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Abstract.  Engineering the right software requirements under the right 
environment assumptions is a critical precondition for developing the right 
software. Requirements completeness, in particular, is known to be among the 
most critical and difficult software engineering challenges. Missing requirements 
often result from poor risk analysis at requirements engineering time. A natural 
inclination to conceive over-ideal systems prevents adverse conditions from being 
properly identified and, when likely and critical, resolved through adequate 
countermeasure requirements. 
The paper overviews a model-based approach for integrating risk analysis in 
requirements engineering. The approach is aimed at anticipating exceptional 
conditions in which the target system should behave adequately.  In a goal-
oriented modeling framework, obstacles are introduced as as preconditions for the 
non-satisfaction of system goals.  Following the identify-assess-control cycle of 
risk analysis, the paper reviews a variety of formal techniques available for 
generating obstacles, for assessing their likelihood and the severity of their 
consequences, and for resolving them through countermeasures whose integration 
in the system model results in increased requirements completeness. 

Keywords. Goal-oriented requirements engineering, risk analysis, formal multi-
view models, hazard analysis, model checking, inductive learning, refinement 
patterns. 

1. Introduction 

Requirements engineering (RE) refers to the analysis of the problems experienced with 
an existing system (the systems-as-is) and the identification and evaluation of the 
opportunities, objectives, and options for a new system (the system-to-be). The 
outcome of this process is a requirements document in which the objectives of the 
system-to-be, the distribution of responsibilities, and the software functionalities, 
qualities, constraints, and assumptions are organized and specified precisely for 
subsequent development and maintenance.  
 The RE task is intrinsically difficult. We need to produce a complete, adequate, 
consistent, and well-structured set of measurable software requirements and 
environmental assumptions from incomplete, imprecise, and sparse material originating 
from multiple, often conflicting sources [Lam09]. The target system comprises the 
software-to-be together with environment components such as people, devices, and 
pre-existing software.  



The RE task is critical as well. Requirements-related errors are recognized to be the 
most numerous, persistent, expensive, and dangerous types of software errors [Lam09]. 
They result in cost overruns, delivery delays, failure to meet expectations or even 
degradations in the environment controlled by the software. 

Requirements completeness in particular is among the most critical and difficult 
challenges. Missing requirements and assumptions are known to be the major cause of 
software failure [Lam09]. They often result from a lack of anticipation of unexpected 
conditions under which the software should behave adequately. A natural inclination to 
conceive over-ideal systems prevents adverse conditions from being properly handled.  

Risk analysis should therefore be at the heart of the requirements engineering 
process [Lam00, Fea03, Lam09, As11, Lun11]. A risk is commonly defined as an 
uncertain factor whose occurrence may result in some loss of satisfaction of a 
corresponding objective. A risk has a likelihood of occurrence and one or several 
undesirable consequences associated with it. Each consequence is uncertain as well; it 
has a likelihood of occurrence if the risk occurs. A consequence has a severity in terms 
of degree of loss of satisfaction of the corresponding objective. The likelihood of a risk 
should not be confused with the likelihood of a consequence of the risk; for example, 
the likelihood of the risk of the GPS device not working properly inside a mobilized 
ambulance is not the same as the likelihood of the consequence that the ambulance 
might get lost if the GPS is not working. 

Depending on the category of objective being obstructed, risks may correspond to 
safety hazards [Lut93, Lev95, Lev02], security threats [Amo94, Lam94a], inaccuracies 
between software variables and the environment quantities they should reflect [Lam00], 
and so forth. 

The paper overviews a systematic approach for integrating risk analysis in model-
based RE. The models we consider inter-relate the goals to be achieved by the system, 
the conceptual objects involved in their specification, the agents responsible for the 
goals, the operations needed to ensure the goals, and the agent behaviors required to 
meet them. To enable formal reasoning about goals when and where needed, a real-
time linear temporal logic is used to specify them. 

In such models, obstacles are introduced as a natural abstraction for risk analysis 
[Lam00]. An obstacle to a goal is a precondition for the non-satisfaction of this goal. 
Obstacle analysis iterates on three steps: 

• Identification: as many obstacles as possible to every leaf goal in the goal 
refinement graph should be identified;  

• Assessment: the likelihood and severity of each obstacle should be assessed;  
• Control: likely and critical obstacles should be resolved by integration of 

appropriate countermeasures in the goal model.  
Obstacle analysis has been applied to a variety of mission-critical systems –see, e.g., 
[Dar07, Lut07]. 

The paper reviews and illustrates the techniques available to date for supporting the 
identify-assess-control cycles of obstacle analysis.  

• For obstacle identification, we may use a formal regression calculus to derive 
obstacles from goals and domain properties [Lam00], or instantiate goal 
obstruction patterns to shortcut such derivations [Lam00], or combine model 
checking and inductive learning to generate a domain-complete set of 
obstacles [Alr12]. 

• For obstacle assessment, we need to enrich our models with a probabilistic 
layer allowing us to estimate the likelihood of fine-grained obstacles and 



propagate these through the obstacle and goal models in order to determine the 
severity and likelihood of obstacle consequences [Cai12]. 

• For obstacle resolution, we may explore alternative countermeasures by use of 
systematic model transformations that encode risk-reduction tactics such as 
reduce risk likelihood, avoid risk, reduce consequence likelihood, avoid risk 
consequence, or mitigate risk consequence. Most appropriate countermeasures 
may then be selected based on the likelihood of obstacles and the severity of 
their consequences. 

The paper is organized as follows. Section 2 introduces some necessary background on 
goal-oriented system modeling. The basic concepts of goal, domain property and agent 
are defined and interrelated; the mechanisms of refinement and operationalization are 
introduced as a basis for elaborating a goal-oriented model; the specification formalism 
for analyzing goal models is outlined. Section 3 introduces obstacles and obstacle 
analysis as a goal-anchored form of risk analysis to complete goal models. Section 4 
presents various techniques for obstacle identification, namely, the formal regression of 
goal negations through available domain properties, the use of formal obstruction 
patterns, and the combined use of  model checking and inductive learning for obstacle 
generation. Section 5 introduces a probabilistic framework for assessing the likelihood 
and severity of obstacles. Section 6 then reviews a number of obstacle resolution 
operators available for integrating countermeasures to likely and severe obstacles in the 
goal model. 

2. Goal-Oriented Model Building for Requirements Engineering 

In order to capture the multiple system facets relevant to the RE process, a model 
should integrate complementary views [Lam09].  

• The intentional view captures the system objectives as functional and non-
functional goals together with their mutual contribution links. 

• The structural view captures the conceptual objects referred to in the other 
views, their structure and their inter-relationships. 

• The responsibility view captures the agents forming the system, their 
responsibilities with respect to system goals, and their interfaces with each other 
in terms of the state variables they monitor and control. 

• The functional view captures the services the system should provide in order to 
operationalize its goals. 

• The behavioral view captures the behaviors required for the system to satisfy its 
goals. Interaction scenarios illustrate expected interactions among specific agent 
instances whereas state machines prescribe classes of behaviors of any agent 
instance on the state variables it controls. 

Section 2.1 introduces these various model views and their integration mechanism. 
Section 2.2 introduces the real-time logic used for specifying goals to enable their 
formal analysis. Sections 2.3 and 2.4 introduce some basic techniques for verifying the 
correctness of goal refinements and goal operationalizations, respectively. 



2.1. Goal-Oriented Modeling 

The intentional view. The target system is intended to meet a number of objectives. 
These are to be highlighted as first-class citizens and interrelated. A goal is a 
prescriptive statement of intent the system should satisfy through cooperation of its 
agents [Dar93, Lam01]. An agent is an active system component playing some role in 
goal satisfaction through adequate control of state variables. 

The finer-grained a goal is, the fewer agents are involved in its satisfaction. A 
requirement is a goal under responsibility of a single agent of the software-to-be. An 
expectation is a goal under responsibility of a single agent in the environment of the 
software-to-be. Expectations form one kind of assumption we need to make for the 
system to satisfy its goals.  

