
Integrating Exception Handling in Goal Models
Antoine Cailliau and Axel van Lamsweerde

ICTEAM – Institute for Information & Communication Technologies, Electronics and Applied Mathematics
Université catholique de Louvain

Louvain-la-Neuve, Belgium
{antoine.cailliau, axel.vanlamsweerde}@uclouvain.be

Abstract—Missing requirements are known to be among the
major sources of software failure. Incompleteness often results
from poor anticipation of what could go wrong with an over-ideal
system. Obstacle analysis is a model-based, goal-anchored form
of risk analysis aimed at identifying, assessing and resolving
exceptional conditions that may obstruct the behavioral goals of
the target system. The obstacle resolution step is obviously
crucial as it should result in more adequate and more complete
requirements. In contrast with obstacle identification and
assessment, however, this step has little support beyond a palette
of resolution operators encoding tactics for producing isolated
countermeasures to single risks. In particular, there is no single
clue to date as to where and how such countermeasures should be
integrated within a more robust goal model.
To address this problem, the paper describes a systematic
technique for integrating obstacle resolutions as countermeasure
goals into goal models. The technique is shown to guarantee
progress towards a complete goal model; it preserves the
correctness of refinements in the overall model; and keeps the
original, ideal model visible to avoid cluttering the latter with a
combinatorial blow-up of exceptional cases. To allow for this, the
goal specification language is slightly extended in order to
capture exceptions to goals seperately and distinguish normal
situations from exceptional ones. The proposed technique is
evaluated on a non-trivial ambulance dispatching system.

Index Terms—Obstacle analysis, goal modeling, probabilistic
goals, risk control, requirements completeness, exception handling,
goal-oriented requirements engineering, quantitative reasoning.

I. INTRODUCTION
Requirements-related errors are commonly recognized to be
the most frequent, persistent, expensive and dangerous types of
software errors [13]. Among these, missing requirements tend
to be the worst. They often arise from a natural inclination to
believe that the software and its environment will always
behave as expected; no requirements are engineered for cases
where this optimistic assumption does not hold. Requirements
completeness therefore calls for putting risk analysis at the
heart of the RE process [2, 3, 5, 8, 13, 14, 20].

A risk is an uncertain factor whose occurrence may result
in the loss of satisfaction of some high-level objective [4, 8,
13]. A risk has a probability of occurrence and one or multiple
consequences. Each consequence has a severity in degree of
loss of satisfaction of the corresponding objective [5, 8]. Risks
may cover undesirable situations such as safety hazards [16,
18], security threats [12, 26] or data inaccuracies [14]
dependent on the type of objective they negatively impact on.

At requirements engineering time, risks should be
identified, assessed in terms of their likelihood and criticality,

and controlled through effective countermeasures [13].
Obstacle analysis has been introduced and used as a model-
based, goal-oriented form of risk analysis [2, 6, 14, 21]. An
obstacle to a goal is a precondition for non-satisfaction of this
goal. Obstacle analysis consists of (a) identifying obstacles
from available goals, assumptions and domain properties; (b)
assessing their likelihood and criticality in terms of severity of
their consequences; and (c) resolving likely and critical
obstacles through countermeasures to be incorporated into the
goal model.

To support obstacle analysis, techniques are available for
identifying obstacles systematically from goals and domain
properties [1, 14]. For obstacle assessment, likelihoods and
criticalities may be determined quantitatively by calculations
over obstacle refinement trees and goal refinement trees,
respectively; such calculations call for probabilistic extensions
to cope with probabilistic goals and obstacles [5, 25]. For
obstacle resolution, operators encoding risk control tactics
were proposed to explore alternative resolutions –such as avoid
obstacle, reduce obstacle likelihood, mitigate obstacle, weaken
goal, substitute goal, restore goal, or substitute agent [14].

The obstacle resolution step is obviously crucial; it directly
impacts the adequacy, completeness and robustness of the goal
model. However, little support is currently available for this
step beyond the above resolution operators for countermeasure
exploration. In particular, it is totally unclear where and how
selected countermeasures produced by such operators should
be integrated in the goal model to increase its completeness
and robustness.

To address this problem, the paper describes techniques for
integrating obstacle resolutions systematically in the goal
refinement graph while propagating the resulting changes
wherever required in the model. These techniques guarantee
that:

• the model is increasingly robust and complete as
resolutions are being integrated;

• the normal system behaviors and those not affected by the
obstacles are preserved;

• the correctness of goal refinements in the model is
preserved.

A goal model integrating countermeasures to obstacles may
need to be restructured so as to keep the goals refering to
normal situations separate from the countermeasure goals
refering to exceptional situations. There are multiple reasons
for this.

• For higher readability and better visibility, the ideal
model containing all functional and non-functional goals
in normal situations should be kept visible. The

978-1-4799-3033-3/14 c© 2014 IEEE RE 2014, Karlskrona, Sweden

Accepted for publication by IEEE. c© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

43

specification of these goals should not be cluttered with
items refering to exceptional situations.

• The model structuring and specification should not
exhibit any combinatorial blow-up of exceptional cases.
Without any structuring mechanism, the integration of
multiple countermeasures to multiple risks considered in
combination might produce a large number of cases.

• Exceptional situations should be identifiable and
integrated incrementally. The handling of each single
situation should be isolated from the others.

• The traceability of exceptional cases should be supported
from requirements to architecture. Keeping exceptions
separate from each other and from the goals in normal
situations enables traceability from the goal model and its
operationalization on the one hand and exception handlers
in the architecture on the other hand.

• In case of obstacle tolerance with no countermeasure
integrated in the model, a one-to-one mapping should be
maintained between (a) the obstacle and countermeasure
identified at modeling time, and (b) the corresponding
runtime monitor/adaptator mechanisms for dynamic
reconfiguration when the obstacle is too frequent [9].

To support such separation between normal and exceptional
situations, the paper extends the goal language with semantics-
preserving constructs for specifying exceptions and their
“handlers” –that is, the countermeasures associated with them.
Model transformation operators are then provided for attaching
and detaching exceptions to/from associated goals in the goal
model.

The paper is organized as follows. Section II introduces
some necessary background on modeling goals and their
obstacles. Section III motivates our technique on a small
example. Section IV more precisely specifies the problem to be
solved by our integration approach. Section V describes the
conditions and mechanisms for integrating countermeasures in
a goal model. Section VI presents the constructs for specifying
goals with exceptions together with their semantics. Section
VII introduces model transformation operators for attaching
and detaching exceptions to/from goals. Section VIII
summarizes the evaluation of our proposals on an ambulance
dispatching system. Section IX briefly discusses related work.

II. BACKGROUND
This section recalls some basics on behavioral goal modeling,
obstacle analysis and probabilistic goals while introducing our
running example.
Goal-oriented system modeling. A goal is a prescriptive
statement to be satisfied by cooperating agents forming the
considered system. The latter may include devices such as
sensors and actuators, people, preexisting software, and the
software to be developed. Domain properties are descriptive
statements about the problem space, e.g., physical laws.

