been devoted to risk identification and 
assessment. For risk identification, scenario-based heuristics 
are available [2, 29] as well as goal-oriented formal techniques 
[1, 14]. For risk assessment, various kinds of quantitative 
techniques are available [3, 5, 8, 25]. For risk control, the only 
work on countermeasure exploration is [14] where the obstacle 

resolution tactics mentioned in this paper are described. We are 
not aware of any work on systematic integration of 
countermeasures in a requirement model with a clear, precise 
semantics. 

The relevance and importance of default-based reasoning 
has been recognized in the context of elaborating requirements 
or specifications. In [30], a formal framework is proposed for 
reasoning about evolving requirements. The framework is 
based on belief revision and default theory; operators for 
adding and retracting requirements are defined together with 
formal conditions for their valid application (similarly to our 
integration operators). The tracing of exceptional requirements 
is not discussed there. In [24], a specification is structured 
through axioms and Overrides relations. Such relations are 
derived from the structural decomposition of the system. 
Specific axioms predominate more general ones when a 
conflict occurs. This framework comes with formal 
foundations and well-defined procedures for identifying 
conflicts and predominance among axioms. It appears more 
oriented towards specification elaboration. In [27], default 
specifications are introduced together with exceptions in order 
to increase the completeness of algebraic specifications; the 
But relation there somewhat corresponds to our Except relation. 

Our approach mainly differs from those previous efforts in 
the following directions.  
• Our techniques operate at requirements level and benefit 

from the refinement structure of a goal model. This 
structure helps in building a model where exception 
handling is integrated and in propagating required changes 
throughout the model. 

• New requirements for a more robust system are 
incrementally integrated through obstacle analysis. The 
model updates are traceable back to the identified 
obstructed goals and their obstacles. 

At programming level, aspects may be used for separating 
exception handling from normal code [19]. At modelling 
level, [28] convincingly shows how aspects can be used for 
separating exceptional behaviors from normal ones. As an 
alternative to the approach advocated in this paper, robustness 

TABLE I. USING GOAL EXCEPTIONS  

Goals Exceptions 
Achieve [Incident Resolved By Ambulance Intervention] 15 
Achieve [Ambulance Mobilization] 6 
Achieve [Allocated Ambulance Mobilization When 
Mobilization Order Printed] 

5 

Achieve [Mobilized Ambulance Intervention]  3 
Achieve [Mobilized Ambulance Intervention Or Mobilization 
Cancelled] 

3 

Achieve [Allocated Ambulance Mobilization When 
Mobilization Order Displayed] 

2 

Achieve [Allocated Ambulance Mobilization At Station]  1 

TABLE II. USING PROVIDED-CLAUSES 

Goals Provided 
Achieve [Allocated Ambulance Mobilization On Road] 3 
Achieve [Allocated Ambulance Mobilization At Station Based 
On Location Info] 

4 

Achieve [Allocated Ambulance Mobilization When 
Mobilization Order Printed] 

4 

Achieve [Allocated Ambulance Mobilization On Road Based 
On Location Info] 

3 

Achieve [Allocated Ambulance Mobilization When 
Mobilization Order Displayed] 

3 

Achieve [Allocated Ambulance Mobilization At Station] 1 

 

. 
Fig. 7. Exception diagram for Achieve [AmbulanceMobilization] 
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aspects might be incorporated in a goal model by use of 
constructs similar to the ones sketched in, e.g., [10, 23]. 
Further work would however be required to define a 
declarative, logic-based semantics as well as an operational, 
trace-based semantics for such constructs –which seems 
unavailable to date. Suitable weaving mechanisms would then 
need to be defined in this semantic framework. 

X. CONCLUSION 
The paper presented systematic techniques for integrating 

countermeasures into ideal goal models. An integration 
operator was introduced as a model transformation ensuring 
progress towards a more complete model, minimal change of 
the original model, and refinement correctness preservation. 
Anchor goals were introduced to define where countermeasure 
goals should be integrated together with appropriate refinement 
schemas. Our goal-oriented RE framework was extended with 
constructs for structuring and documenting exceptional cases. 
Coming with these, model refactoring operators were proposed 
enabling analysts to attach and detach exceptions. The 
approach was evaluated on two case studies, a simple mine 
pump system and a much more complex ambulance 
despatching system.  
 As shown in these case studies, a more complete goal 
model is obtained while the ideal model is kept visible. The 
ideal specifications are preserved. The final refinement 
structure turns out to be nearly the same as the original one. 
Exceptions are documented aside; analysts and users of the 
model can dive into independent exceptions one by one. A 
large number of countermeasure goals can be integrated; the 
integration techniques reduce model complexity by keeping the 
combinatorial blow-up of exceptional cases implicit. 

The current version of our tool is fairly basic. Among the 
planned extensions, the increased automation of change 
propagation deserves highest priority. The propagation 
procedure itself should be made less dependent on common 
refinement patterns. 

Complementary techniques are needed for selecting “best” 
countermeasures according to soft goals from the goal model. 
The responsibilities of agents in exception handling should be 
integrated as well. Moreover, the use of our exception-related 
constructs for deriving exception handlers in the corresponding 
software architecture would be worth investigating. In parallel, 
their exploitation for runtime self-adaptation in changing 
contexts appears a promising direction for future work. 
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