When reasoning about goal satisfaction in the RE process, we often need to use 
domain properties. These are descriptive statements about the problem world, unlike 
goals which are prescriptive. They are expected to hold invariably regardless of how 
the system will behave. The distinction between descriptive and prescriptive statements 
is important. Goals may need to be negotiated with stakeholders, prioritized, weakened 
in case of conflict, or strengthened in case of unacceptable exposure to risks. Unlike 
prescriptive statements, domain properties are not subject to such decisions. 

A goal is either a behavioral goal or a soft goal. A behavioral goal prescribes 
intended system behaviors declaratively. It implicitly defines a maximal set of 
admissible behaviors. Behavioral goals can be Achieve or Maintain/Avoid goals. An 
Achieve goal prescribes a TargetCondition to be established sooner or later when some 
CurrentCondition holds. A Maintain goal prescribes a GoodCondition to be maintained 
(similarly, an Avoid goal prescribes some BadCondition to be avoided). 

Unlike behavioral goals, a soft goal cannot be established in a clear-cut sense. It 
prescribes preferences among alternative system behaviors, being more satisfied along 
some alternatives and less satisfied along others.  

Behavioral goals are therefore used for deriving system operations to satisfy them 
[Dar93, Let02b] whereas soft goals are used for comparing alternative options to select 
preferred ones [Ch00, Let04]. 

Those goal types should not be confused with a categorization into functional 
goals, underlying system services, and non-functional goals, prescribing qualiy of 
service. For example, a confidentiality goal Avoid [SensitiveInformationDisclosed] is 
traditionally considered as non-functional; it is a behavioral goal though. 

A goal model is basically an annotated AND/OR graph showing how higher-level 
goals are satisfied by lower-level ones (goal refinement) and, conversely, how lower-
level goals contribute to the satisfaction of higher-level ones (goal abstraction) 
[Lam01]. The top goals are the highest-level ones still in the system scope whereas the 
leaf goals are assignable to single agents as requirements or expectations. In a goal 
model, an AND-refinement link relates a goal to a set of subgoals called refinement; 
this means that the parent goal can be satisfied by satisfying all subgoals in the 
refinement. A goal node can be OR-refined into multiple AND-refinements; each of 
these is called alternative for achieving the parent goal. The meaning of multiple 
alternative refinements is that the parent goal can be satisfied by satisfying the 
conjoined subgoals in any of the alternative refinements. 

Fig. 1 shows a goal model fragment for an ambulance dispatching system that will 
be used as a running example throughout the paper. An AND-refinement is denoted by 
an arrow joining subgoals to the parent goal; multiple incoming arrows indicate an OR-



refinement. The figure also shows a leaf goal assignment to the AmbulanceStaff agent. 
Home-shaped nodes represent domain properties required for refinement correctness. 

Figure 1.  Portion of a goal graph for an ambulance dispatching system 

The nodes in a goal model are decorated by annotations to characterize the 
corresponding goal – such as its precise definition, an optional formal specification of 
the goal (see Section  2.2), the goal’s priority level, etc. 

The structural view. Conceptual objects capture the concepts referred to by the 
system goals and domain properties. They are interrelated and defined precisely in an 
object model as entities, associations, agents, or events. This model provides the 
concept definitions and domain properties used in the other models. In particular, the 
object attributes and associations define the system’s state variables in terms of which 
goals, agents, operations, and behaviors are specified in the other system views. An 
object model is represented by an annotated UML class diagram, where annotations 
capture individual object features such as a precise definition of the object, its attributes, 
relevant domain properties associated with it, initial values when an object instance 
appears in the system, etc. [Lam09].  

The responsibility view. Agents were already introduced as active system 
components that are responsible for the leaf goals in a goal model. The agent model 
captures the distribution of responsibilities within the system together with the 
capabilities of every agent. The latter are defined in terms of the state variables from 
the object model that the agent can monitor or control. An agent model thus shows the 
system scope and the boundary between the software-to-be and its environment.  

The functional view. An operation model captures the system operations in terms 
of their individual features and their links to the goal, object, agent, and behavior 
models. This model specifies, for each operation, its signature, the descriptive domain 
pre-and postconditions that intrinsically characterize the state transitions produced by 
the operation in the problem world, and the prescriptive required precondition, trigger 
condition, and required post conditions that must further constrain any application of 
the operation for each underlying goal to be satisfied [Dar93, Let02b].  
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The explicit linking of operational specifications to the underlying system goals 
provides a rich basis for satisfaction arguments, traceability management, and 
evolution support [Lam09]. 

The behavioral view. A behavior model captures desired system behaviors. Global 
behaviors are obtained by parallel composition of agent behaviors. The latter are made 
explicit through scenarios and state machines. A scenario shows sequences of 
interactions among specific agent instances. It is represented by a UML sequence 
diagram. A state machine shows sequences of state transitions for the variables 
controlled by any agent instance within some class. Such transitions are caused by 
operation applications or by external events. A state machine is represented by a UML 
state diagram or by a labelled transition system (LTS) depending on the type of 
analysis we want to perform on it  [Lam09]. 

View integration. The complementary views of the target system are integrated 
through inter-model links constrained by rules for structural consistency and 
completeness of the overall model. For example, responsibility links connect leaf goals in 
the goal model and agents in the agent model; concern links connect goals in the goal 
model and the conceptual objects in the object model these goals refer to; 
operationalization links connect leaf goals in the goal model and the operations ensuring 
them in the operation model; scenarios or state machines in the behavior model are 
connected to behavioral goals by coverage links. The rules constraining inter-model 
links allow us to check the structural completeness and consistency of the overall 
model, e.g., “every conceptual item referenced by a goal specification in the goal model must 
appear as an attribute or object in the object model, and vice versa”; “an agent responsible for a 
goal must have the capability of controlling the variables constrained by the goal specification and 
of monitoring the variables to be evaluated in it”, “every operation in the operation model must 
operationalize at least one leaf goal from the goal model”, etc. 

2.2. Specifying model items  

The approach outlined here is a “two-button” one where the formal analysis button is 
pressed only when and where needed. The button pressed by default is the semi-formal 
one, where the modeler is using the graphical notations and supporting tools to 
elaborate her models, perform static semantics checks on them through queries on the 
model database,  generate HTML files for model browsing, generate UML use cases 
and other derived diagrams, and generate the requirements document [Obj04]. 

Formal analysis of critical aspects in the models require a formal specification 
language for the goals, domain properties attached to objects, and pre- and 
postconditions on the operations. A linear real-time temporal logic (RT-LTL) is used 
for the goals, domain properties, and required trigger conditions (for the latter 
conditions, with past operators only). A simple state-based, Z-like language is used for 
the domain and required pre- and postconditions. 
The following logical connectives are used: ∧ (and), ∨ (or), ¬ (not), → (implies), ↔ 
(equivalent). The main temporal operators are fairly standard: 

ο P       (P holds in the next state) 
o P      (P holds in every future state)  
P W N  (P holds in every future state unless N holds) 
◊ P      (P holds in some future state) 



o≤d P    (P holds in every future state up to d time units) 
◊≤d P     (P holds within d time units) 
P ⇒ Q for  o (P → Q) 

The counterpart over past states is provided by past, “blackened” operators, e.g., 
 • P        (P holds in the previous state) 
 @ P         • (¬ P) ∧  P 

These formulas are interpreted as usual over historical sequences H of states, e.g., 
(H, i) |=  o  P      iff    iff    (H, j) |= P  for for all j ≥ i  

       (H, i) |=  ◊≤d P      iff    iff    (H, j) |= P  for for some j ≥ i with distance (i,j) ≤ d 

The ο/• operators refer to the next/previous state within the smallest time unit. They are 
often used for expressing immediate obligations. 
 To make the presentation simpler, we will often provide propositional goal 
formalizations as illustrations. The techniques in this paper are however applicable to 
first-order goal formalizations as well. 
For example, the top goal in Fig. 1 may be specified as follows: 
 Goal  Achieve [AmbulanceOnSceneInTime When IncidentReported] 
    FormalSpec  IncidentReported ⇒ ◊≤14 min AmbulanceOnScene 

Another goal might prescribe any mobilized ambulance to remain mobilized until 
intervention: 

 Goal  Maintain [AmbulanceMobilized] 
        FormalSpec   AmbulanceMobilized ⇒ AmbulanceMobilized W AmbulanceOnScene 
In goal specifications, the keywords prefixing goal names are used to indicate temporal 
specification patterns [Dar93] – e.g., Achieve [P] indicates a pattern ◊≤d P on a target 
predicate P; Avoid [P] indicates a pattern o¬ P; and so forth. Such patterns help 
writing the specification from informal prescriptive statements. They prove convenient 
for non-expert specifiers to use elementary temporal logic without knowing it. 