Behavioral goals prescribe maximal sets of desired system
behaviors; unlike soft goals they are satisfiable in a clear-cut
sense [13]. A behavior is a sequence of system state
transitions. Linear Temporal Logic (LTL) may be used to
specify behavioral goals formally and enable formal analyses
[13, 22]. The goals then have the general form:

 C ⇒ ΘT,
where Θ represents an LTL operator such as: ¡ (in the next
state), ◊ (sometimes in the future), ◊≤d (sometimes in the future
before deadline d), o (always in the future), o≤d (always in the
future up to deadline d), W (always in the future unless), U (always
in the future until), and where P ⇒ Q denotes o (P → Q). The
following standard logical connectives are used: ∧ (and), ∨
(or), ¬ (not), → (implies), ↔ (equivalent).

Among behavioral goals, Achieve goals follow the
specification pattern “if C then sooner-or-later T”, that is, C ⇒ ◊T,
where C and T denote a current and target condition,
respectively. Maintain goals follow the specification pattern “if
C then always G”, that is, C ⇒ oG where G denotes a good
condition. Avoid goals follow a similar pattern “if C then never
B”, that is, C ⇒ o¬B where B denotes a bad condition.

A goal model is an AND/OR graph showing how goals
contribute positively or negatively to each other. Parent goals
are obtained by abstraction, e.g., through why questions.
Subgoals are obtained by refinement, e.g., through how
questions. In a goal refinement graph, leaf goals are
requirements or assumptions dependent on whether they are
assigned to single software-to-be or environment agents,
respectively.

Fig. 1 shows a partial goal model for a mine pump system
[11, 13, 15]. Refinement patterns help building such a model
through common goal decomposition tactics such as
Milestone-Driven, Case-Driven, Guard-Introduction, Divide-
And-Conquer, Uncontrollability-Driven, etc. [7, 13]. For
example, consider the following goal in Fig. 1:

 Goal Maintain [PumpOnWhenHighWater]
 FormalSpec ∀ p:Pump, s:Sump

 s.WaterLevel = “High” ∧ PumpInSump(p, s)
 ⇒ p.Motor = “On”

Applying the Unmonitorability-driven refinement pattern to
this goal yields, after instantiation, the following refinement
where the antecedent of the second subgoal becomes
monitorable by the software pump controller:

 Goal Maintain [HighWaterDetected]
 FormalSpec ∀ p:Pump, s:Sump, c:PumpController

 s.WaterLevel = “High” ∧ PumpInSump(p, s) ∧ CtrlPump(c, p)
 ⇒ c.HighWaterSignal = “On”

Goal Maintain [PumpOnWhenHighWaterDetected]
 FormalSpec ∀ p:Pump, c:PumpController

 c.HighWaterSignal = “On”∧ CtrlPump(c, p)
 ⇒ p.Motor = “On”

Fig. 1. Partial goal model for a mine pump system

44

Refinement patterns produce goal refinements guaranteed to be
complete, consistent and minimal. A refinement is complete
when the subgoals SGi, possibly with domain properties in
Dom, are sufficient for satisfying the parent goal PG:

{SG1, …, SGn, Dom} ⊨ PG (complete refinement)
A refinement is consistent if:

{SG1, …, SGn, Dom} ⊭ false (consistent refinement)
A refinement is minimal if all subgoals are needed for
satisfaction of the parent goal:

for all 1 < i < n: {SG1, …, SGi-1, SGi+1, … SGn, Dom } ⊭ PG
The two lower AND-refinements in the upper part of Fig. 1 are
complete, consistent and minimal.
Obstacle analysis. An obstacle to a goal is a satisfiable
precondition for not satisfying this goal [14]:

{O, Dom} ⊨ ¬G (obstruction)
{O, Dom} ⊭ false (domain consistency)

The obstacles to a goal may similarly be organized as an
AND/OR refinement tree. The root obstacle is the negation of
the obstructed goal. An AND-refinement captures a
combination of subobstacles to satisfy the parent obstacle. An
OR-refinement captures alternative ways of satisfying the
parent. Each OR-refinement SOi must entail the parent obstacle
PO:

for all i : {SOi, Dom} ⊨ PO (entailment)
OR-refinements should be domain-complete and disjoint:

{¬SO1, …, ¬SOn} ⊨ ¬PO (domain completeness)
for all i ≠ j : {SOi, SOj, Dom} ⊨ false (disjointness)

Leaf obstacles are fine-grained obstacles whose satisfiability
and likelihood can be more easily estimated by experts.
A variety of formal techniques, obstruction patterns and
heuristic rules are available for systematic obstacle
identification [1, 13, 14]. For example, consider the following
right leaf goal in Fig. 1:

 Goal Maintain [PumpOnWhenPumpSwitchOn]
 FormalSpec ∀p: Pump
 p.Switch = “On” ⇒ p.Motor = “On”

Its negation yields the following root obstacle:
 Obstacle PumpNotOnAndPumpSwitchOn

 FormalSpec ◊ ∃p: Pump
 p.Switch = “On” ∧ p.Motor ≠ “On”

Consider the following domain property capturing a necessary
condition for the target p.Motor ≠ “On”:

p.Failure = true ⇒ p.Motor ≠ “On”
Regressing the root obstacle backwards through this domain
property generates the following subobstacle:

 Obstacle PumpFailure
 FormalSpec ◊ ∃p: Pump
 p.Switch = “On” ∧ p.Failure = true

A variety of tactics are available for exploring alternative ways
of resolving obstacles to a goal –such as avoid obstacle, reduce
obstacle likelihood, mitigate obstacle, weaken goal, substitute
goal, restore goal, or substitute agent [14]. For example, the
obstacle mitigation tactic applied to the preceding obstacle
PumpFailure may produce the following countermeasure goal :

Goal Achieve[MineEvacuatedWhenPumpFailureAndPumpSwitchOn]
FormalSpec ∀m: Miner, p: Pump

 p.Switch = “On” ∧ p.Failure = true ⇒ ◊≤10m m.Position = "Out"

The lower part of Fig. 1 shows two OR-refinements for the
obstacle PumpNotOnAndPumpSwitchOn.
Probabilistic goals and obstacles. Behavioral goals may be
satisfied only partially [5]. The probability of satisfaction for a
goal G: C ⇒ ΘT is defined as the ratio between (a) the number
of possible behaviors satisfying both the goal antecedent C and
consequent ΘT, and (b) the number of possible behaviors
satisfying C. The estimated probability of satisfaction (EPS) of
a goal is the probability of its satisfaction in view of its
possible obstructions by obstacles. For goal G, it is denoted by
P(G). The conditional probability P(G|H) denotes the
probability of satisfaction of G over all behaviors satisfying H.
The required degree of satisfaction (RDS) of a goal is the
minimal probability of satisfaction admissible for this goal; it is
prescribed by elicited requirements, existing regulations,
standards, etc. For goal G, it is denoted by RDS(G).
 The probability of an obstacle is defined as the ratio
between (a) the number of possible behaviors satisfying the
obstacle, and (b) the number of possible behaviors. The
probability of a root obstacle is computed by up-propagation
though the obstacle refinement tree from estimates for leaf
obstacles. The result is then up-propagated in turn through the
AND/OR goal graph to determine the EPS of root goals. The
severity of the consequences of obstacles to G is then assessed
from the difference P(G) - RDS(G) [5].