The system’s semantic picture is as follows. The global state of the system at some 
time position is the aggregation of the local states of all its agents at that time position. 
The local state of an agent at some time position is the aggregation of the states, at that 
time position, of all the state variables the agent controls. The state of a variable at 
some time position is a mapping from its name to its value at that time position. The 
system evolves synchronously from system state to system state, where the time 
distance between successive states is the smallest time unit defined in the RT-LTL 
language. (This time unit may be chosen arbitrarily small.) A system’s state transition 
is caused by the application, by some agents, of applicable operations they may or must 
perform on the state variables they control. Operations are atomic; an operation applied 
in the current state maps the corresponding agent’s state to the next state one smallest 
time unit later. As multiple trigger conditions may become true in the same state, the 
corresponding operations must fire simultaneously. We thus have true concurrency 
here; a system’s state transition is composed of parallel transitions on local states. An 
interleaving semantics is not possible in view of the obligations expressed by trigger 
conditions. 

The system’s non-determinism arises from the non-deterministic behavior of its 
agents. While an agent must perform an operation when one of the operation’s trigger 
conditions becomes true, the agent has the freedom to perform an operation or not 



when its required preconditions are all true. Such non-determinism, while suitable at a 
more abstract level for declarative reasoning, must in general be removed when the 
specification is translated into a more operational language (e.g., for specification 
animation or other checks on the operational version) [Tra04]. A choice must then be 
made between an eager or lazy behavior scheme for each operation performed by the 
agent. In the eager behavior scheme, the agent performs the operation as soon as it can, 
that is, as soon as all required preconditions are true. This corresponds to a maximal 
progress property. In the lazy behavior scheme, the agent performs the operation when 
it is really obliged to do so, that is, when one of its required trigger conditions becomes 
true. 

A system’s behavior is then defined by a temporal sequence of system state 
transitions. The system satisfies a behavioral goal if the set of all its possible behaviors 
is included in the set of behaviors prescribed by the RT-LTL specification of the goal.  

2.3. Goal refinement 

As seen in Section 2.1, a goal AND-refinement means that the parent goal can be 
satisfied by satisfying all subgoals in the refinement. A first kind of model verification 
consists in checking that AND-refinements of behavioral goals in the goal model are 
“correct”, that is, complete, consistent and minimal. 
 A set of goals {SG1, ..., SGn} correctly refines a goal G in a domain theory 
Dom  made of known domain properties iff  

{SG1, ..., SGn, Dom} |=  G                           completeness 
{SG1, ..., SGn, Dom} |≠  false                       consistency 

  {∧j≠i SGj , Dom} |≠  G  for each i ∈ [1..n]     minimality 

Such correctness checking is important; incomplete refinements result in missing 
requirements whereas non-minimal refinements produce unnecessary requirements. 
Several approaches can be followed to verify the correctness of a goal refinement. 

Theorem proving. We might use a temporal logic theorem prover to prove that the 
subgoals conjoined with domain properties entail the parent goal. This is obviously a 
heavyweight approach requiring the assistance of an expert user. Moreover we get no 
real clue in case the verification fails. 

Formal refinement patterns. A more lightweight and constructive approach 
consists in using formal patterns to check, complete, or explore refinements [Dar96, 
Let02a]. The idea is to build a catalogue of common refinement patterns that encode 
refinement tactics. The patterns in the catalogue are proved formally correct once for 
all, e.g., using a LTL theorem prover. They are then reused in matching situations 
through instantiation of their meta-variables. Fig. 2 and Fig. 3 show three frequent 
refinement patterns. The left pattern in Fig. 2 encodes the tactics of introducing an 
intermediate milestone goal; the right one encodes a decomposition-by-guard pattern. 
The pattern in Fig. 3 captures goal refinement through decomposition by cases. 

The two top refinements in Fig. 1 were obtained using the milestone-driven pattern 
with AmbulanceAllocated and AmbulanceMobilized as milestone conditions, 
respectively. The next lower-level refinement instantiates the decomposition-by-cases 
pattern with AmbulanceOnRoad and AmbulanceAtStation as case conditions. 



Figure 2. Formal refinement patterns: milestone-driven and guard introduction 

Figure 3. Formal refinement patterns: decomposition by cases 

Refinement patterns support a constructive approach to refinement correctness. They 
may be used for guiding the refinement process. When a goal is partially refined, we 
may retrieve all matching patterns from the catalogue and thereby explore alternative 
ways of completing the partial refinement with missing subgoals [Dar96]. Similar 
patterns are used for obstacle refinement in obstacle trees, see Section 3. 

Using a bounded SAT solver. To verify the correctness of a goal refinement, we 
may also make a roundtrip use of a bounded SAT solver. In view of the above 
definition of refinement completeness, we would like to know whether the temporal 
logic formula 

SG1 ∧ ... ∧ SGn ∧ Dom ∧ ¬ G 
is satisfiable and, if so, find a historical sequence of states satisfying it. 

To achieve this, a tool front-end can apply the following steps  [Pon07]:  
• ask the user to instantiate the above formula to selected object instances in 

order to obtain a propositional formula,  
• translate the result into the input format required by the SAT solver,  
• ask the user to determine a maximal length to bound counterexample traces,  
• run the SAT solver, and  
• translate the output back to the level of abstraction of the input model. 

Such use of a bounded SAT solver allows partial goal models to be checked and 
debugged incrementally as the model is being built. The major payoff resides in the 
counterexample traces that may suggest missing subgoals.  

2.4. Goal operationalization  

A set of operations operationalizes a leaf goal in the goal model if the specification of 
their required precondition, trigger condition and required postcondition for that goal 
ensures that the goal is satisfied.  

Verifying the correctness of goal operationalizations is important too; we must 
make sure that the operational specifications meet the intentional ones. For this we 
need a temporal logic semantics for operations [Let02b]. Let op denote an operation 
from the operation model, specified by a domain precondition DomPre(op), a domain 
postcondition DomPost(op), a set ReqPre(op) of required preconditions, a set 
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ReqTrig(op) of trigger conditions and a set ReqPost(op) of required postconditions, all 
constraining the operation so as to meet the goals operationalized by it. Let: 

[| op (in, out) |] =def  DomPre (op) ∧ ο DomPost (op) 
The semantics of required pre-, trigger-, and postconditions is then: 

If  R ∈ ReqPre (op)  then  
                 [| R |] =def  (∀∗) ( [| op |] ⇒ R ) 

If  R ∈ ReqTrig (op)  then  
                [| R |] =def  (∀∗) ( R ∧ DomPre (op) ⇒ [| op |] ) 

If  R ∈ ReqPost (op)  then  
                 [| R |] =def  (∀∗) ( [| op |] ⇒  ο R ) 

A set of required conditions R1, ..., Rn on operations from the operation model 
correctly operationalizes a goal G [Let02b]  iff 

     [| R1 |] ∧ ... ∧ [| Rn |]  |=  G           completeness 
     [| R1 |] ∧ ... ∧ [| Rn |]   |≠  false         consistency 

G |=  [| R1 |] ∧ ... ∧ [| Rn |]             minimality 
Every operationalization defines a proof obligation. The correctness of a goal 

operationalization can be verified in different ways. 
Bounded SAT solver. Similarly to goal refinement checking, we may make a 

roundtrip use of a bounded SAT solver. The temporal logic formula to be checked for 
satisfiability is here: 

[| R1 |] ∧ ... ∧ [| Rn |] ∧ Dom ∧ ¬ G 

The FAUST toolset proceeds similarly to check bounded operationalizations and 
generate counterexample traces [Pon07]. 