III. INTEGRATING COUNTERMEASURE GOALS: MOTIVATION
In addition to the PumpFailure obstacle in the previous section,
the following other obstacle also results in severe loss of
satisfaction of high-level goals:

 Obstacle PowerSystemOutage
 FormalSpec ◊ ∃p: Pump
 p.Switch = “On” ∧ p.PowerLine = “Off”

Resolution tactics might produce, among others, the following
countermeasure goals to resolve these obstacles (see Fig. 1):

Achieve [PumpRepairedAndOnWhenPumpFailure
AndPumpSwitchOn],

Maintain [EmergencyPumpOnWhenPumpFailure
AndPumpSwitchOn],

Maintain [ThirdPartyPumpOnWhenHighWaterDetected],
Achieve [PowerGeneratorOnWhenPowerSystemOutage

AndPumpSwitchOn].
The paper aims at providing precise and systematic answers to
the following questions.

• Where should these countermeasure goals be integrated
into the goal refinement graph? How?

• What parent goals should the countermeasure goals
refine? With what other sibling subgoals? Should
exceptional conditions such as p.Failure = true and
p.PowerLine = “Off” pollute goal specifications throughout
the entire goal model?

The answers to those questions should support the following
objectives.

• Separation of concerns. The goals refering to normal
situations should be distinguished from those handling
obstacle occurrences. Such separation may significantly
reduce model complexity and keep the ideal, normal
model explicit.

• Compositionality. It should be possible to specify,
structure, and analyze normal goals and countermeasures
to their obstacles in a compositional way. A robust model

45

should not exhibit goal specifications or refinements
intermixing normal cases and countermeasures. For
example, consider a goal G obstructed by obstacles O1
and O2 with corresponding countermeasure CG1 and CG2,
respectively. A brute-force integration might produce a
cluttered specification for the robust version of this goal
such as:

(¬O1 ∧ ¬O2 ⇒ G) ∧ (O1 ⇒ CG1) ∧ (O2 ⇒ CG2)
The refinement of such a goal specification and,
recursively, of its subgoals would thus intermix normal
cases and combinations of exceptional cases which may
lead, for a large number of obstacles, to a combinatorial
blow-up of cases along refinements.

• No premature decision and freedom of choice. The
modeler should be free to decide, when felt necessary,
what are the goals refering to normal situations and what
are those corresponding to exceptional situations. In our
example, mine evacuation might or might not be part of
the normal situation depending on its frequency,
criticality, stakeholder wishes, and so forth.

IV. THE COUNTERMEASURE INTEGRATION PROBLEM
Integrating a countermeasure goal to an obstacle in a goal
model means: (a) connecting this goal to a parent node in the
model; (b) adding other sibling subgoals in the refinement if
necessary; (c) propagating the corresponding changes along
refinement trees in which the countermeasure goal is involved;
and (d) refining this goal if necessary.
 More precisely, an integration IntCG,0 (M) of countermeasure
CG to obstacle O in goal model M maps M to a new model M’
so as to satisfy the following desired properties.
1. Progress. The application of the integration operator IntCG,O
should increase the probability of satisfaction of some root goal
G at least, that is, there must be at least one root goal G’ in M’
corresponding to G in M such that PM’ (G’) > PM (G).
2. Minimal change. The application of IntCG,O should preserve
prescribed behaviors in M that are not affected by O, that is, for
any goal G in M such that {O, Dom} ⊭ ¬G and corresponding
goal G’ in M’, we should have: G’ ⊨ G.
3. Correctness preservation. The correctness of goal
refinements in M should be preserved in M’, that is, if all
refinements in M are complete, consistent, and minimal then
those in M’ are complete, consistent, and minimal as well.

V. INTEGRATING COUNTERMEASURE GOALS
This section explains how our integration operator ensures the
three preceding properties.

A. Ensuring progress: valid countermeasures
For the progress constraint to be met, two conditions must hold
on the countermeasure goal to be integrated.
1. Non-obstruction. The countermeasure goal CG may no
longer be obstructed by the obstacle O it resolves:

{O, Dom} ⊭ ¬CG (non-obstruction)

2. Ancestor entailment. The countermeasure goal CG must
guarantee a deidealized version of an ancestor of the leaf goal
obstructed by O. To make this further precise we need the
following definitions.

A goal G’ is a deidealized version of goal G if G ⊨ G’.
A deidealized version G’ of G is acceptable if, for every goal
refinement with G as a child, there exists an acceptable
deidealized version of its siblings and parents such that the
corresponding refinement still meets the completeness,
consistency and minimality conditions recalled in Section II.
 The ancestor entailment condition can now be formulated
as follows:

{CG, G1’, … , Gn’, Dom’} ⊨ PG’ (ancestor-entailment)
 for some acceptable deidealized version PG’ of ancestor PG,

where PG is an ancestor of the obstructed goal G and G1’, …,
Gn’ are acceptable deidealized versions of descendants of PG.
 A countermeasure goal CG against obstacle O is said to be
valid if it satisfies the non-obstruction and ancestor-entailment
conditions.
 For example, the countermeasure goal Achieve
[MineEvacuatedWhenPumpFailureAndPumpSwitchOn] is valid; the
obstacle PumpFailure does not obstruct it, and this goal together
with the deidealized goal Avoid [OverflowedMineWhen
NoPumpFailure] guarantee the satisfaction of the parent goal
Avoid [MinersDrowning]. In this example, the parent goal is not
deidealized.
 Obstacle resolution tactics such as avoid obstacle, reduce
obstacle likelihood, mitigate obstacle, weaken goal, or
substitute goal [14] can be shown to produce valid
countermeasures modulo propagations of their effect through
the refinement trees in which they are involved (see Section
V.C).

Multiple candidate ancestors might be considered for the
ancestor-entailment condition. In our example, Avoid
[OverflowedMine] and Avoid [MinersDrowning] are potential
candidates with respect to the goal Achieve [MineEvacuatedWhen
PumpFailureAndPumpSwitchOn]. The nearest candidate to this
goal appears preferable for more local model change –that is,
the goal Avoid [OverflowedMine].
 The anchor for a countermeasure goal CG is the lowest
ancestor goal PG meeting the ancestor-entailment condition. It
is the goal through which the countermeasure goal is
integrated, as discussed in the next section.
Theorem (Progress). For any valid countermeasure goal CG,
the probability of satisfaction of its anchor PG increases:

P (PG’) > P (PG),
where PG’ in M’ corresponds to PG in M.
This can be proved ab absurdo. Assume there is no such
increase: P(PG’) ≤ P(PG). Introducing conditional
probabilities, we have:

P(PG’) = P(O) × P(PG’|O) + P(¬O) × P(PG’|¬O),
P(PG) = P(O) × P(PG|O) + P(¬O) × P(PG|¬O).

Given the obstruction of PG, we have: P(PG|O) = 0. Therefore,
P(O) × P(PG’|O) + P(¬O) × P(PG’|¬O)
 ≤ P(¬O) × P(PG|¬O)

Since PG’ is a deidealized version of PG, we have:
P(PG’|¬O) ≥ P(PG|¬O).

Therefore,
P(¬O) × P(PG’|¬O) ≥ P(¬O) × P(PG|¬O).

As P(O) × P(PG’|O) ≥ 0, our initial assumption gets contradicted.

46

B. Ensuring minimal changes: integration schemas
A single valid countermeasure goal ensures progress towards a
complete model; its integration in the model should also ensure
that the minimal change property is met (see Section IV).

Two alternative integration schemas may be used for this,
dependent on the obstacle resolution tactic being selected [14].
The first schema removes the obstructed goal; it should be
applied when the substitute goal or weaken goal tactic is used
for resolving the obstacle. The second integration schema
keeps the obstructed goal in the model; it should be applied
when the avoid obstacle, reduce obstacle likelihood, or
mitigate obstacle tactic is used.
Removing the obstructed goal. Fig. 2 shows a first integration
schema expressed as a model rewriting rule. In this first
schema, the refinement of anchor goal AG, containing at least
one obstructed goal, is replaced with a new refinement. The
latter contains the countermeasure goal CG to leaf obstacle LO
together with all non-obstructed children. (An anchor’s
obstructed children are those being directly or indirectly
obstructed by LO.) The anchor AG may need to be deidealized;
in this case, AG’ replaces AG in the new goal model.

This first integration schema has a precondition for use,
namely, the countermeasure goal CG and the non-obstructed
children are sufficient for satisfying the anchor goal:

{CG, Children(AG) \ ObstructedChildren} ⊨ AG’.
Otherwise, the new refinement would not be complete.
 For example, the goal Maintain [ThirdPartyPumpOnWhen
HighWaterDetected] is a countermeasure produced through the
goal substitution tactic [14]. Its anchor goal is Maintain
[PumpOnWhenHighWater]. The following refinement is complete,
consistent, and minimal for this anchor goal:

Maintain [PumpOnWhenHighWater]
← Maintain [HighWaterDetectedWhenHighWater]
← Maintain [ThirdPartyPumpOnWhenHighWaterDetected]

We may therefore replace the old refinement with this one.
It is easy to see that this first integration schema meets our

minimal change property. Non-obstructed goals are composed
from non-obstructed goals in the refinements of AG and its
descendants, and in the siblings of AG and its ancestors. The
former are kept as is whereas the latter might need to be
deidealized through change propagation (see Section V.C). All
these goals thus satisfy G’ ⊨ G.
Keeping the obstructed goal. Fig. 3 shows a second integration
schema. In this schema, a new refinement is introduced; it
includes a modified version of the obstructed anchor and the
countermeasure goal. The obstructed anchor is deidealized for
removing the obstruction. The negation of the leaf obstacle is
added to form a decomposition by cases.

This second integration schema has a precondition for use
as well; the countermeasure goal must be sufficient for
satisfying the anchor goal when the obstacle occurs:

{LO, CG, Dom} ⊨ AG’
For example, the countermeasure goal Achieve [Mine

EvacuatedWhenPumpFailureAndPumpSwitchOn] entails its anchor
Avoid [MinersDrowning] when the obstacle occurs. This second
rule then produces the following refinement:

Avoid [OverflowedMine]
← Avoid [OverflowedMineWhenNoPumpFailure]
← Achieve [MineEvacuatedWhenPumpFailureAndPumpSwitchOn]

Note that the anchor goal is not deidealized in this example.
The new goal Avoid [OverflowedMineWhenNoPumpFailure] is a de-
idealization of the anchor goal. The negation of the obstacle is
added to the goal antecedent:

Goal Avoid [OverflowedMine]
FormalSpec ∀p: Pump

 p.Failure = false ⇒ ¬OverflowedMine
This second integration schema can be seen to meet our

minimal change property as well; the reasoning is similar to the
first schema. Only siblings of the anchor goal and its ancestor
may need to be deidealized. The other goals were obstructed by
the resolved obstacle and are therefore not concerned with the
minimal change property.

C. Preserving refinement correctness: change propagation
As introduced before, goal deidealizations and countermeasure
integrations may require corresponding changes to be
propagated along refinement trees in which the countermeasure
goal is involved. Such propagations are intended to ensure our
third property on integrations, that is, the resulting model must
remain complete, consistent, and minimal. This section
discusses how deidealizations and change propagations are
performed.
Deidealization by strengthening the goal’s antecedent. A first
way of deidealizing a goal of form C ⇒ Θ T is to add an
adequate conjunct to its antecedent:

AddConjunct (C ⇒ Θ T, Θ EC) = [C ∧ Θ EC] ⇒ Θ T.
For example, the goal Maintain [PumpOnWhenPumpSwitchOn]
may be deidealized so as to exclude pump failure from pump
actuation:

 Goal Maintain [PumpOnWhenNoPumpFailureAndPumpSwitchOn]
FormalSpec ∀p: Pump

 [p.Switch = “On” ∧ p.Failure = false] ⇒ p.Motor = “On”

Deidealization by weakening the goal’s consequent. A second
way of deidealizing the goal C ⇒ Θ T is to add an adequate
disjunct to its consequent:

AddDisjunct (C ⇒ Θ T, Θ ED) = C ⇒ [Θ T ∨ Θ ED].

Fig. 2. Integration schema with obstructed goal being removed

Fig. 3. Integration schema with obstructed goal being kept

47

For example, the goal Maintain[PumpOnWhenPumpSwitchOn]
might be deidealized so as to require the pump to be actuated
or the emergency pump to be activated:

Goal Maintain [PumpOnOrEmergencyPumpOnWhenPumpSwitchOn]
FormalSpec ∀p: Pump
 p.Switch = “On” ⇒ [p.Motor = “On”

 ∨ ∃ ep: EmergencyPump · ep.Switch = “On”]

Change propagation. When a goal is deidealized, the change
must be propagated along the refinement trees in which this
goal is involved –both up and down such trees. The
AddConjunct or AddDisjunct operators therefore have to be
applied recursively to the other goals up and down refinement
links.