Formal operationalization patterns. The principle is similar to goal refinement 
patterns. A catalogue of operationalization patterns is built and formally proved correct 
once for all [Let02b]. The patterns cover common goal specification patterns, e.g., 
Achieve goals of form C ⇒ ◊≤d T or C ⇒ ο T and Maintain goals of form C ⇒ T or C 
⇒ TW N. The patterns are then reused in matching situations through instantiation of 
their meta-variables. Fig. 4 shows a pattern for operationalizing Immediate Achieve 
goals.  

Figure 4. Operationalization pattern for Immediate Achieve goals   
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3. Obstacle Analysis for Risk-Driven Requirements Engineering 

As introduced before, the goals identified in the early stages of the RE process are 
often too ideal. They are likely to be violated due to unintentional or malicious agent 
behaviors. For system robustness and requirements completeness, it appears essential 
to integrate risk analysis in the goal elaboration process in order to anticipate potential 
problems at RE time. 

Risk analysis may be anchored on goal models through obstacle identification, 
assessment and resolution. 

An obstacle O to goal G  is a precondition for goal violation that satisfies the 
following conditions [Lam00]:  

  {O, Dom} |=  ¬ G  goal obstruction 
  {O, Dom} |≠  false  obstacle satisfiability in domain 

For behavioral goals, obstacles are existential properties that capture inadmissible 
behaviors called negative scenarios. Such behaviors should be feasible in view of 
known domain properties. 

Obstacles may be classified in categories corresponding to the category of goals 
they are obstructing. Hazards are obstacles obstructing safety goals; threats are 
obstacles obstructing security goals (with subcategories such as disclosure, corruption 
or denial-of-service obstacles); inaccuracy obstacles obstruct accuracy goals 
constraining software variables with respect to the environment quantities they should 
reflect; misinformation obstacles obstruct information goals; and so forth. 

For risk analysis to be reliable, obstacle completeness is highly desirable –at least 
for mission-critical goals. A set of obstacles O1, ..., On to some goal G is domain-
complete iff: 

{¬ O1, ..., ¬ On , Dom} |=  G, obstacle completeness 
that is, the goal is guaranteed to be satisfied if none of the obstacle conditions is 
satisfied. Note that the notion of obstacle completeness is relative to what is known 
about the domain. As the next section will show, obstacle analysis can be used to elicit 
relevant domain properties as well. 

An obstacle model is a set of goal-anchored fault trees [Amo94, Lev95] where 
each fault tree is an AND/OR refinement tree showing how the corresponding goal can 
be violated. The root of the tree is the goal negation; the leaves are elementary 
obstruction conditions whose satisfiability and likelihood can be easily assessed. 

Figure 5.  Portion of an obstacle tree [Lam09] 
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Fig. 5 shows a portion of an obstacle tree anchored on the leaf goal 
AmbulanceOnSceneWhenMobilized appearing in Fig. 1. 

For risk analysis to be “correct”, the obstacle refinements in obstacle trees must be 
correct.  

• An AND-refinement of an obstacle O  into sub-obstacles S01, ..., SOn should 
be a correct AND-refinement in view of known domain properties: 

   {SO1, ..., SOn, Dom} |=  O                refinement completeness 
        {SO1, ..., SOn, Dom} |≠  false                        domain consistency 
   {∧j≠I SOj , Dom} |≠  O  for each i ∈ [1..n]      minimality 
• An OR-refinement of an obstacle O  into sub-obstacles S01, ..., SOn should 

meet the following conditions: 
    {SOi, Dom} |= O    entailment 
    {SOi, Dom}|≠   false   satisfiability 
    {SOi,  SOj, Dom}|=   false    (i ≠ j)  disjointness 
    {¬ SO1, ¬ SO2, …,¬ SOn, Dom} |= ¬ O domain-completeness 
As an obvious consequence of these correctness conditions, if an obstacle SOi OR-

refines an obstacle O and the latter obstructs a goal G, then SOi obstructs G as well. 
Obstacle analysis aims at anticipating as many likely and critical obstacles as 

possible, where critical means that the consequences of obstacle satisfaction are likely 
and severe. The expected outcome is a set of countermeasures to such obstacles whose 
integration in the goal model will result in a more complete and realistic set of software 
requirements and environment assumptions.   

 An overall procedure for obstacle analysis looks like this: 
   For each selected leaf goal in the goal refinement graph (requirement or expectation): 

(a) identify as many obstacles to it as possible; 
(b) assess their satisfiability, likelihood, and criticality; 
(c) resolve the likely and critical ones according to their degree of likelihood and severity. 

Obstacle analysis should primarily be focussed on mission-critical goals as the 
consequences of their obstruction are expected to be more severe. The obstacle trees 
should be anchored on leaf goals; it appears easier to find ways of breaking finer-
grained goals, and leaf goal obstructions get up-propagated in the goal model anyway 
(see Section 5). 

As Fig. 6 shows, goal model elaboration and obstacle analysis are iterative and 
intertwined processes. The goal-obstacle analysis loop terminates when the remaining 
obstacles can be tolerated, that is, when they are too unlikely or their consequences are 
acceptable. 
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Figure 6. Goal elaboration and risk analysis are iterative and intertwined 

The techniques available for supporting steps (a), (b) and (c) will be discussed in 
Sections 4, 5 and 6, respectively. 



4. Obstacle identification 

Given a goal G, we are looking for obstruction preconditions O such that : 
{O, Dom} |---  ¬ G,    Dom |--/--  ¬ O 

To build an obstacle tree anchored on G, we may proceed as follows : 

• Negate G; 
• Find as many AND/OR refinements of ¬ G as possible in view of properties in Dom, 
• until reaching obstruction preconditions whose satisfiability, likelihood and criticality 

can easily be assessed. 

As discussed before, the obstacle tree should produce correct refinements of the goal 
negation; its leaves should, ideally, form a domain-complete set of obstacles.  

Various techniques are available for building obstacle trees in a systematic way. 
Section 4.1 introduces a fairly straightforward principle of tautology-based refinement. 
Section 4.2 presents a formal regression technique for generating obstacles from 
domain properties. Section 4.3 shows how formal derivations can be shortcut by use of 
formal obstruction patterns. Section 4.4 finally overviews a recent technique for 
generating a domain-complete set of obstacles through a suitable combination of model 
checking and inductive learning. 

4.1. Tautology-based refinement 

In view of the negation prefixing root obstacles, propositional tautologies may drive 
some of the refinements, e.g., 

   ¬ (A ∧ B)  is equivalent to  ¬ A ∨ ¬ B,      
   ¬ (A ∨ B)  is equivalent to  ¬ A ∧ ¬ B, 
   ¬ (A → B)  is equivalent to  A ∧ ¬ B, 
   ¬ (A ↔ B)  is equivalent to  (A ∧ ¬ B) ∨ (¬ A ∧ B) 
Fig. 7 illustrates the use of the latter tautology in the context of an automated car 

handbrake control system. One benefit of tautology-based decompositions is the 
complete OR-refinement they produce when an ∨-connective is introduced in the 
rewriting of the parent obstacle.  

Figure 7. Tautology-based obstacle refinement 
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4.2. Regressing goal negations through domain properties 

Obstacles may also be generated using a formal calculus somewhat corresponding, for 
declarative statements, to Dijkstra’s precondition calculus [Dij76] or Waldinger’s 
regression procedure used in AI planning [Wal77].  

The general idea is to regress the goal negation ¬ G backwards through matching 
domain properties in Dom and then apply the regression recursively to the results 
obtained. Assuming domain properties take the general form A ⇒ C, the procedure is as 
follows [Lam00]. 