For example, the integration of the countermeasure goal
Achieve[MineEvacuatedWhenPumpFailureAndPumpSwitchOn] .
requires change propagation to the descendants of the goal
Avoid [OverflowedMine]. First, this goal is modified as previously
shown. Next, the change is down-propagated, leading to an
application of AddConjunct to the goal Maintain [PumpOnWhen
HighWater]:

Goal Maintain [PumpOnWhenNoPumpFailureAndHighWater]
FormalSpec ∀p: Pump, s: Sump

s.WaterLevel = “High” ∧ PumpInSump(p, s) ∧ p.Failure = false
 ⇒ p.Motor = “On”

The next refinement instantiates the unmonitorability-driven
refinement pattern. The AddConjunct operator is therefore
applied to the goal Maintain[PumpOnWhenHighWaterDetected]. We
obtain:

Goal Maintain [PumpOnWhenNoPumpFailureAndHighWater
Detected]

FormalSpec ∀p: Pump, c: PumpController
c.HighWaterSignal = “On” ∧ CtrlPump(c, p) ∧ p.Failure = false

 ⇒ p.Motor = “On”
The next refinement instantiates the milestone-driven
refinement pattern. The AddConjunct operator is therefore
applied to both children. We thereby obtain:

Goal Maintain [PumpSwitchOnWhenNoPumpFailure
AndHighWaterDetected]

FormalSpec ∀p: Pump, c: PumpController
c.HighWaterSignal = "On" ∧ CtrlPump(c, p) ∧ p.Failure = false

 ⇒ p.Switch = "On"
Goal Maintain [PumpOnWhenNoPumpFailureAndPumpSwitchOn]

FormalSpec ∀p: Pump, c: PumpController
p.Switch = “On” ∧ p.Failure = false ⇒ p.Motor = "On"

Since these goals are leaf goals, the propagation ends.
 Change propagation in the general case proceeds as
follows. When AddConjunct or AddDisjunct is applied to a goal
for deidealization, the pattern used for refining (resp.
abstracting) it is identified. A propagation pattern associated
with the refinement/abstraction pattern tells us what goals in
the refinement (resp. abstraction) must be modified and how.
The process is applied recursively to the subgoals (resp.
parents) until leaf goals (resp. root goals) are reached.
 For example, if the case-driven pattern is used for refining
a goal through multiple disjoint cases [13], the application of
AddConjunct or AddDisjunct to a child goal requires the
application of the same operator to the parent goal (and vice-
versa). If the milestone-driven pattern is used for refining a
goal through milestone subgoals [13], an application of
AddConjunct to the first milestone subgoal requires the
application of the same operator to the parent goal –but not
necessarily to the other subgoals; the corresponding extra

condition is not necessarily relevant to the latter.
 For a given refinement pattern and application of
AddConjunct or AddDisjunct to a goal, there might be
alternative modifications of the refinement/abstraction
structure. Moreover, other mechanisms are required for change
propagation to goals not obtained through refinement patterns.
Even though pattern-based propagation can be performed semi-
automatically, the general problem of automatic change
propagation through arbitrary refinement structures remains
open.

VI. OBSTACLE RESOLUTION AS EXCEPTION HANDLING
The integration of countermeasure goals through new, explicit
refinements in the original model raises several issues.
• The goal graph might undergo significant changes each

time a new obstacle is identified.
• Normal situations would be mixed with exceptional ones; it

might be hard to distinguish the former from the latter
without domain expertise.

• Goal specifications become increasingly more complex.
• As new countermeasures are introduced, the ordered

nesting of exceptional cases along refinements may lead to
a combinatorial blow-up of special cases.

This section introduces a slight extension of the goal
specification language that solves those issues. Dedicated
constructs are provided for encapsulating the required
modifications while documenting each exceptional case
separately.
A. Extending the goal specification language
Except. A first construct links a countermeasure goal to its
anchor goal:

 Goal AG
 FormalSpec C ⇒ ΘT
 Except O then CG,

where AG denotes the anchor goal C ⇒ ΘT of countermeasure
goal CG to obstacle O. Semantically, this implicit specification
is fully equivalent to the refinement in Fig. 4.
This construct may be used under the following precondition:

{O, CG, Dom} ⊨ AG
For example, the goal Avoid [MinersDrowning] is satisfied in the
ideal situation by avoiding mine overflow. Under the
exceptional condition of a pump failure, the goal is guaranteed
through miners evacuation. We may therefore write:

 Goal Avoid [MinersDrowning]
Except PumpFailure

then Achieve [MineEvacuatedWhenPumpFailure
 AndPumpSwitchOn]

This specification is logically equivalent to the refinement
illustrating the second integration schema in Section V.B.
 Multiple Except annotations may be attached to a single
goal to cope with different obstacles; the latter may therefore
be introduced incrementally. Compared with the complexity of
an equivalent explicit specification, the complexity of an
implicit goal specification with multiple Except annotations

Fig. 4. Semantic equivalent of Except

48

remains linear in the number of exceptions. The specification
of the ideal goal remains unchanged. Moreover, multiple
annotations sharing the same countermeasure goal may be
factored out to simplify the model.
Provided. A second construct specifies an extra conjunct on the
antecedent of an ideal goal G to produce a countermeasure:

 Goal G
 FormalSpec C ⇒ ΘT
 Provided EC,

where EC denotes an extra conjunct to be added to G’s
antecedent for resolving the considered obstacle. Semantically,
this implicit specification is equivalent to:

 Goal G
 FormalSpec [C ∧ EC] ⇒ ΘT.

The Provided construct is typically used for deidealizing goals.
For example, the deidealization of the goal Maintain [PumpOn
WhenPumpSwitchOn] may be specified by highlighting the
normal situation as follows:

 Goal Maintain [PumpOnWhenPumpSwitchOn]
 FormalSpec ∀p: Pump

 p.Switch = “On” ⇒ p.Motor = “On”
 Provided p.Failure ≠ false.

It often proves convenient to write ProvidedNot EC instead of
Provided ¬EC.
RelaxedTo. Symmetrically to Provided, this construct specifies
an extra disjunct on the consequent of an ideal goal G to
produce a countermeasure:

 Goal G
 FormalSpec C ⇒ ΘT
 RelaxedTo ED,

where ED denotes an extra disjunct to be added to G’s
consequent for resolving the considered obstacle. Semantically,
this goal is equivalent to:

 Goal G
 FormalSpec C ⇒ [ΘT ∨ ED].

This construct is useful for deidealizing goals as well. For
example, another deidealization of the same goal Maintain
[PumpOnWhenPumpSwitchOn] might be specified by highlighting
the normal situation as follows:

 Goal Maintain [PumpOnWhenPumpSwitchOn]
 FormalSpec ∀p: Pump

 p.Switch = “On” ⇒ p.Motor = “On”
RelaxedTo ∃ep: EmergencyPump · ep.Switch = “On”.

Multiple Provided and RelaxedTo annotations may be attached
to a single goal to introduce multiple countermeasures.
Replaces. This construct appears useful for tracing previous
versions of a goal:

 Goal G’
 Replaces G

Such traceability helps readers understand the rationale behind
the final goal, e.g.,

 Goal Maintain [ThirdPartyPumpOnWhenPumpSwitchOn]
 Replaces Maintain [PumpOnWhenPumpSwitchOn].

B. Exception diagrams
Textual goal specifications with Except and Replaces
annotations may be graphically represented in an exception
diagram. Fig. 5 shows a portion of such a diagram for the goal
Maintain [ThirdPartyPumpOnWhenPumpSwitchOn]. This diagram
captures that (a) when the obstacle PumpFailure occurs the

countermeasure goal Achieve [PumpRepairedAndOnWhen
PumpFailureAndPumpSwitchOn] will guarantee this goal, and (b)
this goal replaces Maintain [PumpOnWhenPumpSwitchOn]. Note
that the Except annotation has been propagated to the replacing

goal.
VII. MODEL REFACTORING FOR ATTACHING OR DETACHING

GOAL EXCEPTIONS
In practice, the analyst should decide at some point whether a
countermeasure goal refers to an exceptional situation or to a
normal one to be considered in the ideal model. Such a
decision might depend on various factors such as the frequency
of the resolved obstacle, the criticality of the obstructed goal,
domain-specific culture, stakeholders wishes, and so forth. To
make the decision flexible and easily reversible, this section
presents model refactoring operators for attaching or detaching
the annotations introduced in Section VI to/from a goal model.
 Three operators are available for transforming an annotated
model portion into a standard one.
Detach-Except, applied to an annotated goal, produces a new
model where the goal is no longer annotated with a specific
Except clause. The operator introduces a new refinement with
two children: the countermeasure goal and a deidealization of
the original goal (see Fig. 4 from left to right). The children of
the original goal are then children of the deidealized goal. Back
to an earlier example, the operator takes the model fragment in
Fig. 6a to produce the model fragment in Fig. 6b.
Detach-Provided, applied to an annotated goal, produces a new
model where a specific Provided annotation is “compiled” into
its equivalent formal specification. For example, after
application of this operator the goal Maintain [PumpOnWhen
PumpSwitchOn] is specified without its Provided annotation as
follows:

 Goal Maintain [PumpOnWhenPumpSwitchOn]
 FormalSpec ∀p: Pump

 [p.Switch = “On” ∧ p.Failure = false] ⇒ p.Motor = “On”

Detach-RelaxedTo, applied to an annotated goal, produces a
new model where a specific RelaxedTo annotation is removed.
Back to an earlier example, the application of this operator to
the goal Maintain [PumpOnWhenPumpSwitchOn] yields the
following goal specification:

 Goal Maintain [PumpOnWhenPumpSwitchOn]
 FormalSpec ∀p:Pump

p.Switch = “On” ⇒ [p.Motor = “On”
 ∨ (∃ep: EmergencyPump) ep.Switch = “On”]

 (a) (b) .

Fig. 6. Implicit and explicit countermeasure integration

.
Fig. 5. Exception diagram

49

Similarily, three operators are available for transforming a
standard model portion into an annotated one –namely, Attach-
Except, Attach-Provided and Attach-RelaxedTo. These
operators are the reverse of the Detach ones.

VIII. EVALUATION
The techniques presented in this paper were applied1 to a

benchmark commonly used for evaluating obstacle analysis
techniques [1, 14, 15]. The goal and obstacle models used for
the London Ambulance System (LAS) are based on [14].

The goal model contains 42 goals, 19 refinements
instantiating a variety of refinement patterns, and 8 agents. The
obstacle model contains 71 obstacles and 30 countermeasure
goals. The full models can be found in [14, 15]. Only portions
of the goal model are considered here.

The top goal in this model is Achieve [IncidentResolved]. The
milestone-driven refinement pattern produces three subgoals:
Achieve [IncidentReported], Achieve [AmbulanceOnSceneWhen
IncidentReported] and Achieve [IncidentResolvedWhenAmbulance
OnScene]. At a lower level of refinement, the goal Achieve
[AmbulanceMobilizedWhenAllocated] states that allocated
ambulances shall be mobilized within 3 minutes. This goal is
refined using a case-driven pattern into Achieve [Ambulance
MobilizedAtStationWhenAllocated] and Achieve [AmbulanceMobilized
OnRoadWhenAllocated]. These goals are in turn refined until they
are assignable to single agents.

Obstacles to leaf goals were then generated and refined.
Here is a sample of obstacle refinements in textual format:

MobilizationOrderPrintedAndAmbulanceNotMobilized
 ← AmbulanceNoLongerAtStation
 ← AmbulanceNoLongerAvailable
 ← MobilizationOrderIgnored
 ← MobilizedToWrongDestination
 ← MobilizationOrderTakenByOtherAmbulance

Countermeasures goals were explored using available
resolution tactics [14]. For example, here are countermeasure
goals for two leaf obstacles:

MobilizationOrderTakenByOtherAmbulance
 ← Achieve [MobilizationByOtherAmbulanceKnown]
 ← Avoid [MobilizationWithoutOrder]
MDT-MobilizationOrderIgnored
 ← Achieve [SoundAlarmRaisedWhenMDTMobOrderReceived]
 ← Achieve [FailedMobilizationRecovered]

The large number of obstacles and countermeasure goals
called for our countermeasure integration and encapsulation
techniques. As a result, the countermeasure goals appear to
focus on a small number of important goals; e.g., the goal
Achieve [IncidentResolvedByAmbulanceIntervention] has 15
exceptions. The overall integration produced 34 exceptions
distributed over 7 goals only.

The techniques presented in this paper helped significantly
for the following reasons.
 Model simplification by separation of concerns. The goals
refering to normal situations were systematically distinguished
from those handling obstacle occurrences. Emerging
assumptions were incrementally down-propagated to
obstructed descendants of corresponding anchor goals; this
required 7 propagations and produced 28 Provided annotations

1See http://www.info.ucl.ac.be/~acaillia/publications/las-system.html

for full report.

distributed over 6 goals. Without these annotations the formal
specification of those 6 goals would have been cluttered with
details related to exceptional cases. Table II quantifies our use
of Provided annotations.

For example, the goal Achieve [AllocatedAmbulance
MobilizationWhenMobilizationOrderPrinted] is defined as follows
after integration in the model:

 Goal Achieve [AllocatedAmbulanceMobilizedWhenMobilization
 OrderPrinted]
 Provided AllocatedAmbulanceNotLeavingBeforeMobilization
 Provided AllocatedAmbulanceNotUnavailableBeforeMob
 Provided PrintedMobilizationOrderNotIgnored
 Provided MobilizationNotTakenByOtherAmbulance.

The full equivalent specification of this goal without
Provided annotations would completely hide the ideal case; it
would then appear fairly hard to distinguish the part of the goal
antecedent related to the ideal case from those related to
exceptional cases.

The Detach-Except operator was applied to the case-driven
refinement of the goal Achieve [AmbulanceMobilized
WhenAllocated]. Allocating an ambulance when not at station
was estimated fairly rare – 5% of cases according to typical
figures in the domain. The parent goal of these two goals was
therefore modified accordingly:

 Goal Achieve [AmbulanceMobilizedWhenAllocated]
 Except AllocatedAmbulanceNotAtStation

 then Achieve [AllocatedAmbulanceMobilizedOnRoad]
Such refactoring reduces model complexity by hiding the

part of the model handling the mobilization of an ambulance
when on road. The resulting ideal goal model therefore
contains fewer refinements and fewer goals, making it easier to
understand and clearly separate ideal behaviors from
exceptional ones.