Initial step:  
 take  O := ¬ G  
Inductive step:  
 let A ⇒ B  be the domain property selected with B matching some litteral L in O  
     whose occurrences are all positive in O [Man92] 
 then   µ := mgu (L, B)           ((mgu: most generat unifier)) 
 O := O [L / A. µ] 

Every iteration of the inductive step produces finer sub-obstacles. A very strong 
heuristic may be used for guiding the search for matching domain properties. Assume 
G is an Achieve goal of form C ⇒ ◊T. Its negation is thus ◊ (C ∧ o ¬ T). We may then 
look for domain properties stating necessary conditions for the target condition T, that 
is, properties of form T ⇒ N; their equivalent contraposed form ¬  N ⇒ ¬ T provides a 
match. The heuristic is similar for Maintain goals. If such domain properties are not 
available, we might elicit them. 

Let us illustrate the regression procedure on our running example of an ambulance 
dispatching system. Consider the leaf goal: 

Goal  Achieve [IncidentResolved When AmbulanceOnScene] 
 FormalSpec  AmbulanceOnScene ⇒ ◊ IncidentResolved 

Applying the regression procedure we first negate the goal which yields the root 
obstacle: 

Obstacle IncidentNotResolvedByAmbulance 
  FormalSpec  ◊ (AmbulanceOnScene ∧ o ¬ IncidentResolved) 

We regress this root obstacle through domain properties providing necessary conditions 
for incident resolution, e.g.,  

 IncidentResolved ⇒ (PersonInjured → (NeedsCare → CareProvided), 
 IncidentResolved ⇒ (PersonInjured → AdmittedAtHospital) 

Regressing the root obstacle through these domain properties yields two alternative 
sub-obstacles: 

Obstacle CriticalCareNotGiven 
  FormalSpec  ◊ (AmbulanceOnScene  

  ∧ o (PersonInjured ∧ NeedsCare ∧ ¬ CareProvided)) 
Obstacle PersonNotAdmittedToHospital 

  FormalSpec  ◊ (AmbulanceOnScene ∧ o (PersonInjured ∧ ¬ AdmittedAtHospital))  

Regressing the first subobstacle CriticalCareNotGiven through the domain property 
      AmbulanceOnScene ∧ PersonInjured ∧ CareProvided ⇒ ResourceAvailableInAmbulance 
yields the following finer-grained obstacle: 



Obstacle ResourceUnavailableInAmbulance 
  FormalSpec  ◊ (AmbulanceOnScene ∧ PersonInjured ∧ NeedsCare  
   ∧ ¬ ResourceAvailableInAmbulance) 

The generation of finer-grained sub-obstacles producing the obstacle tree may go on 
this way until leaf obstacles that can easily be assessed are reached. 

4.3. Using obstruction patterns 

Similarly to goal refinement patterns, a catalogue of common goal obstruction patterns 
may be built and proved correct once for all. The patterns are then reused for obstacle 
identification by instantiation in matching situations [Lam00]. Fig. 8 shows two such 
patterns. The pattern on the left encodes the common heuristic used before; the obstacle 
is obtained by a single regression step through a domain property stating a necessary 
condition for the goal’s target condition. As mentioned before, this pattern can be used 
for eliciting relevant domain properties as well (“what are necessary conditions for the 
goal’s target condition?”). 

The pattern on the right in Fig. 8 encodes a starvation pattern. To understand it, let 
us consider its instantiation to a generic resource allocation system [Lam09]. A main 
functional goal in this system is the following: 

  ∀ u: User, r: Resource 
  Requesting (u, r) ⇒ ◊ Allocated (r, u)   

The following known domain property is matching the right leaf node of the starvation 
pattern: 

  Allocated (r, u) ⇒  ¬ ∃ u’ ≠ u: Allocated (r, u’) 
This suggests the following meta-variable instantiations: 

C: Requesting (u, r)       T: Allocated (r, u) P:  ¬ ∃ u’ ≠ u: Allocated (r, u’) 
The following starvation obstacle is derived by instantiation of the left leaf node: 

  ◊ ∃ u: User, r: Resource 

  Requesting (u, r) ∧ o [ ¬ Allocated (r, u) U ∃ u’ ≠ u: Allocated (r, u’)] 

This obstacle captures a feasible coalition among other users that prevents the 
requesting user from ever getting the resource. 
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4.4. Combining model checking and inductive learning for obstacle generation 

The objective of this technique is more ambitious. Here we want to generate a domain-
complete set of obstacles to a given leaf goal whose satisfiability in the domain is 
guaranteed by construction. The generated obstacle set must thus meet the obstacle 
completeness condition in Section 3. To achieve this, the technique combines model 
checking for generating goal example and counterexamples traces and then inductive 
learning for generalizing those traces into obstacle conditions [Alr12]. 

• For model checking, the LTSA tool is applied to goals and domain properties 
formalized in a LTL variant known as FLTL where atomic formulas are fluents 
[Gia03, Mag06]. A fluent is defined by two sets of events: the intitiating events 
making it true and the terminating events making it false. Fluents provide a simple, 
effective means for integrating event-based and state-based specifications. In a 
pre-processing phase, the tool generates FLTL specifications of goals and domain 
promerties from LTL ones [Let08]. 

• For inductive learning from example traces, an inductive logic programming 
(ILP) engine is used to construct generalized properties from examples [Mug94, 
Cor10]. Given a knowledge base K, a set of positive examples E+, a set of 
negative examples E-, and a set IC of integrity constraints, the learner generates a 
generalization H such that, for every E+and E-: 

  {K, H} |=   E+  (example coverage) 
  {K, H} |≠  E-  (counterexample exclusion) 
  {K, H, IC} |≠ false (consistent generalization) 

 In our framework, K will be the domain theory Dom whereas the set IC will 
include constraints on the search for generalizations. The ILP engine is 
guaranteed to be sound and complete; it scales up for finite domains. 

The obstacle generation technique iterates on the following steps until a domain-
complete set of obstacles is obtained (see Fig. 9). 

1. The working set BP of background properties initially includes the set Dom of 
known domain properties.  The labelled transition system (LTS) containing all 
satisfying traces of  BP is synthesized using LTSA. Let’s call it L(BP). 

2. LTSA is used to model-check the target goal against the synthesized LTS, that is, 
to check that  

   L (BP) |=  (C ⇒ Θ T) 
 where C and T are the goal’s current and target conditions, respectively, and Θ 

represents one of the LTL operators introduced in Section 2.2. If the goal is not 
satisfied, the check produces a counterexample trace E-.  

3. LTSA is used again to model-check the goal’s anti-target against the synthesized 
LTS, that is, it checks that  

   L (BP) |=  (C ⇒ ¬ Θ T) 
 If the anti-target is not satisfied, the check produces a witness trace E+. 
4. The polarity of the example and counterexample is inverted; the goal 

counterexample trace E- becomes a witness trace for the obstacle condition we 
want to obtain whereas the goal witness trace E+ becomes a counterexample 
trace for the obstacle condition. The domain properties, goal, counterexample 



trace and witness trace are then automatically translated to the logic 
programming formalism for input to the ILP engine. 

5. The ILP engine generates a set of generalizations Oi that covers the obstacle 
trace E- while excluding the counterexample trace E+. 

6. The user is asked to select one condition O among the generated Oi. New domain 
properties Dom may also be elicited during this interaction using the 
aforementioned heuristic of considering domain properties that provide 
necessary conditions for the considered current target condition. 