Compositionality. Without our techniques, the integration
of so many exceptions for only 7 goals would have resulted in
large, complex refinements with a combinatorial blow-up of
special cases. To illustrate this important point, consider the
goal Achieve [AmbulanceMobilizedWhenAllocated]. Its original,
ideal specification is:

∀amb: Ambulance, inc: Incident
Allocated (amb, inc)
⇒ ◊≤3min ∃amb: Ambulance · Mobilized (amb, inc)

After obstacle analysis, this goal is guaranteed through 5
countermeasure goals (see Fig 7). The brute-force integration
of only the three countermeasure goals depicted at the bottom
of Fig. 6 would have resulted in the following formal
specification for the final version of the goal Achieve
[AmbulanceMobilizedWhenAllocated]:

∀c: UrgentCall, inc: Incident
 Allocated (amb, inc)
⇒ ◊≤3min ∃ amb: Ambulance · Mobilized (amb, inc)
 ∨ [o>3min ¬AmbAvailable (amb, inc)
 → ◊≤6min ∃amb’: Ambulance
 amb≠amb’∧ Mobilized (amb’, inc)]
 ∨ [o>3min DisplayedMobilizationIgnored (amb, inc)
 → ◊<6min Mobilized (amb’, inc)]
 ∨ [o>3min PrintedMobilizationIgnored (amb, inc)
 → ◊<6min Mobilized (amb’, inc)]

In addition to this complex specification, the goal
refinement structure would have been heavily modified:

Achieve [AmbulanceMobilizedWhenAllocated]
← Achieve [OtherAmbMobWhenAllocatedAmbUnavailable]
← Achieve [AllocAmbMobilizedWhenAmbAvailableUntilMob]

50

 ← Achieve [LateMobWhenDisplayedMobOrderIgnored]
 ← Achieve[AllocAmbMobilizedWhenAmbAvailableUntilMob

 AndDisplayedMobOrderNotIgnored]
 ← Achieve [LateMobWhenPrintedMobOrderIgnored]
 ← Achieve [AllocAmbMobilizedWhenAmbAvailUntilMob

 AndDisplayedMobOrderNotIgnored
 AndPrintedMobOrderNotIgnored]

← …

With such a brute-force integration, each countermeasure
goal must be refined by taking other countermeasures into
account. This would lead to a combinatorial blow-up of cases.
Thanks to our technique, the original specification of this goal
and its refinement structure are preserved. The Except and
Provided constructs encapsulate the modifications for a more
robust system. Table I provides some figures on goal
exceptions for other goals.

No premature decision and freedom of choice. The
specification and documentation of exceptional behaviors was
separated from the normal ones; this allowed us delaying the
decision of how and when the handling of exceptional cases
should occur.
 Other benefits. The Replaces annotation was felt useful for
documenting the replacing countermeasure goals –e.g., Achieve
[MobilizedAmbInterventionOrMobilizationCancelled] replacing Achieve
[MobilizedAmbulanceIntervention] to resolve the obstacle
MobilizationCancelled. Without this annotation we would have
lost the previous version of the goal.
 Exception diagrams significantly helped understand the
model where all countermeasures are integrated; they
document exceptions one single goal at a time (see Fig. 7). A
total of 7 exception diagrams was produced for documenting
exceptional cases and countermeasure goals.
 Tool support. Our evaluation on the LAS case study was
supported by a preliminary tool prototype. Given an obstacle
resolution tactic and the corresponding anchor goal, the tool
automatically generates the corresponding Except or Replaces
anotations with corresponding countermeasure goal. The
Provided and RelaxedTo constructs are supported as well. The
tool also generates exception diagrams.

IX. RELATED WORK
In the identify-assess-control cycles of risk analysis at
requirements engineering time [8, 13, 14, 17, 20], most of the
work so far has been devoted to risk identification and
assessment. For risk identification, scenario-based heuristics
are available [2, 29] as well as goal-oriented formal techniques
[1, 14]. For risk assessment, various kinds of quantitative
techniques are available [3, 5, 8, 25]. For risk control, the only
work on countermeasure exploration is [14] where the obstacle

resolution tactics mentioned in this paper are described. We are
not aware of any work on systematic integration of
countermeasures in a requirement model with a clear, precise
semantics.

The relevance and importance of default-based reasoning
has been recognized in the context of elaborating requirements
or specifications. In [30], a formal framework is proposed for
reasoning about evolving requirements. The framework is
based on belief revision and default theory; operators for
adding and retracting requirements are defined together with
formal conditions for their valid application (similarly to our
integration operators). The tracing of exceptional requirements
is not discussed there. In [24], a specification is structured
through axioms and Overrides relations. Such relations are
derived from the structural decomposition of the system.
Specific axioms predominate more general ones when a
conflict occurs. This framework comes with formal
foundations and well-defined procedures for identifying
conflicts and predominance among axioms. It appears more
oriented towards specification elaboration. In [27], default
specifications are introduced together with exceptions in order
to increase the completeness of algebraic specifications; the
But relation there somewhat corresponds to our Except relation.

Our approach mainly differs from those previous efforts in
the following directions.
• Our techniques operate at requirements level and benefit

from the refinement structure of a goal model. This
structure helps in building a model where exception
handling is integrated and in propagating required changes
throughout the model.

• New requirements for a more robust system are
incrementally integrated through obstacle analysis. The
model updates are traceable back to the identified
obstructed goals and their obstacles.

At programming level, aspects may be used for separating
exception handling from normal code [19]. At modelling
level, [28] convincingly shows how aspects can be used for
separating exceptional behaviors from normal ones. As an
alternative to the approach advocated in this paper, robustness

TABLE I. USING GOAL EXCEPTIONS

Goals Exceptions
Achieve [Incident Resolved By Ambulance Intervention] 15
Achieve [Ambulance Mobilization] 6
Achieve [Allocated Ambulance Mobilization When
Mobilization Order Printed]

5

Achieve [Mobilized Ambulance Intervention] 3
Achieve [Mobilized Ambulance Intervention Or Mobilization
Cancelled]

3

Achieve [Allocated Ambulance Mobilization When
Mobilization Order Displayed]

2

Achieve [Allocated Ambulance Mobilization At Station] 1

TABLE II. USING PROVIDED-CLAUSES

Goals Provided
Achieve [Allocated Ambulance Mobilization On Road] 3
Achieve [Allocated Ambulance Mobilization At Station Based
On Location Info]

4

Achieve [Allocated Ambulance Mobilization When
Mobilization Order Printed]

4

Achieve [Allocated Ambulance Mobilization On Road Based
On Location Info]

3

Achieve [Allocated Ambulance Mobilization When
Mobilization Order Displayed]

3

Achieve [Allocated Ambulance Mobilization At Station] 1

.
Fig. 7. Exception diagram for Achieve [AmbulanceMobilization]

51

aspects might be incorporated in a goal model by use of
constructs similar to the ones sketched in, e.g., [10, 23].
Further work would however be required to define a
declarative, logic-based semantics as well as an operational,
trace-based semantics for such constructs –which seems
unavailable to date. Suitable weaving mechanisms would then
need to be defined in this semantic framework.

X. CONCLUSION
The paper presented systematic techniques for integrating

countermeasures into ideal goal models. An integration
operator was introduced as a model transformation ensuring
progress towards a more complete model, minimal change of
the original model, and refinement correctness preservation.
Anchor goals were introduced to define where countermeasure
goals should be integrated together with appropriate refinement
schemas. Our goal-oriented RE framework was extended with
constructs for structuring and documenting exceptional cases.
Coming with these, model refactoring operators were proposed
enabling analysts to attach and detach exceptions. The
approach was evaluated on two case studies, a simple mine
pump system and a much more complex ambulance
despatching system.
 As shown in these case studies, a more complete goal
model is obtained while the ideal model is kept visible. The
ideal specifications are preserved. The final refinement
structure turns out to be nearly the same as the original one.
Exceptions are documented aside; analysts and users of the
model can dive into independent exceptions one by one. A
large number of countermeasure goals can be integrated; the
integration techniques reduce model complexity by keeping the
combinatorial blow-up of exceptional cases implicit.