7.  The current set BP of  background properties is extended as follows: 
   BP := BP ∪ ¬ O ∪ Dom’  
8. The process is repeated by considering this new BP at step 1 until a set of 

obstacles satisfying the obstacle completeness condition  
{¬ O1, ..., ¬ On , Dom} |=  G 

 is obtained. 
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Figure 9. Using model checking and inductive learning for generating 

a domain-complete set of obstacles [Alr12] 

Let us have a closer look at this technique using our running example. Consider the 
goal 

Goal  Achieve [AllocatedAmbulanceMobilizedByPhone] 
       FormalSpec   Allocated ⇒ ο MobilizedByPhone 

Step 1. Initially, the set BP of background properties contains domain properties such 
as: 
 MobilizedByPhone ⇒ CrewResponsive 
 MobilizedByPhone ⇒ AmbulanceReady 

The corresponding fluent definitions are also domain properties in BP: 
 Allocated =  <allocate, deallocate, false> 
 MobilizedByPhone =  <mobilizePh, demobilizePh, false> 
 CrewResponsive =  <crew-responds, crew-ignores, true> 
 AmbulanceReady =  <setUp, leaveStation, true> 
The first fluent definition, for example, states that the fluent Allocated is made true by 
allocate events and made false by deallocate events (where allocate events correspond to 



applications of the Allocate operation from the operation model); this fluent is initially 
false. 
Step 2. The LTL L(BP) synthesized from this set of domain properties is model-
checked against the goal  
  Allocated ⇒ ο MobilizedByPhone. 
This produces the following counterexample trace to the goal: 
  E- =   allocate; crew-ignores 

Step 3. The same LTL L(BP) is now model-checked against the anti-target  
  Allocated ⇒ ¬ ο MobilizedByPhone. 
This produces the following witness trace for the goal: 
  E+ =   allocate; mobilizePh 
Step 4. After inversion of the polarity of the example and counterexample, the domain 
properties, goal and example/counterexample are translated to the logic programming 
formalism. 
4.a. A fluent definition such as: 

 CrewResponsive =  <crew-responds, crew-ignores, true> 
adds the following facts to the knowledge base K: 

 initiates (crew-responds, crewResponsive). 
 terminates (crew-ignores, crewResponsive). 
 initially (crewResponsive). 

4.b. A domain property such as: 
 MobilizedByPhone ⇒ CrewResponsive 

 adds the following rule to the integrity constraints IC: 
  :- holdsAt (mobilizedByPhone, T, S), not holdsAt (crewResponsive, T, S). 

4.c. The goal Allocated ⇒ ο MobilizedByPhone adds the following facts to the knowledge 
base K: 

         holdsAt (mobilizedByPhone, T2, S) :- 
  holdsAt (allocated, T1, S), next (T2, T1), 
  not obstructed_next (mobilizedByPhone, T1, S)). 

Note the last predicate added in this translation; it states that the target 
mobilizedByPhone will hold at time T2 if allocated holds at previous time T1 
provided this target is not obstructed at T1, that is, provided there is no obstacle 
that would prevent the ambulance from being mobilized by phone. 

4.d. Counterexamples such as allocate; crew-ignores add the following facts to the 
knowledge base: 
  happens (allocate, 0, cx). 
  happens (crew-ignores, 1, cx). 

while adding the following fact to the set of positive obstacle examples: 
  not holdsAt (mobilizedByPhone, 2, cx). 
The latter fact calls for a generalization to be inferred in order to explain why the 
goal’s target is obstructed in this example. 

4.e. Witnesses such as allocate; mobilizePh add the following facts to the knowledge 
base: 
  happens (allocate, 0, wx). 
  happens (mobilizePh, 1, wx). 

while adding the following fact to the set of negative obstacle examples: 
  holdsAt (mobilizedByPhone, 2, wx). 



The latter fact requires the inferred generalization to be consistent with the goal’s 
target being not obstructed in this negative example. 

Step 5-7. The ILP engine then returns the following learnt rule: 
    obstructed_next (mobilizedByPhone, T, S)) :- 

  holdsAt (allocated, T, S),  
  not holdsAt (crewResponsive, T, S). 

which is translated back to the FLTL obstacle specification: 
  ◊ (Allocated ∧ ¬ CrewResponsive) 
whose negation is added to the current set BP of  background properties. 

Step 8. A second iteration on Steps 1-7 produces the following new obstacle: 
  ◊ (Allocated ∧ ¬ AmbulanceReady) 

A next iteration using the domain property 

  CrewResponsive ⇒ PhoneWorking, 
either available or acquired at a previous Step 6, produces the following subobstacle: 
  ◊ (Allocated ∧ ¬ PhoneWorking) 
and the process goes on until a domain-complete set of obstacles is obtained. 
Note that no user intervention is required for example provision in this incremental 
obstacle generation process. Moreover, the inferred obstacles are satisfiable in the 
domain in view of the soundess of the ILP generalization process. 

5. Obstacle Assessment 

The second phase of obstacle analysis consists of assessing the likelihood and 
criticality of the generated obstacles (see Section 3), where criticality is measured in 
terms of likelihood and severity of the consequences of obstacle satisfaction. As a 
consequence of this phase, the next phase of obstacle resolution can be more focussed 
on likely and critical obstacles. 

Obstacle assessment calls for a probabilistic framework in which we can reason 
about partial goal satisfaction; the degree of goal satisfaction may then be related to the 
probability of goal obstruction by obstacles.  

In passing, we would like to integrate goals that are sometimes stated 
probabilistically. For example, the ORCON standards for ambulance dispatching 
systems states that “ambulances shall be on the incident within 14 minutes in at least 
95% of the cases” [Rep93].  

A generalized setting should enable us to capture the severity of obstacle 
consequences in terms of the difference between the required degree of satisfaction of 
a goal and its estimated degree of satisfaction due to likely obstacle obstructions. 

This section outlines a probabilistic framework for doing this [Cai12]. Section 5.1 
introduces probabilistic goals, their refinements and their possible obstructions by 
probabilistic obstacles. Section 5.2 shows how the likelihood of obstacles can be 
evaluated in this generalized setting using the structure provided by obstacle trees. 
Section 5.3 then shows how the severity of obstacle consequences can be evaluated 
using the structure provided by the goal model. The prioritization of obstacles by levels 
of criticality for subsequent resolution is briefly discussed in Section 5.4. 



5.1. Probabilistic goals and obstacles 

As introduced in Section 2.1, a behavioral goal implicitly defines a maximal set of 
admissible behaviors. Restricting ourselves to finite-behavior systems, the probability 
of goal satisfaction is defined in terms of the probability of observing one of those 
behaviors.  

Let us again consider the general form C ⇒ ΘT for a behavioral goal where C and T 
are the goal’s current and target conditions, respectively, and Θ represents one of the 
LTL operators introduced in Section 2.2. We are obviously interested by the non-
vacuous satisfaction of such a goal, leaving aside those behaviors where the goal is 
trivially satisfied by making C false. 

The probability of non-vacuous satisfaction of a goal is defined as the ratio of the 
number of possible system behaviors satisfying its antecedent C and consequent ΘT 
over the number of possible system behaviors satisfying the condition C. For example, 
the probability of satisfaction of the goal Allocated ⇒ ο Mobilized in Fig. 1 is the ratio of 
the number of system behaviors where an allocated ambulance was immediately 
mobilized over the number of system behaviors where an ambulance was allocated 
when an incident was reported. 

We may sometimes need to check whether some goals are independent or not. 
Two goals are said to be dependent if the set of behaviors non-vacuously satisfying one 
of them non-vacuously satisfies or denies the other. In terms of conditional 
probabilities, the independence of goals G1 and G2 is characterized by the following 
conditions: 

 P (G1 | G2) = P (G1 | ¬ G2) = P (G1),      P (G2 | G1) = P (G2 | ¬ G1) = P (G2), 
where P (G) denotes the probability of satisfaction of G and P (G | H) denotes the 
probability of satisfaction of G over all behaviors satisfying property H. 

In view of the completeness, consistency and minimality conditions on goal 
refinements in Section 2.3, one can show that (a) in a goal model whose AND-
refinements are complete, two goals are dependent if they are connected through a 
refinement path or a conflict link; and (b) in a minimal, complete and consistent goal 
refinement, the subgoals are independent. 

Two different degrees of goal satisfaction are defined. The required degree of 
satisfaction (RDS) of a goal is the minimal probability of satisfaction admissible for 
this goal. It is imposed by elicited requirements. Annotating a behavioral goal C ⇒ ΘT 
in a goal model with its RDS amounts to specifying it in a probabilistic temporal logic 
[Kwi02], e.g., through an assertion such as:  

  C ⇒ Pr ≥RDS [ΘT] 
Note that the standard case of non-probabilistic goals G introduced in Section 2 
corresponds to RDS (G) = 1. 

On the other hand, the estimated probability of satisfaction (EPS) for a goal is the 
probability of satisfaction of this goal in view of its possible obstructions by obstacles. 
This probability, denoted by P (G) for a goal G, will be computed from the 
goal/obstacle models (see Sections 5.2 and 5.3 hereafter). 

The severity of violation of a goal G is defined by the difference between those 
two degrees of satisfaction:  

  SV (G) =  RDS (G) – P (G). 
In this setting the desirable conditions on goal refinements introduced in Section 

2.3 may be generalized accordingly [Cai12]:  



  P (G | Dom) > 0    (domain-consistency) 
  P (G | SG1, …, SGn, Dom) > 0  (complete refinement) 

  P (SG1, …, SGn | Dom) > 0        (consistent refinement) 
  P (G | SG1, …, SGi-1, SGi+1, ...,  SGn, Dom)  
   <   P (G | SG1, …, SGn, Dom)       (minimal refinement) 

A goal is partially satisfied because of obstacles that might obstruct it. The 
probability of an obstacle is the probability of satisfaction of the obstacle condition, 
that is, the ratio of the number of possible system behaviors satisfying the obstacle 
condition over the number of possible system behaviors. For example, the probability 
of the obstacle ◊ (Allocated ∧ ¬ CrewResponsive) is the ratio of the number of possible 
behaviors where the crew of an allocated ambulance is not responsive over the number 
of possible system behaviors. 

The conditions on obstacle trees introduced in Section 3 are now generalized to 
probabilistic obstacles, e.g., 

  P (¬ G | O, Dom) > 0       (potential obstruction) 
  P (O | Dom) > 0    (satisfiability in domain) 
  P (O | SOi) > 0   for all SOi   (entailment) 
  P (O | ¬ SO1, …, ¬ SOn, Dom) = 0  (domain completeness) 

The disjointness condition on sub-obstacles in Section 2.2 is generalized into an 
independence condition, namely, 

  P (SOi | SOj) = P (SOi | ¬ SOj) = P (SOi) 
  P (SOj | SOi) = P (SOj | ¬ SOi) = P (SOj) 
Note that two dependent obstacles can be captured through three independent ones 

each having a specific probability: one where the first obstacle condition holds but not 
the second, one where the second obstacle condition holds but not the first, and one 
where both hold.  

5.2. Assessing the likelihood of obstacles 

To assess our generated obstacles, we first need to evaluate how likely these obstacles 
are. To achieve this in our probabilistic framework, we need to: 

• estimate the probabilities of the leaf obstacles in the obstacle refinement trees 
we have built,  

• up-propagate these probabilities through the trees until the probability of the 
root obstacles are obtained. 

To get probability estimates for the leaf obstacles, we need to rely on domain 
expertise or use statistical data about past system behaviors (cf. the definition of a 
probabilistic obstacle).  For example, consider the leaf obstacle: 

 ◊ (AmbulanceMobilized ∧ o ¬ GPSWorking) 

in Fig. 5. Statistical data might tell us that the situation of a non-working GPS inside a 
mobilized ambulance occurs in 10% of the cases. 

To up-propagate probabilities in an obstacle refinement tree, we may use 
propagation equations such as the following [Cai12]: 

• for an AND-refinement:  
  P (O) = P (SO1) × P (SO2) × P (O | SO1, SO2) 



• for an OR-refinement:  
  P (O) = 1 – (1 – P (SO1) × P (O | SO1)) × (1 – P (SO2) × P (O | SO2)) 
The preceding equations are recursively applied bottom-up through the refinement 

tree until reaching the probability of the root obstacle, that is, the goal negation. 
For example, let us assume that the following leaf estimates were obtained from 

statistical data (see Fig. 5): 
 P (AmbulanceNotInFamiliarArea) = 0.2,    P (GPSNotWorking) = 0.1, 
 P (AmbulanceLost | AmbulanceNotInFamiliarArea, GPSNotWorking) = 0.95; 

we get by the AND-propagation equation: 
 P (AmbulanceLost) = 0.019.  

Assuming now the following leaf estimates available from statistical data (see Fig. 5):  
 P (AmbulanceStuckInTrafficJam) = 0.02,    P (AmbulanceBrokenDown) = 0.005, 
 P (AmbulanceNotOnSceneInTime | AmbulanceLost) = 0.99, 
 P (AmbulanceNotOnSceneInTime | AmbulanceStuckInTrafficJam) = 0.98, 
 P (AmbulanceNotOnSceneInTime | AmbulanceBrokenDown) = 1, 

we obtain by the OR-propagation equation the following probability for the root 
obstacle in Fig. 5: 
 P (MobilizedAmbulanceNotOnSceneInTime) = 0.0429 
which means that a mobilized ambulance will not arrive on the incident scene in time 
in 4.3% of the cases. 

5.3. Assessing the severity of obstacle consequences 

Once we have evaluated how likely our generated obstacles are, we need to evaluate 
how likely and severe their consequences are. In risk analysis, the consequence of a 
risk is expressed in terms of the degree of loss of satisfaction of the associated 
objective. This is translated in our framework by defining the consequences of an 
obstacle as the lower degree of satisfaction of the obstructed leaf goal and, recursively, 
of its parent and ancestor goals in the goal model. 

The propagation of the propability of a root obstacle RO to the obstructed leaf goal 
LG is fairly straightforward; we just need to use the following equation: 

 1 - P (LG) = P (RO) × P (¬ LG  | RO) 
In our preceding example, we will thereby obtain for the obstructed leaf goal in Fig. 5: 

 P (AmbulanceOnSceneWhenMobilized) = 0.957 
The decreased degree of satisfaction of the obstructed leaf goal must then be up-

propagated in the goal refinement graph in order to determine all obstacle 
consequences [Cai12]. In case of a single system with no alternative OR-refinements 
and with complete AND-refinements, the general up-propagation equation reduces to: 

 P (G) =  P (SG1, SG2) 
  + P (SG1, ¬ SG2) × P (G | SG1, ¬ SG2) 
  + P (SG2, ¬ SG1) × P (G | SG2, ¬ SG1) (AND-propagation) 

This equation may be further simplified for common refinement patterns such as 
those introduced in Section 2.3 (see Figs. 2-3); their completeness, consistency and 
minimality make the subgoals independent. For example,  
 P (G) = P (SG1) × P (SG2) (milestone-driven refinement)  



 P (G) = P (CS) × P (SG1)  
 + (1 - P (CS)) × P (SG2)  (case-driven refinement with condition CS) 

Two kinds of impact analysis may be performed to evaluate the consequences of 
obstacles [Cai12]. 

• Global impact analysis: the computed probabilities for all obstructed leaf 
goals are together up-propagated in the goal graph to see how much the 
resulting EPS of higher-level goals deviates from their required RDS. 

• Local impact analysis: the consequence of a single leaf goal obstruction is 
evaluated by up-propagation of the computed probability for this leaf goal, 
all other leaf goals being assigned a probability of 1.  

Let us briefly illustrate a global impact analysis for the model in Fig. 1. The EPS 
computed in Section 5.2 for the leaf goal AmbulanceOnSceneWhenMobilized was 0.956. 
Replaying similar up-propagations through the obstacle trees anchored on the other leaf 
goals in Fig. 1 yields the following EPS for these leaf goals: 

 P (AmbulanceMobilizedByFax) = 0.90,  P (AmbulanceMobilizedByPhone) = 0.95, 
 P (AllocatedAmbulanceMobilizedWhenOnRoad) = 0.98, 
 P (AmbulanceAllocatedWhenIncidentReported) = 0.98. 

Using the AND-propagation equation above for the bottom AND-refinement, the 
simplified case-driven one for the next higher-level refinement, and the simplified 
milestone-driven one for the next two higher-level refinements, we obtain for the root 
goal in Fig. 1: 
 P (AmbulanceOnSceneInTime WhenIncidentReported) = 0.928 
This means that the system as modelled is not able to satisfy the ORCON standard; the 
latter requires this root goal to be satisfied in at least 95% of the cases.  The violation 
severity SV for this goal is 2.2%. 

5.4. Prioritizing obstacles 

In view of the possibly large number of potential obstacles to a goal model, we want to 
focus the resolution process on the most problematic leaf obstacles. 