The current version of our tool is fairly basic. Among the
planned extensions, the increased automation of change
propagation deserves highest priority. The propagation
procedure itself should be made less dependent on common
refinement patterns.

Complementary techniques are needed for selecting “best”
countermeasures according to soft goals from the goal model.
The responsibilities of agents in exception handling should be
integrated as well. Moreover, the use of our exception-related
constructs for deriving exception handlers in the corresponding
software architecture would be worth investigating. In parallel,
their exploitation for runtime self-adaptation in changing
contexts appears a promising direction for future work.

ACKNOWLEDGEMENT
This work was supported by the EU Fund for Regional Development
& the Walloon Region (TIC-FEDER Grant CE-IQS). We wish to
thank B. Lambeau, C. Damas and S. Busard for discussions on our
approach, and the reviewers for useful comments.

REFERENCES
[1] D. Alrajeh, J. Kramer, A. van Lamsweerde, A. Russo and S. Uchitel,

“Generating Obstacle Conditions for Requirements Completeness”,
Proc. ICSE'2012: 34th Intl. Conf. Softw. Eng., Zürich, May 2012.

[2] A. Anton and C. Potts, “The Use of Goals to Surface Requirements for
Evolving Systems”, Proc. ICSE'98: Intl. Conf. Softw. Eng., May 1998.

[3] Y. Asnar, P. Giorgini and John Mylopoulos, “Goal-driven Risk
Assessment in Requirements Engineering”, Req. Eng. Jl. 16(2), June
2011, 101-116.

[4] T. Bedford and R. Cooke, Probabilistic Risk Assessment-Foundations and

Methods. Cambridge University Press, 2001.
[5] A. Cailliau and A. van Lamsweerde, “Assessing requirements-related risks

through probabilistic goals and obstacles”, Requirements Engineering
Journal 18(2), Springer-Verlag, 2013, 129-146.

[6] R. Darimont and M. Lemoine, “Security Requirements for Civil Aviation
with UML and Goal Orientation”, Proc. REFSQ’07: Intl. Conf. on
Foundations for Softw. Quality, LNCS 4542, Springer-Verlag, 2007.

[7] R. Darimont and A. van Lamsweerde, “Formal Refinement Patterns for
Goal-Driven Requirements Elaboration”, Proc FSE’96: 4th ACM Symp.
on the Foundations of Softw. Eng. (FSE’4), Oct.1996, 179-190.

[8] M.S. Feather and S.L. Cornford, “Quantitative Risk-Based Requirements
Reasoning”, Req. Eng. Journal 8(4), Springer-Verlag, 2003, 248-265.

[9] M. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard, “Reconciling
System Requirements and Runtime Behaviour”, Proc. IWSSD’98 - 9th
Intl. Workshop on Soft. Spec. and Design, Isobe, IEEE, April 1998.

[10] A. Gil, J. Araujo., “AspectKAOS: integrating early-aspects into KAOS”,
Proc. 15th Workshop on Early Aspects, ACM, 2009, 31-36.

[11] M. Joseph, Real-Time Systems: Specification, Verification and Analysis,
Prentice Hall Intl., 1996.

[12] A. van Lamsweerde, “Elaborating Security Requirements by
Construction of Intentional Anti-Models”, Proc. ICSE’04, 26th Intl.
Conf. on Software Engineering, ACM-IEEE, May 2004, 148-157.

[13] A. van Lamsweerde, Requirements Engineering: From System Goals to
UML Models to Software Specifications. Wiley, 2009.

[14] A. van Lamsweerde and Emmanuel Letier, “Handling Obstacles in Goal-
Oriented Requirements Engineering”, IEEE Trans. Softw. Eng. 26(10),
October 2000, 978-1005.

[15] E. Letier, Reasoning about Agents in Goal-Oriented Requirements
Engineering,. PhD Thesis, Univ. Cath. Louvain, May 2001.

[16] N.G. Leveson, Safeware: System Safety and Computers. Addison-
Wesley, 1995.

[17] N. Leveson, “An Approach to Designing Safe Embedded Software”,
Proc. EMSOFT 2002 – Embedded Software: 2nd Intl. Conference,
Grenoble, LNCS 2491, Springer-Verlag, October , 2002, 15-29.

[18] N.G. Leveson, Engineering a Safer World. MIT Press, 2011.
[19] M. Lippert, C. V. Lopes, “A study on exception detection and handling

using aspect-oriented programming”, Proc. ICSE’2000: International
Conference on Software Engineering, IEEE, 2000, 418-427.

[20] M.S. Lund, B. Solhaug and K. Stølen, Model-Driven Risk Analysis: the
CORAS approach. Springer-Verlag, 2011.

[21] R. Lutz, A. Patterson-Hine, S. Nelson, C.R. Frost, D. Tal and R. Harris,
“Using Obstacle Analysis to Identify Contingency Requirements on an
Unpiloted Aerial Vehicle”, Req. Eng. Journal 12(1), 2007, 41-54.

[22] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and
Concurrent Systems. Springer-Verlag, 1992.

[23] G. Mussbacher, D. Amyot, J. Araújo, A. Moreira, M. Weiss,
“Visualizing Aspect-Oriented Goal Models with AoGRL”, 2nd Intl.
Workshop on Requirements Engineering Visualization, IEEE, 2007.

[24] M. Ryan, “Defaults in Specifications”, Proc. First IEEE International
Symposium on Requirements Engineering, 1993, 142-149.

[25] M. Sabetzadeh, D. Falessi, L. Briand, S. Di Alesio, D. McGeorge, V.
Ahjem and J. Borg, “Combining Goal Models, Expert Elicitation, and
Probabilistic Simulation for Qualification of New Technology, Proc”.
IEEE 13th Intl. Symp. on High-Assurance Syst. Eng., Nov. 2011, 10-12.

[26] B. Schneier, Secrets and Lies: Digital Security in a Networked World.
Wiley, 2004.

[27] P.-Y. Schobbens, “Exceptions for algebraic specifications: on the
meaning of but”, Sci. Computer Programming 20(1-2), 1993, 73-111.

[28] A. Shaukat, L. Briand, H. Hemmati, “Modeling robustness behavior
using aspect-oriented modeling to support robustness testing”, Software
& Systems Modeling 11(4), 2012, 633-670.

[29] A. Sutcliffe, N.A. Maiden, S. Minocha, and D. Manuel, “Supporting
Scenario-Based Requirements Engineering”, IEEE Trans. Software Eng.
24(12), Dec. 1998, 1072-1088.

[30] D. Zowghi and R. Offen, “A Logical Framework for Modeling and
Reasoning About the Evolution of Requirements”, Proc. 3rd IEEE Intl.
Symp. on Requirements Engineering, 1997, 247-257.

52