This is a multi-criteria optimization problem as we need to find minimal sets of 
leaf obstacles that maximize the severity SV of goal violations. 

A brute-force approach includes the following steps: 
• generate all leaf obstacle combinations,  
• compute the SV(G) for each obstructed goal G, possibly weighted by the 

priority level annotating G in the goal model (see Section 2.1),  
• sort the leaf obstacle combinations by severity. 

Alternatively, we may use optimized techniques that are available for generating 
Pareto fronts [Kun75]. 

In our running example, the brute force approach highlights 4 obstacle 
combinations resulting in  

SV (AmbulanceOnSceneInTime WhenIncidentReported) > 0 
(out of 8 feasible combinations). No single obstacle is sufficient to get below the RDS 
of 95%. Two combined obstacles are however sufficient. In particular, the possibility 
of an ambulance being lost and stuck in traffic jam is sufficient for severe obstruction 
of the goal (with SV = 1.8); this is the pair to resolve first. 



6. Obstacle Resolution for a More Complete Goal Model 

The final phase in identify-assess-control cycles of obstacle analysis consists in 
resolving critical obstacles, that is, those sufficiently likely and with sufficiently severe 
consequences to fall below RDS thresholds. Obstacle resolution consists in identifying 
suitable countermeasures and deploying them. 

Two strategies may be followed for this. 
• RE-time resolution: We may (a) explore alternative countermeasures by 

application of model transformation operators encoding obstacle resolution 
tactics [Lam00]; (b) select a “best” resolution based on obstacle severity, 
on estimates of risk-reduction leverage [Lam09] or on contribution to soft 
goals from the goal model [Chu00]; and (c) integrate the selected 
countermeasure in the goal model. This may call for further refinement of 
the new or transformed goals thereby introduced. 

• Run-time resolution: We may tolerate obstacles that are not too 
problematic and defer their resolution at runtime. This requires 
mechanisms for run-time monitoring of obstacle occurrences and dynamic 
system reconfiguration when repeated obstacle occurrences become 
intolerable [Fea78].  

This section overviews a variety of obstacle resolution tactics and their 
corresponding model transformation operators [Lam00, Lam09]. Fig. 10 shows some 
of them. 
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Figure 10. Model transformation operators for obstacle resolution [Lam09] 

Goal substitution: This tactic consists of considering an alternative refinement of 
the parent goal to avoid the obstruction of one of the child goals. The new alternative 
should be less exposed to obstruction risks.  

As an illustration, consider the obstacle AmbulanceCrewNotInFamiliarArea that 
obstructs the leaf goal AmbulanceOnSceneWhenMobilized in Fig. 5 up to the root goal 
AmbulanceOnSceneInTimeWhenIncidentReported in Fig. 1. We might then replace the 
subgoal AmbulanceAllocatedWhenIncidentReported in Fig. 1 by the alternative subgoal 
DivisionalAmbulanceAllocatedWhenIncidentReported to ensure that ambulances are allocated 
to incidents within the same geographic division only. 



Agent substitution: This tactic consists of considering an alternative responsibility 
assignment for the obstructed goal so as to make the obstacle unsatisfiable in the 
domain.  

For example, the obstacle ◊ (Allocated ∧ ¬ AmbulanceReady) generated in Section 4.4 
might be resolved by assigning the leaf goal AmbulanceAllocatedWhenIncidentReported in 
Fig. 1 to ambulance crew instead of assigning it to the software-to-be. 

Obstacle prevention: A new goal Avoid [obstacle] is added to the goal model in 
order to prevent the obstacle from occurring. This goal must in general be further 
refined. 

For example, consider the obstacle MobilizationOrderTakenByOtherAmbulance that 
obstructs the goal the AmbulanceMobilizedByFax. To resolve it, we might introduce a new 
goal Avoid [AmbulanceMobilizedWithoutOrder] . 

Goal weakening: This tactic consists of weakening the obstructed goal so that the 
weaker version is no longer obstructed. For a goal C ⇒ ΘT, the weakening may be 
achieved by adding a conjunct in C or a disjunct in T. 

This tactic is among the most frequently used ones. For example, the overideal goal 
AmbulanceOnSceneWhenMobilized might be replaced by the weaker version 
AmbulanceOnSceneWhenMobilizedAndNotBrokenDown. 

Obstacle reduction:  This tactic consists of reducing the probability of the obstacle 
by some ad hoc countermeasure.  

For example, we might try to reduce ambulance crew practice leading to obstacle 
satisfaction by some dedicated reward/dissuasion system.   

Goal restoration:  Here we tolerate the obstacle but enforce the target condition of 
the obstructed goal when the obstacle occurs. This corresponds to adding a new goal 
Obstacle ⇒ ◊ TargetCondition in the goal model.  

For example, the leaf goal AmbulanceOnSceneWhenMobilized in Fig. 5 might be 
restored by mobilization of another ambulance nearer to the incident scene if the 
mobilized one gets lost. 

Obstacle mitigation:  Here again we tolerate the obstacle but introduce a new goal 
to mitigate the consequences of the obstacle. In a weak mitigation, the new goal 
ensures a weaker version of the goal when the latter is obstructed. In a strong 
mitigation, the new goal ensures a parent of the goal when the latter is obstructed. 

For example, the preceding obstacle MobilizationOrderTakenByOtherAmbulance might 
be mitigated by introduction of a new goal MobilizationByOtherAmbulanceKnown. 

Domain transformation: This tactic consists of transforming the domain and its 
descriptive properties so that the obstruction disappears. The new or modified domain 
properties make the obstacle unsatisfiable or not obstructing the goal anymore.  

As an illustration of the former case, consider the goal AmbulanceMobilizedByFax. 
One obstacle to it corresponds to the situation where an ambulance crew decides to 
mobilize another ambulance than the one allocated by the system. The domain property 
making this possible is that mobilization orders received by crews at ambulance 
stations mention the incident location. The obstacle can be eliminated by transforming 
the mobilization order so that it no longer mentions the incident location, the latter 
being provided by a mobile data terminal inside the ambulance. 

 



7. Conclusion 

It is important to verify that software applications implement their specifications 
correctly. Do these specifications meet the software requirements? Do these 
requirements meet the system goals under realistic assumptions? Are these goals, 
requirements, and assumptions complete, adequate, and consistent? These are critical 
questions with many challenging issues for formal methods.  

Rich models are essential to support the requirements engineering (RE) process. 
Such models must address multiple perspectives including the intentional, structural, 
responsibility, operational, and behavioral facets of the system. They must cover the 
entire system, comprising both the software and its environment – made of humans, 
devices, pre-existing software, mother Nature, attackers, etc. Rich RE models should 
make alternative options explicit – such as alternative goal refinements, alternative 
agent assignments, or alternative countermeasures to critical risks. They should support 
a seamless transition from high-level concerns to operational requirements.  

Building such models is hard and critical. We should therefore be guided by 
methods that are systematic, incremental, and support the analysis of partial models. 

Goal-based reasoning is pivotal for model building and requirements elaboration, 
for exploration and evaluation of alternatives, and for anticipation of incidental or 
malicious behaviors. 

Requirements completeness is a key issue. It can be achieved through multiple 
means such as refinement checking, to find out missing subgoals, and obstacle analysis 
to identify, assess, and control risks through countermeasure goals that were missing. 

Declarative specifications play an important role in the RE process – in particular, 
for communicating with stakeholders and for early reasoning about partial models. 

In order to engineer highly reliable and secure systems, it is essential to start 
thinking methodically about these aspects as early as possible, that is, at requirements 
engineering time. We must be pessimistic from the beginning about the software and 
about its environment, and anticipate all kinds of risks including hazards, threats and 
other unexpected agent behaviors. 

The use of the various risk analysis techniques presented in the paper results in 
increased requirements completeness under unexpected but likely conditions. The 
techniques illustrated the benefits of a “multi-button” framework where semi-formal 
techniques are used for modeling, navigation, and traceability whereas formal 
techniques are used, when and where needed, for precise, incremental reasoning on 
mission-critical model portions. As suggested in this overview paper, goal-oriented 
models offer a lot of opportunities for formal methods. 
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